“例1” 中判断质数, 把所要除的数都一一列举了; 这个问题中对一般数 n, 就不能一一列举, 我们用变 量表示, 进行循环的运算.
例2. 用二分法设计一个求方程 x2-2=0 (x>0) 的近似解的算法. 分析: 用二分法求近似根, 首先要确定两个值 a, b, 使 f( a)· f(b)<0. 然后取中点 x=m, 若 f(m)=0, 则 x=m 为根. 若 f(m)≠0, 则看 f(a)· f(m)<0 是否成立, 若成立, 则将 m 作为右端点 b, 得到一个含根的区间 [a, b]; 若不成立, 那么定有 f(m)· f(b)<0 成立, 则将 m 作为 左端点 a, 也得到一个含根的区间 [a, b]. 然后判断 |a-b| 是否达到精确度, 如果达到精确 度要求, 取 [a, b] 内的一个数为近似根, 结束算法; 否则, 又取 [a, b] 中点 m, 这样反复进行.
本章内容
1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例 第一章 小结
1.1 算法与程序框图
1.1.1 算法的概念 1.1.2 程序框图(第一课时) 1.1.2 程序框图(第二课时) 1.1.2 程序框图(第三课时) 复习与提高
1.1.1
算法的概念
返回目录
学习要点
1. 什么是算法? 对于一个需要解决的实际 问题, 如何设计它的算法? 2. 算法在现代科学上有什么意义? 3. 算法有哪些构成形式?
例1. (1) 设计一个算法, 判断 7 是否为质数. (2) 设计一个算法, 判断 35 是否为质数. 分析: 质数是除了 1 和它本身外, 没有其他约数 的整数. 要点: 能被其他数整除, 不是质数; 不能被其他数整除, 是质数. 于是我们就用比 1 大而比 7 小的整数依次去除. 当遇到某一个数能整除 7 时, 即可判定不是质数. 否则继续除下去. 一直到 6 都不能整除 7 时, 则 7 为质数.