- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的近似根的算法.
探究解决
对于区间[a,b ]上连续不断、且
f(a)f(b)<0的函数y=f(x),通过不断地
把函数f(x)的零点所在的区间一分
为二,使区间的两个端点逐步逼近
零点,进而得到零点近似值的方法
叫做二分法.
y x2 2 (x 0)
解决问题
×
第一步, 令 f (x) x2 2 .给定精确度d.
评析:实际上,上述步骤就是在求 2的近似值.
与一般的解决问题的过程比较,算法有以下特 征:
①设计一个具体问题的算法时,与过去熟悉地 解数学题的过程有直接的联系,但这个过程必 须被分解成若干个明确的步骤,而且这些步骤 必须是有效的.
②算法要“面面俱到”,不能省略任何一个细 小的步骤,只有这样,才能在人设计出算法后, 把具体的执行过程交给计算机完成.
第三步, 用4除35,得到余数3.因为余数不为0, 所以4不能整除7.
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
任意给定一个大于1的整数n,试设计一个程序或步骤
对n是否为质数做出判定.
第一步:判断n是否等于2.若n=2,则n是质数; 若n>2,则执行第二步.
我们身边的算法
• 广播操图解是广播操的算法; • 菜谱是做菜的算法; • 歌谱是一首歌曲的算法; • 空调说明书是空调使用的算法等
算法学的发展
• 随着科学技术的日新月异,算法学也得 到了前所未有的发展,现在已经发展到了各 个领域.有遗传算法,排序算法,加密算法,蚁 群算法等,与生物学,计算机科学等有着很广 泛的联系,尤其是在现在的航空航天中,更是 有着更广泛的应用.
第二步:依次从2~(n-1)检验是不是n的因
数,即整除n的数,若有这样的数,则n不是质 数;若没有这样的数,则n是质数.
•这是判断一个大于1的整数n是否为质数的 最基本算法.
•用语言描述一个算法,最便捷的方式就是按 解决问题的步骤进行描述.每一步做一件事 情.
应用举例
例2.用二分法设计一个求方程
x2 2 0 (x 0)
第四步, 用5除7,得到余数2.因为余数不为0, 所以5不能整除7.
第五步, 用6除7,得到余数1.因为余数不为0, 所以6不能整除7.因此,7是质数.
应用举例
例1.(2)设计一个算法判断35是否为质数.
第一步, 用2除35,得到余数1.因为余数不为0, 所以2不能整除35.
第二步, 用3除35,得到余数2.因为余数不为0, 所以3不能整除35.
问题的提出
有一个农夫带一条狼狗、一只羊和 一筐白菜过河。如果没有农夫看管,则 狼狗要吃羊,羊要吃白菜。但是船很小, 只够农夫带一样东西过河。问农夫该如 何解此难题?
方法和过程: 1、带羊到对岸,返回;
2、带菜到对岸,并把羊带回; 3、带狼狗到对岸,返回; 4、带羊到对岸。
[问题1]请你写出解二元一次方程组的详细求解 过程.
第五步,
得到方程组y 35
(1)
解方程 2x 4y 94 (2)
第一步, (1) 2 (2)得: -2 y 24 (3) 第二步, 解(3)得: y 12
第三步, (1) 4 (2)得: 2x 46 (4)
第四步, 解(4)得: x 23
第五步,
x y 35
(1)
2x 4y 94 (2)
x y 35
(1)
解方程 2x 4y 94 (2)
第一步,由(1)得 x 35 y (3)
第二步, 将(3)代入(2)得
2(35 y) 4y 94 (4)
第三步, 解(4)得 y 12 (5)
第四步, 将(5)代入(3)得 x 23
f(m) 0.25 -0.4375 -0.109375 0.06640625 -0.02246094 0.021728516 -0.00042725 0.010635376 0.00510025
d 1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625
很多复杂的运算都是借助计算机和算 法来完成的,在高端科学技术中有着很重要 的地位.
应用举例
例1.(1)设计一个算法判断7是否为质数.
第一步, 用2除7,得到余数1.因为余数不为0, 所以2不能整除7.
第二步, 用3除7,得到余数1.因为余数不为0, 所以3不能整除7.
第三步, 用4除7,得到余数3.因为余数不为0, 所以4不能整除7.
没有软件的支持,计算机只是一堆废铁而已;
软件的核心就是算法 !
算法的特征
• 一.确定性: 每一步必须有确切的定义。 • 二.有效性:原则上必须能够精确的运行。 • 三.有穷性:一个算法必须保证执行有限步
后结束
算法的优缺点
• 一.缺点:算法一般是机械的,有时需要进行 大量重复的计算.
• 二.优点:算法是一种通法,只要按照步骤去 做,总能得到结果.
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点
m
a
2
b
.
第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间为[m, b].
将新得到的含零点的仍然记为[a,b] .
第五步, 判断[a,b]的长度是否小于d或者
f(m)是否等于0. 若是,则m是方程的近似
解;否则,返回第三步.
解决问题
当d=0.05时
a 1 1 1.25 1.375 1.375 1.40625 1.40625 1.4140625 1.4140625
b 2 1.5 1.5 1.5 1.4375 1.4375 1.421875 1.421875 1.417969
m 1.5 1.25 1.375 1.4375 1.40625 1.421875 1.4140625 1.41796875 1.41601563
得到方程组的解得
x
y
23 12
算法的概念:
广义地说:为了解决某一问题而采取的方 法和步骤,就称之为算法。
在数学中,按照一定规则解决某一类问 题的明确和有限的步骤,称为算法。
现在,算法通常可以编成计算机程序, 让计算机执行并解决问题。这些程序或步
骤必须是明确和有效的,而且能够在有限步之 内完成.
课本5页 1