七年级上册培优训练{一元一次方程}(2)
- 格式:doc
- 大小:103.00 KB
- 文档页数:4
一、解答题1.检验下列方程后面小括号内的数是否为相应方程的解. (1)2x+5=10x-3(x=1); (2)2(x-1)-12(x+1)=3(x+1)-13(x-1)(x=0). 解析:(1)是;(2)否. 【分析】(1)先求出一元一次方程的解,然后进行判断即可; (2)先求出一元一次方程的解,然后进行判断即可; 【详解】解:(1)25103x x +=-, ∴88x -=-, ∴1x =,∴括号内的数是方程的解; (2)112(1)(1)3(1)(1)23x x x x --+=+--, ∴77(1)(1)32x x -=+, ∴2233x x -=+, ∴5x =-;∴括号内的数不是方程的解. 【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法和步骤.2.解方程:2x 13+=x 24+-1. 解析:x=-2. 【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可. 【详解】去分母得:4(2x+1)=3(x+2)-12, 去括号得:8x+4=3x+6-12, 移项得:8x-3x=6-12-4, 合并同类项得:5x=-10, 系数化为1得:x=-2. 【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.3.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值.解析:14a =-【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可. 【详解】3210x a +-=,解得123ax -=; 20x a -=,解得2x a =.由题意得,12203aa -+=, 解得14a =-.【点睛】本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解.4.10.3x -﹣20.5x + =1.2. 解析:4 【解析】试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题121.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=18 20 x=128 x=6.45.解下列方程: (1)2(x -1)=6; (2)4-x =3(2-x); (3)5(x +1)=3(3x +1)解析:(1)x =4;(2)x =1;(3)x =12【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解; (2)方程去括号,移项合并,将未知数系数化为1,即可求出解; (3)方程去括号,移项合并,将未知数系数化为1,即可求出解; 【详解】(1)去括号, 得2x -2=6. 移项,得2x =8.系数化为1,得x =4. (2)去括号,得4-x =6-3x. 移项,得-x +3x =6-4. 合并同类项,得2x =2. 系数化为1,得x =1. (3)去括号,得5x +5=9x +3. 移项,得5x -9x =3-5. 合并同类项,得-4x =-2. 系数化为1,得x =12. 【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.6.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d=-,那么当35727x -=时,x 的值是多少?解析:x =-2【分析】根据新定义的运算得到关于x 的一元一次方程,解方程即可求解. 【详解】解:由题意得:21 - 2(5 - x )=7 即21-10+2x =7 x =-2. 【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 7.已知数轴上的A 、B 两点分别对应数字a 、b ,且a 、b 满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A 、B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A .求点P 和点Q 运动多少秒时,P 、Q 两点之间的距离为4,并求此时点Q 对应的数.解析:(1)4,16.画图见解析;(2)83或8秒;(3)点P 和点Q 运动4或8或9或11秒时,P ,Q 两点之间的距离为4.此时点Q 表示的数为20,24,25,27.【分析】(1)根据非负数的性质求出a 、b 的值即可解决问题; (2)构建方程即可解决问题; (3)分四种情形构建方程即可解决问题. 【详解】(1)∵a ,b 满足|4a-b|+(a-4)2≤0, ∴a=4,b=16, 故答案为4,16. 点A 、B 的位置如图所示.(2)设运动时间为ts .由题意:3t=2(16-4-3t )或3t=2(4+3t-16), 解得t=83或8, ∴运动时间为83或8秒时,点P 到点A 的距离是点P 到点B 的距离的2倍; (3)设运动时间为ts .由题意:12+t-3t=4或3t-(12+t )=4或12+t+4+3t=52或12+t+3t-4=52, 解得t=4或8或9或11,∴点P 和点Q 运动4或8或9或11秒时,P ,Q 两点之间的距离为4. 此时点Q 表示的数为20,24,25,27. 【点睛】本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.8.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解; ②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【详解】①去括号得:3x−7x+7=3−2x−6, 移项合并得:−2x=−10, 解得:x=5;②去分母,去括号得:10−2x−6=6x−9, 移项合并得:8x=13,解得:x=13 8.【点睛】此题考查解一元一次方程,解题关键在于掌握方程的解法.9.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.解析:(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.10.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?为什么?解析:(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析.【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可.【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠;②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购货物价值x元,则90%×500+(x﹣500)×80%=466,解得x=520,520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,∴此人将这两次购物合为一次购买更节省.【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.11.青岛、大连两个城市各有机床12台和6台,现将这些机床运往海南10台和厦门8台,每台费用如表一:问题1:如表二,假设从青岛运往海南x台机床,并且从青岛、大连运往海南机床共花费36万元,求青岛运往海南机床台数.问题2:在问题1的基础上,问从青岛、大连运往海南、厦门的总费用为多少万元?解析:问题1:青岛运往海南机床台数是4台;问题2:从青岛、大连运往海南、厦门的总费用为94万元.【分析】(1)假设从青岛运往海南x台机床,则从大连运往海南的就是10-x台,根据等量关系:“运往海南机床共花费36万元”,即可列出方程解决问题;(2)根据问题1中求出的分别从青岛和大连运出的台数,则它们剩下的台数都要运到厦门,由此利用乘法和加法的意义即可解答问题.【详解】(1)设从青岛运往海南x台机床,则从大连运往海南的就是10-x台,根据题意可得方程:4x+3(10-x)=36,4x+30-3x=36,x=6,则从大连运往海南的有:10-6=4(台).答:从青岛运往海南6台,从大连运往海南4台.(2)根据上面计算结果可知:青岛剩下12-6=6(台);大连剩下6-4=2(台),剩下的这些都要运往厦门,所以需要的费用是:6×8+2×5,=48+10,=58(万元),36+58=94(万元).答:从青岛、大连运往海南、厦门的总费用为94万元.【点睛】观察表格,找出已知条件,和要求的问题,根据题干中的等量关系即可,此题条件稍微复杂,需要学生认真审题进行解答.12.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?解析:(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b)元装卸费.【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a ; 出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b , ∴这7天要付(58a+115b )元装卸费. 【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费. 13.已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 解析:(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【分析】(1)由题意可得关于x 的方程,解方程即得答案; (2)根据1y =122y +1可得关于x 的方程,解方程即得答案; (3)把x 的值依次代入1y 和2y 的关系式进行计算,即可完成表格;根据所填表格中的数据即可判断1y 和2y 的变化趋势. 【详解】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =; (2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大. 【点睛】本题考查了一元一次方程的解法、代数式求值和根据表格判断代数式的变化趋势,正确列出方程、熟练掌握一元一次方程的解法是解题的关键. 14.解方程: (1)3x ﹣4=2x +5; (2)253164x x--+=. 解析:(1)9x = ;(2)13x = 【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可. 【详解】 (1)3x ﹣2x =5+4, 解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12, 去括号得:4x ﹣10+9﹣3x =12, 移项得:4x ﹣3x =12+10﹣9, 合并同类项得:x =13. 【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 15.小明解方程26152x x a-++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解. 解析:2a =-,8x = 【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解. 【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解 ∴16155a -+=-+ ∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=- ∴45101012x x -=--+ ∴8x -=- ∴8x =. 【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.16.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(2)若该水果店按售价销售完这批水果,获得的利润是多少元?解析:(1)购进甲种水果65千克,乙种水果75千克;(2)获得的利润为495元. 【分析】(1)设购进甲种水果x 千克,则购进乙种水果(140)x -千克,根据表格中的数据和意义列出方程并解答;(2)总利润=甲的利润+乙的利润. 【详解】解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000 解得:x=65 ∴140﹣x=75;答:购进甲种水果65千克,乙种水果75千克; (2)3×65+4×75=495(元) 答:获得的利润为495元. 【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 17.小明解方程21152x x a-++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为4x =,试求a 的值,并正确求出方程的解. 解析:=1a ,原方程的解为:13x = 【分析】首先根据错误的作法“方程左边的1没有乘以10”而得出4x =,代入错误方程,然后求出a 的值,最后进一步解方程即可.【详解】∵去分母时,方程左边的1没有乘以10, ∴2(21)15()x x a -+=+, ∵此时解得4x =, ∴2(241)15(4)a ⨯-+=+, 解得:=1a ,∴原方程为:211152x x --+=, 去分母可得:2(21)105(1)x x -+=-,去括号可得:421055x x -+=-, 移项、化简可得:13x -=-, 解得:13x =,∴=1a ,原方程的解为:13x =. 【点睛】本题主要考查了一元一次方程的求解,熟练掌握相关方法是解题关键. 18.如果,a b 为定值,关于x 的方程2236kx a x bk+-=+无论k 为何值时,它的根总是1,求,a b 的值.解析:a=132,b=﹣4 【分析】先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值. 【详解】解:方程两边同时乘以6得: 4kx +2a =12+x−bk , (4k−1)x +2a +bk−12=0①, ∵无论为k 何值时,它的根总是1, ∴把x =1代入①, 4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a a b --⎧⎨--⎩+=++=,解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .19.一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工? 解析:5 【分析】设两队合作x 个月完成,甲队原来的工作效率为112,将工作效率提高40%以后为112(1+40%),乙队原来的工作效率为115,将工作效率提高25%以后为115(1+25%),根据工作效率×工作时间=工作总量1,列出方程,解方程即可 【详解】解:设两队合作x 个月完成,由题意,得[112(1+40%)+115(1+25%)]x =1,解得x =5.答:两队合作,5个月可以完工. 【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程. 20.解下列方程(1)32(4)25x x --=-; (2) 212164y y -+-=-; (3)312423(1)32x x x -+-+=-; (4)4 1.550.8 1.20.50.20.1x x x----= ; (5) 315x x +-= ; (6)解下列关于x 的方程211423x m mx ---=. 解析:(1)4x =;(2)4y =-;(3)83x =;(4)117x =-;(5)2x =-或32x =;(6)2+364=-m x m . 【分析】(1)先两边同时乘以5去分母,然后去括号解方程即可; (2)先两边同时乘以12去分母,然后去括号解方程即可; (3)先两边同时乘以6去分母,然后去括号解方程即可; (4)先两边同时乘以1去分母,然后去括号解方程即可; (5)分①当x≤13时,②当x >13时,两种情况,分别求出x 即可; (6)把m 当成已知数,先两边同时乘以12去分母,然后去括号解方程即可. 【详解】解:(1)103(4)510--=-x x10312510-+=-x x 351022--=--x x832-=-x4x =;(2)()()4216224--+=-y y8461224---=-y y224+16=-y28y =- 4y =-;(3)()()2311232418(1)--++=-x x x62126121818--++=-x x x 1218182-=-+x x 616-=-x83x =;(4)()()()24 1.5550.8101.2---=-x x x832541210--+=-x x x 1710121-+=-x x 711-=x117x =-; (5)315x x +-= ①当x≤13时, ()315+-+=x x24x -=2x =-,-2<13, ∴2x =-满足;②当x >13时, ()315+-=x x46x =32x =3123>, ∴32x =满足,∴2x =-或32x =; (6)()()32641--=-x m mx63644--=-x m mx 644+3+6-=-x mx m()642+3-=m x m2+364=-mx m . 【点睛】 本题是对解一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键.21.依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
5.2 求解一元一次方程 培优练习一、单选题1.一元一次方程x+3x=8的解是( )A .x=-1B .x=0C .x=1D .x=22.若代数式5﹣4x 与 212x - 的值相等,则x 的值是( ) A .32 B .23C .1D .1110 3.关于x 的一元二次方程kx 2+2x ﹣4=0的一个根是1,则k 的值是( ) A .﹣1B .﹣2C .1D .2 4.已知a+ 34 =b ﹣ 34 = 2c =2001,且a+b+c=2001k ,那么k 的值为( ) A .14 B .4 C .﹣ 14D .﹣4 5.把方程0.210.10.720.305x x ---=的分子、分母化为整数,得( ) A .21072035x x ---= B .2107235x x ---= C .217235x x ---= D .2172035x x ---= 6.用“△”表示一种运算符号,其意义是a△b=2a ﹣b ,若x△(﹣1)=2,则x 等于( ) A .1B .12C .32D .27.若代数式4x ﹣5与212x -的值相等,则x 的值是( ) A .1 B .32 C .23D .2 8.若单项式3ab 4n+1与9ab (2n+2)-1是同类项,则n 的值是( ) A .7B .2C .0D .-1 9.解方程 3162x x +-= ,去分母,得( ) A .133x x --=B .633x x -+=C .633x x --=D .133x x -+= 10.下列叙述正确的是( )①若 ac bc = ,则 a b = ;②若a b c c= ,则 a b = ;③若 a b = ,则 a b = ;④若 22a b = ,则 a b = ;⑤关于 x 的一元一次方程 ()12a x b -=+ 的解一定是 21b x a +=- ;⑥若 2a a =+ ,则代数式 202020195201666102250a a +- 的值为5201314;⑦由关于m 的一元一次方程 ()235390n n x mn m -+-+-= 可知, 21n -= 且 ()30n +≠ ,所以 3n = .A .①③⑤B .②④⑦C .②⑦D .②⑤⑥二、填空题11.关于x 的方程22a x x =-的解是 .12.解一元一次方程()111123x x +=- 时,去分母后得到的方程是 . 13.当x= 时,代数式3x ﹣2的值与12互为倒数. 14.若-x n +1与2x 2n -1是同类项,则n = .15.若a 、b 互为相反数,c 、d 互为倒数,p 的绝对值等于2,则关于x 的方程 ()223a b x cdx p x ++-= 的解为 .三、计算题16.解下列一元一次方程:(1)()()73124x x -+=-(2)121123x x --+= 四、解答题17.已知关于x 的方程5132x m x m +--=的解为非负数,求m 的取值范围. 18.小马虎在解关于x 的方程12132x x m -+=-去分母时,方程右边的“1-”没有乘以6,最后他求得方程的解为3.(1)求m 的值;(2)求该方程正确的解.19.已知方程212x -=4与关于x 的方程4x ﹣2a =﹣2(x ﹣1)的解相同,求a 的值. 20.阅读下面方程的求解过程: 解方程:3142125x x -+=- 解15x ﹣5=8x +4﹣1,(第一步)15x ﹣8x =4﹣1+5,(第二步)7x =8,(第三步)78x =.(第四步) 上面的求解过程从第 步开始出现错误;这一步错误的原因是 ;此方程正确的解为 .21.如果方程 737234x x +-=+ 的解与方程 ()()33121x a x a -+=+- 的解相同,求式子 1a a- 的值.22.当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解大2?23.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.。
七年级数学上册同步培优题典一元一次方程的应用(2)工程问题姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2017秋•沾化区期末)加工1500个零件,甲单独做需要12小时,乙单独做需要15小时,若两个合做需x 小时,依题意可列方程( ) A .(112+115)x =1500 B .(150012+150015)x =1500 C .(112+150015)x =1500D .(150012+150015)x =12.(2009秋•龙亭区校级期中)某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x 天.则方程为( ) A .440+x 40+50=1 B .440+x 40×50=1C .440+x 40+x50=1D .440+x−440+x−450=13.(2018秋•宁津县期末)在国道107工程施工现场,调来72名司机师傅参加挖土和运土工作,已知3名司机师傅挖出的土1名司机师傅恰好能开车全部运走,怎样分配这72名司机师傅才能使挖出的土能及时运走?解决此问题,可设:派x 名司机师傅挖土,其他的人运土,列方程①72−x x=13;②72﹣x =x3;③x +3x =72;④x72−x=3上述所列方程,正确的有( )个.A .1B .2C .3D .44.(2020•南宁一模)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A .x+12050−x 50+6=3 B .x50−x 50+6=3 C .x50−x+12050+6=3 D .x+12050+6−x50=35.(2018秋•蔡甸区期末)一项工程,甲单独完成需10天,乙单独完成需15天,现在两人合作完成后厂家共付给450元,如果按完成工作量的多少分配,则甲、乙两人各分得( ) A .250元,200元 B .260元,190元 C .265元,185元D .270元,180元6.(2019秋•黔东南州期末)一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作.但是中途乙因事离开几天,从开工后40天把这件工程做完.则乙中途离开了多少天.( ) A .10B .25C .30D .357.(2019秋•白云区期末)一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要( )天才能完成该工程. A .634B .713C .6D .78.(2019秋•河东区期末)某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲,乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ) A .x+14+x 6=1 B .x 4+x+16=1C .x 4+x−16=1D .x4+14+x+16=19.(2019秋•五常市期末)一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .x 40+x 40+50=1 B .440+x 40×50=1 C .440+x 50=1 D .440+x 40+x 50=110.(2019春•新泰市期末)一项工程甲单独做需20天完成,乙单独做需30天完成,甲先单独做4天,然后甲、乙两人合作x 天完成这项工程,则下面所列方程正确的是( ) A .420+x 20+30=1 B .420+x 20×30=1C .420+x 30=1 D .4+x 20+x 30=1二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•郾城区期末)几个人共同种一批树苗,如果每人种5棵,则剩下3棵树苗未种;如果每人种6棵,则缺少4棵树苗.若设参与种树的人数为x 人,则所列方程为 .12.(2019秋•麻城市期末)一项工程,甲单独做10天可以完成,乙单独做15天可以完成,甲队先做两天,余下的工程由两队合做x 天可以完成,则由题意可列出的方程是 .13.(2019秋•正定县期末)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工,若乙单独整理需要20分钟完工.若甲先整理了10分钟,然后,甲、乙合作整理x 分钟后完成此项工作.请列出方程: .14.(2019秋•丹东期末)某工厂每天需要生产50个零件才能在规定的时间内完成生产一批零件的任务,实际该工厂每天比计划多生产了6个零件,结果比规定的时间提前3天完成.若设该工厂要完成的零件任务为x 个,则可列方程为 .15.(2018春•浦东新区期中)有甲、乙两桶油,从甲桶到出14到乙桶后,乙桶比甲桶还少6升,乙桶原有油30升,设甲有油x 升,可列方程为 .16.(2018秋•繁昌县期末)某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h 完成.现在该小组全体同学一起先做8h 后,有2名同学因故离开,剩下的同学再做4h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x 名同学,根据题意可列方程为 .17.(2019秋•盘龙区期末)某项工作甲单独做12天完成,乙单独做8天完成,若甲先做2天,然后甲、乙合作完成此项工作,则甲一共做了 天.18.(2019秋•北京期末)一项工程,甲单独做10天完成,乙单独做15天完成.两人合作, 天可以完成.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•大足区期末)为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?20.(2019秋•郧西县期末)某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?21.(2017秋•河口区期末)某地为了打造风光带,将一段长为360m 的河道整治任务由甲,乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求: (1)甲,乙两个工程队分别整治了多长的河道? (2)甲、乙两工程队各整治河道的天数.22.(2019•安徽模拟)在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?23.(2019秋•义乌市期末)列一元一次方程解答下列问题:(1)义乌市为了搞好“五水共治”工作,将一段长为3600m的河道任务交由甲乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治240m,乙工程队每天整治160m,试求甲乙两个工程队分别整治了多长的河道.(2)小玲在数学书上发现如图所示的题目,两个方框表示的是同一个数,请你帮小玲求出方框所表示的数.24.(2019秋•甘州区期末)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱,为什么?。
一、选择题1.解方程-3x=2时,应在方程两边()A.同乘以-3 B.同除以-3 C.同乘以3 D.同除以3B解析:B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.方程−2x+2018=2020的解是()A.x=−2018B.x=1C.x=−1D.x=2018C解析:C【解析】【分析】方程移项合并,把x系数化为1,即可求出解.【详解】方程−2x+2018=2020,移项合并得:-2x=2,解得:x=-1,故选:C.【点睛】此题考查了解一元一次方程,解方程移项注意要变号.3.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是()A.32+x=2(28−x)B.32−x=2(28−x)C.32+x=2(28+x)D.2(32+x)=28−x A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x).故答案为:32+x=2×(28-x),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.4.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2 B .12C .-2D .1-2B解析:B 【分析】根据题意列出方程,求出方程的解即可得到x 的值. 【详解】解:根据题意得:2x-6+3+4x=0 移项合并得:6x=3,解得:x=12, 故选:B . 【点睛】本题考查解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键. 5.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( ) A .34000m B .32500m C .32000m D .3500m B解析:B 【分析】设计划注入水的时间为x 小时,根据“比预定的时间提前了10分钟完成注水任务”列出方程并解答. 【详解】设计划注入水的时间为x 小时,依题意得:()20105002+5001+2025006060x x ⎛⎫⨯⨯---= ⎪⎝⎭%,解得x=5. 5×500=2500,即计划注入水的体积为2500立方米. 故选B. 【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找到等量关系列出方程. 6.把方程112x =变形为2x =,其依据是( ) A .等式的性质1 B .等式的性质2C .乘法结合律D .乘法分配律B解析:B 【分析】根据等式的基本性质,对原式进行分析即可. 【详解】将原方程两边都乘2,得2x =,这是依据等式的性质2. 故选B . 【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立. 7.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个 A .1 B .2C .3D .4D解析:D 【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断. 【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x-个,需要长方形纸板3×1202x -张,因此可得120433602xx -+=,故①正确;设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m+4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个 故③④正确. 故选D. 【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.8.若4a ﹣9与3a ﹣5互为相反数,则a 2﹣2a+1的值为( ) A .1 B .﹣1C .2D .0A解析:A 【解析】试题分析:∵4a-9与3a-5互为相反数,∴4a-9+3a-5=0,解得:a=2,∴=1,故选A .考点:1.解一元一次方程;2.相反数;3.代数式求值.9.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( ) A .8cm B .6cmC .5cmD .10cm C解析:C 【解析】试题分析:原来正方形的边长为x ,则=39,解得:x=5.考点:一元一次方程的应用10.解方程32282323x x x----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x ); ②6x ﹣4﹣3x ﹣6=16﹣4x ; ③3x +4x =16+10;④x =267.A .①B .②C .③D .④B解析:B【分析】根据解一元一次方程的基本步骤依次计算可得. 【详解】①去分母,得:2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x ); ②6x ﹣4﹣3x+6=16﹣4x , ③6x ﹣3x+4x =16+4﹣6, ④x =2,错误的步骤是第②步, 故选:B . 【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.11.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2 B .34C .2D .43-C 解析:C 【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值. 【详解】解第一个方程得:133ky -=, 解第二个方程得:53y =-,∴133k-=53-, 解得:k=2. 故选C . 【点睛】本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义. 12.下列方程中,其解为﹣1的方程是( ) A .2y=﹣1+y B .3﹣y=2C .x ﹣4=3D .﹣2x ﹣2=4A解析:A 【分析】分别求出各项中方程的解,即可作出判断. 【详解】解:A 、方程2y=-1+y , 移项合并得:y=-1,符合题意; B 、方程3-y=2,解得:y=1,不合题意;C、方程x-4=3,移项合并得:x=7,不合题意;D、方程-2x-2=4,移项合并得:-2x=6,解得:x=-3,不合题意,故选A.【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水()m3.A.38 B.34 C.28 D.44C解析:C【解析】试题设小明家5月份用水xm3,当用水量为20m3时,应交水费为20×2=40(元).∵40<64,∴x>20.根据题意得:40+(2+1)(x-20)=64,解得:x=28.故选C.14.某工厂一、二月份共完成生产任务57吨,其中二月份比一月份的23多13吨,设一月份完成x吨,则下列所列方程正确的是()A.x+23x−13=57B.x+23x+13=57C.x+23x=57+13D.3x+2x=57−13B解析:B【解析】【分析】由题意可知:一月份完成x吨,二月份完成(23x+13)吨,一、二月份共完成生产任务57吨,列出方程解答即可.【详解】由题意可知:x+23x+13=57.故选:B【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.15.方程6x+12x-9x=10-12-16的解为()A.x=2 B.x=1 C.x=3 D.x=-2D解析:D【分析】根据合并同类项,系数化为1可得方程的解.【详解】合并同类项,得9x=-18,系数化为1,得x=-2,故选D.【点睛】此题主要考查了解一元一次方程,熟练掌握运算法则解答此题的关键.16.如图,每个圆纸片的面积都是30,圆纸片A与B,B与C,C与A的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为()A.54 B.56 C.58 D.69C解析:C【分析】根据图形可知:三个圆纸片覆盖的总面积+A与B的重叠面积+B与C的重叠面积+C与A 的重叠面积−A、B、C共同重叠面积=每个圆纸片的面积×3,由此等量关系列方程求出A、B、C共同重叠面积,从而求出图中阴影部分面积.【详解】解:设三个圆纸片重叠部分的面积为x,则73+6+8+5−x=30×3,得x=2.所以三个圆纸片重叠部分的面积为2.图中阴影部分的面积为:73−(6+8+5−2×2)=58.故选:C.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出式子,再求解.17.下列方程变形一定正确的是()A.由x+3=-1,得x=-1+3 B.由7x=-2,得x=-7 4C.由12x=0,得x=2 D.由2=x-1,得x=1+2D解析:D【分析】根据等式的性质,可得答案.【详解】解:由x+3=-1,得x=-1-3,所以A选项错误;由7x=-2,得x=-27,所以B选项错误;由12x=0,得x=0,所以C选项错误;由2=x-1,得x=1+2,所以D选项正确.故选D.【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.18.甲乙两人骑摩托车从相距170千米的A,B两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行()A.30千米B.40千米C.50千米D.45千米B解析:B【解析】【分析】相向而行,2小时相遇,那么相应的等量关系为:甲2小时走的路程+乙2小时走的路程=170,把相关数值代入即可求解.【详解】解:乙每小时行x千米,甲每小时走(x+5)千米,则2x+2(x+5)=170,解得x=40,选B.【点睛】本题主要考查用一元一次方程解决行程问题中的相遇问题;得到甲乙行程和的等量关系是解决本题的关键.19.某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为()A.300元B.250元C.240元D.200元C解析:C【分析】设这种商品每件的进价为x 元,根据题意列出关于x 的方程,求出方程的解即可得到结果. 【详解】设这种商品每件的进价为x 元, 根据题意得:330×80%−x=10%x , 解得:x=240,则这种商品每件的进价为240元. 故选C. 【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.20.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .2小时 B .3小时 C .125小时 D .52小时C解析:C 【解析】 【分析】根据每小时两支蜡烛燃烧总长度的13,14 ,再利用燃烧后其中的一支是另一支的一半,进而得出等式求出即可. 【详解】设停电时间为x 小时,根据题意可得: 1−14x=2×(1−13x),解得:x=125.答:停电时间为125小时.故选C. 【点睛】此题考查一元一次方程的应用,解题关键在于根据题意列出方程. 21.一元一次方程−2x +5=3x −10的解是( ) A .x =3 B .x =−3C .x =5D .x =−5A解析:A 【解析】 【分析】先移项,再合并同类项,把x 的系数化为1即可; 【详解】原式=-2x -3x=-10-5 ; =5x =15,x =3 故选A.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.22.如果x=2是方程12x+a=﹣1的解,那么a的值是()A.0 B.2 C.﹣2 D.﹣6C 解析:C【分析】将x=2代入方程12x+a=-1可求得.【详解】解:将x=2代入方程12x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选C.【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.23.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A.①②③B.①③C.①②D.②③B解析:B【分析】根据等式的性质,可得答案.【详解】因为最左边天平是平衡的,所以2个球的重量=4个圆柱的重量;①中一个球的重量=两个圆柱的重量,根据等式的性质,此选项正确;②中,一个球的重量=1个圆柱的重量,错误;③中,2个球的重量=4个圆柱的重量,正确;故选B.【点睛】本题的实质是考查等式的性质,先根据①判断出2个球的重量=4个圆柱的重量,再据此解答.24.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km 其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①②B 解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可.【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④.故选:B.【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程.25.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++ C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ D解析:D【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.26.下列各等式的变形中,等式的性质运用正确的是( )A .由02x =,得2x =B .由14x -=,得5x =C .由23a =,得23a =D .由a b =,得a b c c= B 解析:B【解析】【分析】 利用等式的基本性质判断即可.【详解】解:A 、由02x =,得x=0,不符合题意; B 、由x-1=4,得x=5,符合题意; C 、由2a=3,得a=32,不符合题意; D 、由a=b ,c≠0,得a b c c=,不符合题意; 故选:B .【点睛】 本题考查了等式的性质,熟练掌握等式的基本性质是解题的关键.27.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=18B解析:B【分析】等量关系为:6本练习本总价+4支水性笔总价钱=18.【详解】解:水性笔的单价为x 元,那么练习本的单价为(x ﹣2)元,则6(x ﹣2)+4x =18,故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,列方程解应用题的关键是找出题目中的相等关系.28.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x --=,整理得36x = D 解析:D【分析】根据解方程的步骤逐一对选项进行分析即可.【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误; D . 方程110.20.5x x --=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确.故选:D【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.29.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( )A .()182812x x -=B .()1828212x x -=⨯C .()181412x x -=D .()2182812x x ⨯-= B 解析:B【分析】若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,由题意可得, 18(28-x )=2×12x ,故选:B .【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.30.已知方程16x -1=233x + ,那么这个方程的解是( )A .x =-2B .x =2C .x =-12D .x =12A 解析:A【分析】 按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】两边同乘以6去分母,得62(23)x x -=+,去括号,得646x x -=+,移项,得646x x -=+,合并同类项,得510x -=,系数化为1,得2x =-,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.。
一元(yī yuán)一次方程解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.例1解方程例2解方程练习例3.假设关于x的一元一次方程=1的解是x=-1,那么k的值是〔〕A. B.1 C.- D.0例4.假设方程3x-5=4和方程的解一样,那么a的值是多少?当x = ________时,代数式与的值相等.例5.〔方程与代数式联络〕a、b、c、d为实数,现规定一种新的运算.〔1〕那么的值是;〔2〕当时,= .例6.〔方程(fāngchéng)的思想〕如图,一个瓶身为圆柱体的玻璃瓶内装有高厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,那么瓶内的墨水的体积约占玻璃瓶容积的〔〕不考虑瓶子的厚A .B .C .D .例7.解方程〔分类讨论〕例8.问当a、b满足什么条件时,方程2x+5-a=1-bx:〔1〕有唯一解;〔2〕有无数解;〔3〕无解。
例 9.解方程例10.解以下方程练习解方程解方程例11.+ m = my - m. (1)当 m = 4时,求y的值.(2)当y = 4时,求m的值.例12.小张在解方程〔x为未知数〕时,误将 - 2x 看成 2x 得到的解为,请你求出原来方程的解例13.关于x 的方程无解,求 a关于x 的方程无解,求 k例14.关于x 的方程有唯一的解,求这个方程的解例15.关于x 的方程无穷多解,求 a 、b.关于x 的方程无穷多解,求m 、n例16.不管k 为何值时,总是关于x 的方程的解,求a 、b不管 k为何值时,总是关于x 的方程的解,求a 、b例17.假设(jiǎshè)(3x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,那么a5-a4+a3-a2+a1-a0和a4+a2+a0的值分别为多少?应用题一、数字问题例1.一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?例2.有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,假设把百位与个位数字对调,那么新数比原数大594,求原数。
人教版(2024)七年级上册数学第5章一元一次方程单元提升训练一.选择题1.若与可以合并成一项,则的值是()A.B.1C.3D.92.若x=1是方程2x+a=0的解,则a=()A.1B.2C.﹣1D.﹣23.下列等式的变形中,正确的是()A.如果,那么a=b B.如果|a|=|b|,那么a=bC.如果ax=ay,那么x=yD.如果m=n,那么4.方程去分母得()A.2+2(2x﹣4)=﹣(x﹣7)B.12+2(2x﹣4)=﹣x﹣7C.12+(2x﹣4)=﹣(x﹣7)D.12+2(2x﹣4)=﹣(x﹣7)5.解方程2(x﹣2)=5﹣3(x﹣2)时,去括号正确的是()A.2x﹣4=5﹣3x+6B.x﹣4=5﹣x+6C.2x﹣2=5﹣3x﹣2D.2x﹣4=5﹣3x﹣66.若某件商品按原价提价后,欲恢复原价,应降价(A.B.C.D.9.“⊕”表示一种运算符号,其意义是2a b a b ⊕=-,若()132x ⊕⊕=,则x 等于()A.32B.2C.12D.110.如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为()A.2400cm B.2500cm C.2600cm D.24000cm 二.填空题11.若式子3x+4与2﹣5x 的值相等,则x 的值为.12.关于x 的多项式3(4)b a x x x b --+-是二次三项式,则a=_____b=______14.乐乐在解方程时,不小心把其中一个数字用墨水污染成了,他翻阅了答案知道这个方程的解为,于是他判断污染了的数字应该是______.三.解答题17.解下列方程:(1)223146x x +--=;(2)()()1112225x x -=-+18.周末,甲乙两人沿环形生态跑道散步,甲每分钟行80米,乙每分钟行120米,跑道一圈长400米.求:(1)若甲乙两人同时同地同向出发,多少分钟后他们第一次相遇?(2)若两人同时同地反向出发,多少分钟后他们第一次相距100米?19.在阿阳中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇.20.己知a,b满足,a,b分别对应这数轴上的A,B两点.(1)__________,__________,并在数轴上画出A,B两点;(2)若点P从点A出发,以每秒2个单位长度的速度向数轴正半轴运动,求运动时间为多少时,点P 到A的距离是点P到B的距离的2倍?(3)数轴上还有一点C对应的数为50,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度向点C运动.P点到达C点后,再立刻以同样的速度返回,向点A运动,当Q运动到点C时,整个运动停止.求点P和点Q运动多少秒时,P,Q两点之间的距离为4?并求此时点Q对应的数.21.某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)3565标价(元/件)50100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,请问这批商品全部售出后,该商场共获利多少元?。
七年级一元一次方程培优--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________七年级上册《一元一次方程》培优专题一:一元一次方程概念的理解:例:若()2219203m x x m --+=+是关于x 的一元一次方程,则方程的解是 。
练习:1.()()221180m x m x --+-=是关于x 的一元一次方程,则代数式()()199231101m m m +-++的值为2.若方程()()321x k x -=+与62k x k -=的解互为相反数,则k= 。
3.若k 为整数,则使得方程()199920012000k x x -=-的解也是整数的k 值有( )A.4个B.8个C.12个D.16个 专题二:一元一次方程的解法(一)利用一元一次方程的巧解:例: (1)0.2•表示无限循环小数,你能运用方程的方法将0.2•化成分数吗?(2)0.23••表示无限循环小数,你能运用方程的方法将0.23••化成分数吗?(二)方程的解的分类讨论:当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以华为ax=b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论。
(1)当0a ≠时,方程有唯一解b x a=;(2)当0,0a b =≠时,方程无解;(3)当0,0a b ==时,方程有无数个解。
例:已知关于x 的方程()2132a x x -=-无解,试求a 的值。
练习:1.如果a ,b 为定值,关于x 的方程2236kx a x bk +-=+,无论k 为何值,它的根总是1,求a ,b 的值。
七年级数学上册第五章一元一次方程培优专题分类训练2目录:类型一:考察一元一次方程的定义 类型二:考察一元一次方程的解 类型三:考察等式的性质 类型四:考察解方程类型五:考察列方程并求解类型六:考察利用一次方程的解求待定字母的值 类型七:考察定义新运算问题类型八:考察列一元一次方程解应用题类型五:考察列方程并求解 (一)知识点及方法总结综合相关知识,找到等量关系,列出方程,求解方程 (二)例题1.当x = 时,代数式45x -与39x -的值互为相反数。
分析:根据相反数的和为0,可以列出方程,45x -=39x - 解方程得x=-5 (三)练习1.若代数式x ﹣5与2x ﹣1的值相等,则x 的值是 .2. 若21+n x 与312-n x 是同类项,则n= .3.当x = 时,代数式453x -的值是-1.4.当x 取何值时,代数式3(2-x)和2(3+x)的值相等?5.当y 取何值时,代数式2(3y +4)的值比5(2y -7)的值大3?6.若代数式 的值与代数式的值互为相反数,则 ______.类型六:利用一次方程的解求待定字母的值 (三)(一)知识点及方法总结1.利用方程解的定义求待定字母的值:直接把方程的解代入方程2.利用两个方程解的关系求待定字母的值:把待定字母看作已知数,用含待定字母的式子表示出方程的解,再根据方程解的关系,确定以待定字母为未知数的方程,求出待定字母的值。
3.利用方程的错解求待定字母的值: (1)先确定错误的方程(2)把错误方程的解代入错误方程,即可求得待定字母的值: (3)待定字母并没有被看错,所以待定字母的值适合原方程, (二)例题1.当k 为何值时,关于x 的方程+1=+k 的解是x=-1分析:已知方程的解求待定字母的值,只需要把方程的解直接代入方程,使得关于x 的方程转化为关于k 的方程即可 解:把x=-1 代入得,解得k=-12.关于x 的两个方程5x ﹣3=4x 与ax ﹣12=0的解相同,则a=分析:先求出方程5x ﹣3=4x 的解是x=3,因为两个方程的解相同,所以x=3也是方程 ax ﹣12=0的解,用代入法可得3a-12=0,所以a=43.关于x 的方程2(x-1)=3m-1,与3x+2=-2(m+1)的解互为相反数,求m 的值分析:把两个方程写成用含m 的代数式表示x 的形式,再根据相反数的和为0,列出关于m 的方程,求出方程的解即可解:解方程2(x-1)=3m-1,2x-2=3m-1,2x=3m-1+2,2x=3m+1,x=解方程3x+2=-2(m+1),3x+2=-2m-2, 3x=-2m-2-2,3x=-2m-4,x=因为两个方程的解互为相反数,所以+=0解这个方程的m=14.小李在解方程5a -x =13(x 为未知数)时,错将-x 看作+x ,得方程的解为x=-2,则原方程的解为( )A .x=-3B .x=0C .x=2D .x=1分析:(1)先确定错误的方程:当小李将-x 看作+x 时,原方程被错看为5a+x =13, (2)把错误方程的解代入错误方程,即可求得待定字母的值: 把x=-2代入方程5a+x =13可得5a+(-2)=13,解得a=3(3)待定字母并没有被看错,所以待定字母的值适合原方程,确定原方程为15-x=13,解得x=2,选C(三)练习1.若x=2是关于x 的方程ax+2x=16-a 的解,则a 的值( ) A.3 B.6 C.5 D.42.已知关于x 的方程=x-1与方程3(x-2)=4x-5有相同的解,求a 的值。
七年级培优训练专题一元一次方程
一.一元一次方程的解法
例1、解方程
20062007
2005275253212=⨯++⨯+⨯+⨯x x x x x
二、一元一次方程根的存在性
(一元一次方程最终都可化成ax=b 的形式,显然当a ≠0时,方程有唯一的根
a b ;当a=0且b=0时,方程有无数根;当a=0且b ≠0时,方程无根)
例2、当b=1时,关于x 的方程a (3x-2)+b (2x-3)=8x-7有无数多个解,求a 的值。
例3、如果a 、b 为定值,关于x 的方程
6232bk x a kx -+=+,无论k 为何值,它的根总是1,求a 、b 的值。
例4、 解关于x 的方程
a b a b x b a x =---,其中a ≠b ≠0。
例5、已知
3=--+--+--b a c x a c b x c b a x ,且0111≠++c
b a ,求x-a-b-
c 的值。
例6、若5545410(31)x a x a x a x a +=++++ 。
求543210a a a a a a -+-+-的值。
三、含绝对值的一元一次方程: 例7、解方程 532=+++x x
三、培优训练
1、解下列方程:(1)32122234x x ⎡⎤⎛⎫--=+ ⎪⎢⎥⎝⎭⎣⎦
; (2)0.30.2 1.550.70.20.5x x --+=
2、能否从(2)3
a x b
-=+;得到
3
2
b
x
a
+
=
-
,为什么?反之,能否从
3
2
b
x
a
+
=
-
得到(2)3
a x b
-=+,
为什么?
3、已知1
x=是方程11
3
22
mx x
=-的解,求代数式22007
(79)
m m
-+的值。
4、关于x的方程(21)6
k x
-=的解是正整数,求整数K的值。
5、若方程
73
246
5
x
x x
-
-=-与方程
3551
22
46
x x
mx
--
-=-同解,求m的值。
6、关于x的一元一次方程22
(1)(1)80
m x m x
--++=求代数式200()(2)
m x x m m
+-+的值。
7、解方程
200612233420062007
x x x x ++++=⨯⨯⨯⨯
8、已知方程2(1)3(1)x x +=-的解为2a +,求方程2[2(3)3()]3x x a a +--=的解。
9、已知ax 2+5x+14=2x 2-2x+3a 是关于x 的一元一次方程,则其解是多少?
10、已知方程5x-2m=mx-4-x 的解在2与10之间(不包括2和10),m 是整数,求m 。
11、关于x 的方程mx+4=3x-n ,分别求m 、n 为何值时,原方程(1)有惟一解;(2)有无数解;
(3)无解
12、方程132=-+-x x 的解有哪些?。