数控车床刀具补偿及换刀程序
- 格式:pptx
- 大小:661.56 KB
- 文档页数:30
数控加工的补偿方法在20世纪六七十年代的数控加工中没有补偿的概念,所以编程人员不得不围绕刀具的理论路线和实际路线的相对关系来进行编程,这样容易产生错误。
补偿的概念出现以后,大大地提高了编程的工作效率。
在数控加工中有刀具半径补偿、刀具长度补偿和夹具补偿。
这三种补偿方法基本上能解决在加工中因刀具形状而产生的轨迹问题。
1、刀具半径补偿在数控机床进行轮廓加工时,由于刀具有一定的半径(如铣刀半径),因此在加工时,刀具中心的运动轨迹必须偏离实际零件轮廓一个刀具半径值,否则实际需要的尺寸将与加工出的零件尺寸相差一个刀具半径值或一个刀具直径值。
此外,在零件加工时,有时还需要考虑加工余量和刀具磨损等因素的影响。
有了刀具半径补偿后,在编程时就可以不过多考虑刀具直径的大小了。
刀具半径补偿一般只用于铣刀类刀具,当铣刀在内轮廓加工时,刀具中心向零件内偏离一个刀具半径值;在外轮廓加工时,刀具中心向零件外偏离一个刀具半径值。
当数控机床具备刀具半径补偿功能时,数控编程只需按工件轮廓进行,然后再加上刀具半径补偿值,此值可以在机床上设定。
程序中通常使用G41/G42指令来执行,其中G41为刀具半径左补偿,G42为刀具半径右补偿。
根据ISO标准,沿刀具前进方向看去,当刀具中心轨迹位于零件轮廓右边时,称为刀具半径右补偿;反之,称为刀具半径左补偿。
在使用G41、G42进行半径补偿时,应采取如下步骤:设置刀具半径补偿值;让刀具移动来使补偿有效(此时不能切削工件);正确地取消半径补偿(此时也不能切削工件)。
当然要注意的是,在切削完成且刀具补偿结束时,一定要用G40使补偿无效。
G40的使用同样遇到和使补偿有效相同的问题,一定要等刀具完全切削完毕并安全地退出工件后,才能执行G40命令来取消补偿。
2、刀具长度补偿根据加工情况,有时不仅需要对刀具半径进行补偿,还要对刀具长度进行补偿。
程序员在编程的时候,首先要指定零件的编程中心,才能建立工件编程的坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
浅析数控系统的刀具补偿作者:陈永红来源:《现代企业文化·理论版》2010年第10期摘要:文章通过对不同数控机床的刀具补偿功能较全面的分析和计算。
掌握了其刀具补偿应用技能,为在理论教学和实践操作解决各种具体实际问题,提供了参考。
关键词:数控机床;刀具补偿;刀具轨迹;刀位点一、数控刀具补偿功能使用立铣刀在数控铣床或数控加工中心上加工工件时,可以清楚看出刀具中心的运动轨迹与工件已加工轮廓不重合,这是因为工件轮廓是立铣刀以运动包络的方式形成的。
立铣刀的中心称为刀具的刀位点,刀位点的运动轨迹即代表刀具的运动轨迹。
在数控加工中是按工件轮廓尺寸编制程序,还是按刀位点的运动轨迹编制程序,需要根据具体情况来处理。
二、数控系统中的刀具补偿(一)数控车床刀具补偿1刀具位置补偿。
对于刀具磨损或重新安装刀具引起的刀具位置变化,建立、执行刀具位置补偿后,其加工程序不需要重新编制。
办法是测出每把刀具的刀位点相对于某一理想位置的刀位偏差(X向与Z向)并输入到指定的存储器内,程序执行刀具补偿指令后,当前刀具的实际位置就到达理想位置。
2刀尖圆弧半径补偿。
编制数控车床加工程序时,车刀刀尖被看作是一个点(假想刀尖P 点),但实际上为了提高刀具的使用寿命和降低工件表面粗糙度,车刀刀尖被磨成半径不大的圆弧,这必将产生加工工件的形状误差。
由于刀尖圆弧所处的特殊位置。
车刀的形状对工件加工也将产生影响,而这些可采用刀尖圆弧半径补偿来解决。
3刀补参数。
每一个刀具补偿号对应刀具位置补偿(X和Z值)和刀尖圆弧半径补偿(R和T值)共4个参数,在加工之前输入到对应的存储器。
在自动执行过程中,数控系统按该存储器中的X、Z、R、T的数值,自动修正刀具的位置误差和自动进行刀尖圆弧半径补偿。
意义:在进行工件轮廓的加工时,由于刀具半径、刀尖半径的存在,刀具中心或假想刀尖和工件轮廓不重合。
当刀具磨损、重磨、换刀时,要重新计算刀心轨迹,修改程序。
然而当数控系统具备刀具半径自动补偿功能时,则只需按工件轮廓进行编程,数控系统会自动计算刀心轨迹,使刀具偏离工件轮廓一个半径值,不需要修改程序。
三种补偿在数控加工中有3种补偿:刀具长度的补偿;刀具半径补偿;夹具补偿。
这三种补偿基本上能解决在加工中因刀具外形而产生的轨迹问题。
下面是三种补偿在一般加工编程中的应用。
一、刀具长度补偿:1.刀具长度的概念刀具长度是一个很重要的概念。
我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。
每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm 的钻头和一把长为350mm的丝锥。
先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,假如两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。
此时假如设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z (或Z)补偿了丝锥的长度,保证了加工零点的正确。
2.刀具长度补偿的工作使用刀具长度补偿是通过执行含有G43(G44)和H指令来实现的,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。
另外一个指令G49是取消G43(G44)指令的,其实我们不必使用这个指令,因为每把刀具都有自己的长度补偿,当换刀时,利用G43(G44)H指令赋予了自己的刀长补偿而自动取消了前一把刀具的长度补偿。
3.刀具长度补偿的两种方式(1)用刀具的实际长度作为刀长的补偿(推荐使用这种方式)。
使用刀长作为补偿就是使用对刀仪测量刀具的长度,然后把这个数值输入到刀具长度补偿寄存器中,作为刀长补偿。
使用刀具长度作为刀长补偿的理由如下:首先,使用刀具长度作为刀长补偿,可以避免在不同的工件加工中不断地修改刀长偏置。
数控车床加⼯⼑具补偿功能怎么⽤?⼀、数控车床⽤⼑具的交换功能1. ⼑具的交换指令格式⼀:T0101;该指令为FANUC系统转⼑指令,前⾯的T01表⽰换1号⼑,后⾯的01表⽰使⽤1号⼑具补偿。
⼑具号与⼑补号可以相同,也可以不同。
指令格式⼆:T04D01;该指令为SIEMENS系统转⼑指令,T04表⽰换4号⼑,D01表⽰使⽤4号⼑的1号⼑沿作为⼑具补偿存储器。
2. 换⼑点所谓换⼑点是指⼑架⾃动转位时的位置。
⼤部分数控车床,其换⼑点的位置是任意的,换⼑点应选在⼑具交换过程中与⼯件或夹具不发⽣⼲涉的位置。
还有⼀些机床的换⼑点位置是⼀个固定点,通常情况下,这些点选在靠近机床参考点的位置,或者取机床的第⼆参考点来作为换⼑点。
⼆、⼑具补偿功能1. ⼑具补偿功能的定义在数控编程过程中,为使编程⼯作更加⽅便,通常将数控⼑具的⼑尖假想成⼀个点,该点称为⼑位点或⼑尖点。
数控机床根据⼑具实际尺⼨,⾃动改变机床坐标轴或⼑具⼑位点位置,使实际加⼯轮廓和编程轨迹完全⼀致的功能,称为⼑具补偿(系统画⾯上为“⼑具补正”)功能。
数控车床的⼑具补偿分为:⼑具偏移(也称为⼑具长度补偿)⼑尖圆弧半径补偿2. ⼑位点的概念所谓⼑位点是指编制程序和加⼯时,⽤于表⽰⼑具特征的点,也是对⼑和加⼯的基准点。
数控车⼑的⼑位点如图所⽰。
尖形车⼑的⼑位点通常是指⼑具的⼑尖;圆弧形车⼑的⼑位点是指圆弧刃的圆⼼;成形⼑具的⼑位点也通常是指⼑尖。
三、⼑具偏移补偿1. ⼑具偏移的含义⼑具偏移是⽤来补偿假定⼑具长度与基准⼑具长度之长度差的功能。
车床数控系统规定X轴与Z 轴可同时实现⼑具偏移。
⼑具⼏何偏移:由于⼑具的⼏何形状不同和⼑具安装位置不同⽽产⽣的⼑具偏移。
⼑具磨损偏移:由⼑具⼑尖的磨损产⽣的⼑具偏移。
⼑具偏移补偿功能⽰例:FANUC系统的⼑具⼏何偏移参数设置如图所⽰,如要进⾏⼑具磨损偏移设置则只需按下软键[磨耗]即可进⼊相应的设置画⾯。
图中的代码“T”指⼑沿类型,不是指⼑具号,也不是指⼑补号。
前言数控车床通常连续实行各种切削加工,刀架在换刀时前一刀具刀尖位置和新换的刀具位置之间会产生差异,刀具安装也存在误差、刀具磨损和刀尖圆弧半径等误差,若不利用刀具补偿功能予以补偿,就切削不出符合图样要求形状的零件。
此外,合理利用刀具补偿还可以简化编程。
数控车床的刀具补偿可分为两类,即刀具位置补偿和刀具半径补偿。
1 刀具位置补偿加工过程中,若使用多把刀具,通常取刀架中心位置作为编程原点,即以刀架中心! 为程序的起始点,如图1所示,而刀具实际移动轨迹由刀具位置补偿值控制。
由图1(a)可见,刀具位置补偿包含刀具几何补偿值和磨损补偿值。
图1 刀具位置补偿由于存在两种形式的偏移量,所以刀具位置补偿使用两种方法,一种方法是将几何补偿值和磨损补偿值分别设定存储单元存放补偿值,其格式为:另一种方法是将几何偏移量和磨损偏移量合起来补偿,如图(b)所示,其格式为:总补偿值存储单元编号有两个作用,一个作用是选择刀具号对应的补偿值,并执行刀具位置补偿功能;另一个作用是当存储单元编号00时可以取消位置补偿,例如T0100,表示消去+号刀具当前的补偿值。
图2表示位置补偿的作用,图2中的实线是刀架中心A 点的编程轨迹线,虚线是执行位置补偿时A 点的实际轨迹线,实际轨迹的方位和X、Z轴的补偿值有关,其程序为:N010 G00 X10 Z-10 T0202;N020 G01 Z-30;N030 X20 Z-40 T0200;图2 刀具位置补偿作用数控车床系统刀具结构如图3所示,图3中P为假想刀尖,S为刀头圆弧圆心,r为刀头半径,A为刀架参考点。
图3 车刀结构车床的控制点是刀架中心,所以刀具位置补偿始终需要。
刀具位置补偿是用来实现刀尖圆弧中心轨迹与刀架参考点之间的转换,对应图3中A与S之间的转换,但是实际上我们不能直接测得这两个中心点之间的距离矢量,而只能测得假想刀尖! 与刀架参考点$ 之间的距离。
为了简便起见,不妨假设刀头半径r=0,这时可采用刀具长度测量装置测出假想刀尖点P相对于刀架参考点的坐标和,并存入刀具参数表中。
数控机床自动换刀系统的使用方法数控机床自动换刀系统是一种现代化的工艺装备,它能够自动完成刀具的安装和拆卸,极大地提高了机床的工作效率和自动化水平。
在这篇文章中,我们将详细介绍数控机床自动换刀系统的使用方法,以帮助读者更好地了解和应用这一技术。
首先,数控机床自动换刀系统的基本原理是通过刀库来存放各种不同类型的刀具,并且能够根据加工程序的要求自动选择并安装适当的刀具。
在使用之前,我们需要先对刀具进行合理的编码和分类,并将其放置在刀库中。
接下来,我们需要进行合适的设置和调整。
首先,通过数控系统进入自动换刀的菜单界面,选择相应的刀库和刀具编号。
然后,根据加工零件的要求,选择适当的刀具参数和加工工艺参数,如切削速度、进给速度等。
最后,将设定好的加工程序加载到数控系统中。
在机床开始加工前,我们需要执行一次预热功能,以确保刀库、刀具和机床处于最佳状态。
同时,还需要检查刀具的完好程度,如刀片的磨损情况、刀具的固定性等。
如果存在问题,及时更换和调整刀具,以保证加工质量和安全。
在实际操作中,数控机床自动换刀系统的使用方法还需注意以下几点。
首先,严禁在机床运行状态下打开刀库门,以防止刀库和刀具的损坏。
其次,操作人员必须经过专业的培训和熟悉使用手册,掌握换刀系统的操作要领和注意事项。
再次,要定期对刀具和机床进行保养和维护,以延长其使用寿命。
此外,数控机床自动换刀系统的使用方法还需要根据具体的机床类型和加工要求进行灵活调整。
例如,在加工不同材料的零件时,需要选择适宜的刀具材质和切削参数;在进行复杂轮廓和曲线加工时,需要使用特殊形状的刀具,并调整切削路径和刀具补偿等。
总结起来,数控机床自动换刀系统的使用方法是一个复杂而重要的技术,它能够提高机床的生产效率和一致性。
通过合理设置和调整刀具参数,以及进行正确的操作和维护,可以确保刀具的安全性和加工质量。
然而,在使用过程中还需要注意刀具的选择和切削参数的调整,以适应不同的加工需求。
2020年 第2期冷加工58智能制造Intelligent ManufactureFANUC 0i -TD 系统车床自动补偿和定量换刀技术■■湖南天雁机械有限责任公司 (湖南衡阳 421005) 莫晓腾 江文广摘要:通过在数控程序中设置当加工一定数量产品时自动进行刀具磨损补偿,当刀具加工到设定的产品数量时系统报警,提示操作员更换刀具,提高产品质量和生产效率。
关键词:自动补偿;定量换刀;FANUC 0i -TD 系统FA N U C 0i -T D 数控系统在数控车床中应用广泛,数控系统中具有刀具补偿和刀具寿命管理功能,产品在加工过程中由于刀尖磨损,产品尺寸发生变化,可在刀具补偿中输入相应的补偿量进行补偿,还可在刀具寿命计数器中输入相应的刀具使用寿命数值,达到设定的加工数量时提示操作员换刀。
本文介绍我公司自动生产线上使用FANUC 0i -TD 数控系统的车床,自动上、下料,循环加工产品,在加工程序中进行自动补偿和定量换刀,操作员操作多台数控车床,提升了产品质量和生产效率。
1. 自动补偿通过统计某型号的刀片每一个刀尖加工产品尺寸的变化情况,找出刀尖磨损的变化规律,设定加工多少件产品时需要补偿,补偿量是多少,补偿多少次刀尖使用寿命结束,在数控加工程序中进行控制。
例如:每个刀尖加工第50件产品后需要补偿,加工第80件产品后需要补偿,每次补偿量是0.03mm ,补偿两次刀尖使用寿命结束。
共用变量#500=50,#501=0.03,#503=80。
宏程序如下:O 0001;……T0101;#100=#100+1;IF[#100 GT #500] GOTO 20;G00 X42.5 Z0.1;G01 X0 F0.18;Z0; X42.5;GOTO40;N20 IF[#100 GT #503] GOTO 30;G00 X42.5 Z0.1-#501;G01 X0 F0.18;Z0-#501; X42.5;GOTO40;N30 G00 X42.5 Z0.1-2*#501;G01 X0 F0.18 ;Z0-2*#501; X42.5;N40 M05;2. 定量换刀定量换刀是刀具加工到设定的工件数量时,系统输出刀具寿命结束报警,提示操作员更换刀具。
刀具半径补偿在数控机床编程中的应用1. 刀具半径补偿的定义在数控机床加工中,由于有些刀具的外径和编程指定的刀具直径不一定相等,或者由于刀具磨损或者其他原因,实际的切削半径可能会有所变化。
而编程时又需要将加工的轮廓尽可能地与设定轮廓相同,因此需要对刀具直径进行修正。
这种修正就叫刀具半径补偿。
在数控机床编程时,一般使用G41和G42指令进行刀具半径补偿,具体实现方式如下:(1) G40/G41/G42指令:G40指定取消所有刀具补偿,即G40指令后,数控机床按照编程程序直接机床加工;G41指定左侧半径补偿,将机床刀具向右移动一定距离,相应地调整编程指令的XY坐标,使实际加工半径减小;G42指定右侧半径补偿,将机床刀具向左移动一定距离,相应地调整编程指令的XY坐标之后,使实际加工半径增大。
(2)路径补偿量的确定:刀具半径补偿的大小是由程序员根据加工要求和机床实际情况进行确定的。
常见的计算方式是通过加工实际切削后的缺口,计算出实际切削半径与编程半径之间的差值,以此来确定刀具半径补偿量。
刀具半径补偿值可以在圆弧加工中使用,还可以在深度和轮廓加工中使用。
(3)圆弧和直线的刀具半径补偿:在圆弧加工中,自动对角线的加工路径以圆心为轴旋转,在编程时需要指定实际加工半径,同时指定刀具半径补偿量,以保证加工的圆弧尽可能的与设定的半径相同。
而在直线加工中,刀具半径补偿量要分别在直线的起点和终点处进行设定,以保证有足够的空间来补偿刃具的半径差异。
刀具半径补偿是数控机床加工中非常重要的一个功能,其应用范围非常广泛,涵盖了许多工业领域,包括机械制造、模具制造、汽车零配件加工等领域。
在机械加工领域,刀具半径补偿是提高加工精度和效率的关键因素之一。
在汽车工业领域,刀具半径补偿可以帮助实现复杂轮廓的加工,并且提高加工效率和加工质量。
在电子制造领域中,刀具半径补偿可以用来加工各种小型零件和设备,使得加工精度更高。
刀具半径补偿是数控机床加工中不可或缺的一个功能,可以帮助提高加工精度和效率,并且应用范围非常广泛。
三种补偿在数控加工中有3种补偿:刀具长度的补偿;刀具半径补偿;夹具补偿。
这三种补偿基本上能解决在加工中因刀具外形而产生的轨迹问题。
下面是三种补偿在一般加工编程中的应用。
一、刀具长度补偿:1.刀具长度的概念刀具长度是一个很重要的概念。
我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。
每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm 的钻头和一把长为350mm的丝锥。
先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,假如两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。
此时假如设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z (或Z)补偿了丝锥的长度,保证了加工零点的正确。
2.刀具长度补偿的工作使用刀具长度补偿是通过执行含有G43(G44)和H指令来实现的,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。
另外一个指令G49是取消G43(G44)指令的,其实我们不必使用这个指令,因为每把刀具都有自己的长度补偿,当换刀时,利用G43(G44)H指令赋予了自己的刀长补偿而自动取消了前一把刀具的长度补偿。
3.刀具长度补偿的两种方式(1)用刀具的实际长度作为刀长的补偿(推荐使用这种方式)。
使用刀长作为补偿就是使用对刀仪测量刀具的长度,然后把这个数值输入到刀具长度补偿寄存器中,作为刀长补偿。
使用刀具长度作为刀长补偿的理由如下:首先,使用刀具长度作为刀长补偿,可以避免在不同的工件加工中不断地修改刀长偏置。
数控机床刀具补偿分析【摘要】数控加工中刀具补偿得到了广泛应用。
在实际加工的过程中,由于不同刀具的半径都各不相同,在加工中会产生很大的加工误差。
因此,在实际加工时必须通过刀具补偿的指令,使数控车床根据实际使用的刀具尺寸,自动调整其坐标轴的移动量,如果能够合理建立和灵活的运用刀具补偿功能,就会对简化编程和提高数控加工的质量会带来极大的帮助。
本文就加工中如何的应用刀具补偿作一些探讨。
针对刀具补偿功能在数控中的应用,研究它在加工中存在的问题对此进行解决,尽量避免刀补问题的发生。
【关键词】:刀具半径补偿;功能;应用;程序;指令目录引言 (1)一、刀具半径补偿 (2)二、刀具长度补偿 (2)三、数车中刀具补偿的应用 (3)(一)数车刀尖圆弧半径补偿误差分析 (3)(二)数车刀尖圆弧半径补偿方法 (4)(三)刀尖圆弧半径补偿注意事项 (5)四、加工中心刀具补偿应用 (5)(一)刀具长度补偿引起误差分析 (6)(二)刀具长度补偿方法 (6)五、加工举例 (6)(一)加工中心刀具长度补偿实例 (6)(二)数车刀尖圆弧半径补偿实例 (8)总结 (10)参考文献 (11)谢辞 (12)引言数控刀具补偿是数控加工系统的一个基础功能,在手工编程的铣削加工中广泛使用,如何的深人掌握和应用该功能,在机床加工中有非常重要的意义,在进行轮廓加工中,由于刀具有一定的半径,刀具中心的轨迹与加工工件的轨迹常不重合。
通过刀具补偿功能指令,数控系统可以根据输入的补偿量或者实际的刀具尺寸,使机床加工出符合规格的零件。
20世纪60到70年代的数控加工中还没有刀具补偿的概念,编程人员必须根据刀具的理论路线和实际路线的相对关系从而进行数控编程,既容易产生错误,又使得编程的效率很低。
当数控刀具补偿的概念出现时并应用到数控系统中后,编程人员就可以直接按照工件的轮廓尺寸进行程序编辑。
从而建立并执行刀补后,由数控系统自动计算、自动调整刀位点到刀具的运动轨迹。