汽轮机主蒸汽旁路阀安全功能及动作原理
- 格式:doc
- 大小:481.00 KB
- 文档页数:5
汽轮机旁路系统的功能及其选择岗位职责摘要:汽轮机旁路是单元制大型火力发电厂的重要辅助系统,旁路系统设计直接关系到机组的运行方式和控制策略。
发达国家中,大型机组担当调峰任务很重,旁路系统带来的好处相当明显。
在我国,大容量再热式机组都采用单元制系统,为了便于机组启停、调峰、事故处理和适应特殊运行方式,绝大多数再热式机组也都设置了旁路系统。
但事实上,不同型式的汽轮机,其旁路系统的容量和功能应不尽相同。
汽轮机旁路系统;功能与作用;功能选择一、汽轮机旁路的功能与作用考虑到汽轮机的空载流量与锅炉的最低负荷不一致,以及低负荷时中间再热器的保护问题,中间再热式机组应设置旁路系统,每一级旁路中都装有减温减压器。
当汽轮机的负荷低于锅炉稳定燃烧的最低负荷时,锅炉多送出的蒸汽可经过降压减温后送入再热器或低参数的蒸汽管道或直接排入凝汽器以回收工质。
当汽轮机负荷很低而使流经锅炉再热器的蒸汽量不足以冷却锅炉再热器时,绕过高压缸且经过旁路系统减温减压器冷却的蒸汽,可进入锅炉再热器进行冷却,从而保护再热器。
1、缩短机组启动时间及汽机冲转过程中协调蒸汽参数和流量汽轮机滑参数热态启动时,蒸汽进入气缸与气缸内壁接触,蒸汽温度上升较快,由于汽缸壁较厚且高中压缸为多层缸缸结构,传热到外壁需经较长时间,汽缸内、外壁容易出现较大的温差。
当汽机滑参数冷态启动时,汽缸壁温较低,而锅炉来的过热蒸汽温度很高,导致主蒸汽温度与气缸和转子温度不协调,容易引起汽轮机汽缸及其他部件热应力过大,缩短机组使用寿命。
故在机组启动期间,除监视汽缸内、外壁温差外,还必须控制好金属温度的升降速度。
一般来讲,单元机组在启动过程中,锅炉蒸汽温度与汽机汽缸金属温度不协调是由锅炉的特性决定,先以低参数蒸汽冲转汽轮机,之后随着汽轮机升速、并网、带负荷的要求,不断提高主蒸汽的参数和流量。
所以机组启动时间的长短取决于锅炉达到汽轮机冲转要求的蒸汽参数(包括主蒸汽和再热蒸汽)的时间,而锅炉升温、升压速度取决于锅炉疏水管的排放。
M701F4型燃气-蒸汽联合循环机组主蒸汽旁路系统控制策略介绍及优化发布时间:2021-03-25T02:24:39.647Z 来源:《河南电力》2020年9期作者:黄永昆[导读] 随着当前环保压力不断加大,燃气-蒸汽联合循环电厂在当前形势下有了长足的发展。
本文主要介绍的是M701F4型燃气轮机联合循环机组的旁路系统,该机组主要由M101F4型燃气轮机以及配套的燃机发电机、余热锅炉、蒸汽轮机以及配套的汽机发电机等主设备组成,采用 “一拖一,双轴”的布置方式,单套机组装机容量为460MW。
(广东粤电中山热电厂有限公司广东中山 528445)摘要:旁路系统是蒸汽轮机主蒸汽系统的重要组成部分,它在燃气-蒸汽联合循环机组启停过程以及甩负荷时起着十分重要的作用。
本文主要介绍了M701F4型燃气轮机联合循环机组的主蒸汽旁路系统的主要作用,通过对主蒸汽旁路系统几种控制模式的介绍,描述旁路系统在机组运行过程中的控制过程,并通过介绍机组运行过程中一次特殊工况,分析现有旁路系统控制逻辑存在的问题,并提出解决方案。
关键词:M701F4燃气轮机;联合循环;旁路系统;控制模式随着当前环保压力不断加大,燃气-蒸汽联合循环电厂在当前形势下有了长足的发展。
本文主要介绍的是M701F4型燃气轮机联合循环机组的旁路系统,该机组主要由M101F4型燃气轮机以及配套的燃机发电机、余热锅炉、蒸汽轮机以及配套的汽机发电机等主设备组成,采用 “一拖一,双轴”的布置方式,单套机组装机容量为460MW。
在燃气-蒸汽联合循环机组中,旁路系统在机组启停过程以及甩负荷时起着重要作用,它的功能是,当余热锅炉产生的主蒸汽不满足蒸汽轮机运行需求时,这部分主蒸汽会通过旁路系统回到凝汽器,从而防止余热锅炉蒸汽管路超温、超压;另外,在汽轮机跳闸或甩负荷时,旁路系统可以联锁快开从而有效抑制主蒸汽压力、温度参数波动,防止汽包水位波动,维持余热锅炉及燃汽轮机正常运行,从而缩小事故范围,减少机组损失。
主再热蒸汽及旁路系统流程一、主蒸汽系统流程。
1.1 主蒸汽的产生。
咱们先来说说主蒸汽是咋来的哈。
那是在锅炉里,水经过一系列复杂的加热过程,就像小火慢炖似的,一点点升温、升压。
燃料在炉膛里熊熊燃烧,就像一个大火炉,给水提供热量,水变成蒸汽后,压力和温度不断升高,最后就形成了主蒸汽。
这主蒸汽可不得了,就像一个充满力量的小巨人,憋着一股劲儿呢。
1.2 主蒸汽的输送。
这充满能量的主蒸汽啊,从锅炉出来后,就沿着管道开始它的旅程了。
这管道就像小巨人的专用通道,它得把主蒸汽安全、高效地送到汽轮机那里去。
这一路上啊,管道得保证密封性良好,不能让蒸汽偷偷溜走,要是有泄漏那可就像竹篮打水一场空了,能量都浪费了。
二、再热蒸汽系统流程。
2.1 再热蒸汽的形成原因。
为啥要有再热蒸汽呢?这就像人干活累了需要休息一下再接着干一样。
主蒸汽在汽轮机里做了一部分功之后,压力和温度都降低了,就像一个泄了气的皮球。
但是咱不能让它就这么没劲儿下去啊,所以把它再送回锅炉里重新加热,这就形成了再热蒸汽。
这过程就像是给这个“泄了气的皮球”重新打气,让它又充满活力。
2.2 再热蒸汽的循环过程。
再热蒸汽从锅炉再热器出来后,又雄赳赳气昂昂地奔向汽轮机了。
它再次进入汽轮机,就像一个满血复活的战士,继续在汽轮机里做功。
这个循环过程就像是一个接力赛,主蒸汽先跑一段,再热蒸汽接着跑一段,这样就能充分利用蒸汽的能量,不会造成能源的浪费,这就叫物尽其用嘛。
三、旁路系统流程。
3.1 旁路系统的作用。
旁路系统啊,就像是一个备用的小道。
当汽轮机不需要那么多蒸汽的时候,或者是机组启动、停机的时候,旁路系统就发挥作用了。
它就像一个贴心的小助手,能够调节蒸汽的流量,避免蒸汽在不需要的时候硬往汽轮机里挤,不然就会造成汽轮机的负担过重,就像一个人吃撑了难受一样。
3.2 旁路系统的工作方式。
旁路系统有自己的一套管道和阀门呢。
当需要启动旁路的时候,阀门就像忠诚的卫士一样,按照指令打开或者关闭,让蒸汽按照预定的路线走。
旁路系统及操作说明书新华控制工程有限公司XIN HUA CONTROL ENGINEERING CO,.LTD中国上海SHANGHAI . CHINA目录一、汽轮机旁路系统简介二、汽轮机旁路系统功能三、旁路控制系统及其组成四、旁路运行方式五、旁路的保护与联锁六、旁路系统操作简介附图1.BPC-I旁路调节系统图2.BPC-I控制柜装配图3.旁路通讯电缆连接图4.旁路启动曲线汽轮机旁路系统简介汽轮机旁路系统是与汽轮机并联的蒸汽减温减压系统。
它由蒸汽旁路阀门、旁路阀门控制系统、EH执行机构和旁路蒸汽管道组成。
其作用是将锅炉产生的蒸汽不经过汽轮机而引到下一级压力和温度的蒸汽管道或冷凝器。
蒸汽旁路系统有两种:一种是将锅炉产生的蒸汽直接引入冷凝器,这种旁路系统称为大旁路。
另一种是由高、低压两级旁路系统组成:旁路汽轮机的高压缸而将蒸汽从锅炉引入再热器的称为高压旁路;旁路汽轮机的中、低压缸而将蒸汽从再热器出口引入冷凝器的称为低压旁路。
大型火电机组都采用高参数、中间再热式的热力系统,采用一机一炉的单元配置。
在这种机组中,一台锅炉只向一台汽轮机供汽,这就要求锅炉的产汽量与汽轮机的耗汽量保持平衡。
而实际上汽轮机的空载流量仅为汽轮机额定蒸汽流量的5%~8%,远远小于锅炉的最低蒸发量(30%~50%)。
锅炉在更低的燃烧率下不能稳定运行。
因此必须有其它的蒸汽管道,作为锅炉的负载,承担其余的蒸汽流量。
另外当事故工况下汽轮机甩去负荷或停机时,大量的多余蒸汽必须通过旁路阀门而排入冷凝器,减少锅炉安全门起跳,同时避免大量蒸汽排入大气。
因此在中间再热机组中配置蒸汽旁路系统可以改善锅炉和汽轮机特性上的差异,提高机组的安全性和经济性。
北重330MW机组一般都采用70%BMCR容量的高压、2×65%BMCR低压两级串联旁路系统。
对于北重中压缸启动机组来说,旁路控制系统的作用更显得突出,旁路控制品质的好坏直接关系到机组的正常运行。
汽轮机旁路系统一、旁路系统技术和结构特点#3、#4机组采用高、低压两级串联旁路系统。
高压旁路容量为额定参数下40%BMCR的流量(Boiler Maximun Continuous Rating);低旁旁路容量是高旁容量加上高旁减温水的流量。
正常启停均采用中压缸启动方式,在旁路系统故障不能投运的情况下,也可采用高压缸启动方式。
1.旁路系统的主要功能汽机旁路系统的型式、容量和控制水平与汽机及锅炉的型式、结构、性能及电网对机组运行方式的要求密切相关。
根据本机组的负荷性质、启动特点,该旁路系统主要有以下几方面功能要求:(1)调整主蒸汽、再热蒸汽参数,协调蒸汽压力、温度与汽机金属温度的匹配,保证汽轮机各种工况下中压缸启动方式的要求,缩短机组启动时间。
(2)协调机炉间不平衡汽量,旁路掉负荷瞬变过程中的过剩蒸汽。
由于锅炉的实际降负荷速率比汽机小,剩余蒸汽可通过旁路系统排至凝汽器。
使机组能适应频繁起停和快速升降负荷,并将机组压力部件的热应力控制在合适的范围内。
(3)在机组启动和甩负荷时,保护再热器不干烧和超温。
(4)回收工质,减少噪音。
在机组突然甩负荷(全部或部分负荷)时,旁路快开,回收工质至凝汽器,改变此时锅炉运行的稳定性,减少甚至避免安全门动作。
2.旁路系统的设计原则本工程采用高、低压两级串联旁路系统。
由于该旁路系统是不兼带安全门功能的,即装设的旁路系统并不替代锅炉过热器出口的弹簧安全门和动力释放阀(PCV)的功能,且无停机不停炉或带厂用电的功能要求,因此确定旁路系统容量的因子,主要是根据各个工况的启动曲线来核算所需的旁路容量。
当然还需考虑机组的负荷变动率及锅炉的燃烧率能以多快的速度减少而不危及火焰的稳定性等因子,以满足快速升降负荷等功能要求。
3.旁路容量的选择旁路容量的选择对中压缸启动非常重要。
若高压旁路容量不够,势必会逼高主汽压力,此时锅炉很难保证主汽温度,而过高的主汽温度对高压缸及其转子极为不利,本机组当高排温度达420℃时即报警,435℃时即跳机;若低压旁路容量不够,势必会逼高再热汽压力,此时防止高压缸末级叶片过热的最小流量值增大,即必须提高此时的目标负荷值(即阀切换负荷值),否则高压缸调节级压力与高排压力比有可能过低而导致停机(为限制高压缸出现小流量高背压现象,防止高压缸末级叶片过热,汽机通常有如下保护:高压缸调节级压力与高排压力比为1.8时报警,为1.7时即跳机)。
--汽轮机旁路系统的主要作用有:1. 保护再热器。
机组正常运行中,汽轮机高压缸排汽进入再热器,再热器可以得到充分冷却。
但在启动过程中,汽轮机冲车前,或在机组甩负荷而高压缸无排汽时,再热器因无蒸汽流过或蒸汽流量不足,就有超温烧坏的危险。
设置旁路系统,使蒸汽流过再热器,便达到冷却再热器的目的;2. 改善启动条件,加快启动速度。
单元机组普遍采用滑参数启动方式,为了适应汽轮机启动过程中在不同阶段(暖管、冲车、暖机、升速、带负荷)对蒸汽参数的要求,锅炉要不断地调整汽压、汽温和蒸汽流量。
单纯调整锅炉燃烧或运行压力,很难达到上述要求。
采用旁路系统就可改善启动条件,尤其在机组热态启动时,利用旁路系统能很快地提高主蒸汽和再热蒸汽的温度,缩短启动时间,延长汽轮机寿命。
对于大容量机组,当发电机负荷减少、解列或只带厂用电负荷,以及汽轮机甩负荷时,旁路系统能在几秒钟内完全打开,使锅炉逐渐调整负荷,并保持在最低稳定燃烧负荷下运行,而不必停炉,在故障消除后可快速恢复发电,从而减少停机时间和锅炉的启停次数,大大缩短了单元机组的重新启动时间,有利于系统稳定;3. 回收工质,消除噪声。
机组在启停过程中,锅炉的蒸发量大于汽轮机的消耗量,在负荷突降和甩负荷时,有大量的蒸汽需要排出。
多余的蒸汽若直接排向大气,不仅损失了工质,而且对环境产生很大的噪声污染。
设置旁路系统,可以达到回收工质和消除噪声的目的。
另外,在机组突降负荷或甩负荷时,利用旁路系统排放蒸汽,可减少锅炉安全门的动作。
4利用旁路实现中压缸启动。
高、低压旁路系统有如下功能:(1)改善机组启动性能。
机组冷态或热态启动初期,当锅炉给出的蒸汽参数尚未达到汽轮机冲转条件时,这部分蒸汽就由旁路系统流到凝汽器,以回收工质,适应系统暖管和储能的要求。
特别是在热态启动时,锅炉可用较大的燃烧率和较高的蒸发量运行,加速提高蒸汽温温,使之与汽轮机的金属温度匹配,从而缩短启动时间。
(2)能够适应机组定压和滑压运行的要求。
某核电厂汽轮机旁排阀原理及过开情况处理摘要:旁排阀用于机组正常运行工况和非正常瞬态时提供主蒸汽旁路排放。
为了满足上述工况要求,旁排阀需要具备快开、快关、调节的能力。
某核电汽轮机旁排阀为反作用式执行机构,一号机组热试期间,在执行汽机旁排阀蒸汽吹扫试验时,有三台阀门在开启过程中出现了阀位异常窜升且开度超过100%现象,阀门过开导致部分零件受损。
通过对反作用式汽轮机旁排阀结构原理进行分析,总结其发生异常过开原因,避免再次发生。
关键词:汽轮机旁排阀;反作用式执行机构;过开一、设备概述某核电每台机组有6个旁排阀,每个凝汽器连接两台旁排阀,它们总的排放能力可以排放掉40%的额定蒸汽流量。
该汽轮机旁排阀厂家为日本CCI,阀门尺寸为12英寸,设计压力8.26MPa,设计温度316℃,阀门设计行程76mm。
阀门编码AB100-D28R(表示截止型、膜片有效面积280平方英寸、反作用型失气关闭)。
二、反作用式气动执行机构原理该阀门执行机构主要由支架、反馈单元、限位开关、薄膜机构、手轮机构组成。
如图1所示。
图1反作用式执行机构1、设计特点:(1)反作用式,失气关。
为了操作时避免阀门振动的影响,除了限位开关、定位器反馈单元外,其他定位器基本单元等控制都安装在分体式控制面板上。
(2)手轮机构:顶部安装的手轮机构设计目的为是在压缩空气失效时,可以使用手轮机构对阀门进行操作,打开阀门。
当需要使用手轮打开阀门时候,旋转手轮,将手轮机构的驱动杆向下移动。
平时,该驱动杆应该处于上限位。
2、工作原理:阀门在失气时候处于常关闭位置,膜片盘、间隔套、支架、阀体固定一体结构,为不动件。
当有压力气体进入膜片上腔室,膜片盖受力,带动膜片底座、轭架克服弹簧力上升,驱动力通过连接器传递给阀芯,开启阀门。
反作用型气动薄膜机构的优点就是在防止气体泄漏方面具有很高的可靠性,膜片的有效面积上没有螺纹孔,十分完整,并且膜片圆周边沿折叠起来,因此在动作过程中,能够保持有效面积恒定。
第八章旁路系统大型中间再热机组均为单元制布置,为了便于机组启停、事故处理及特殊要求的运行方式,解决低负荷运行时机炉特性不匹配的矛盾,基本上均设有旁路系统。
所谓的旁路系统是指锅炉所产生的蒸汽部分或全部绕过汽轮机或再热器,通过减温减压设备(旁路阀)直接排入凝汽器的系统。
1 •旁路系统的作用1)缩短启动时间,改善启动条件,延长汽轮机寿命2)溢流作用:即协调机炉间不平衡汽量,溢流负荷瞬变过程中的过剩蒸汽。
由于锅炉的实际降负荷速率比汽机小,剩余蒸汽可通过旁路系统排至凝汽器,使机组能适应频繁启停和快速升降负荷,并将机组压力部件的热应力控制在合适的范围内3)保护再热器:在汽轮机启动或甩负荷工况下,经旁路系统把新蒸汽减温减压后送入再热器,防止再热器干烧,起到保护再热器的作用4)回收工质、热量和消除噪声污染:在机组突然甩负荷(全部或部分负荷)时,旁路快开, 回收工质至凝汽器,改变此时锅炉运行的稳定性,减少甚至避免安全阀动作2 •机组旁路系统型式1)两级串联旁路系统由高压旁路和低压旁路组成,这种系统应用广泛,特点是高压旁路容量为锅炉额定蒸发量的30%〜40%,对机组快速启动特别是热态启动更有利。
2)两级并联旁路系统由高压旁路和整机旁路组成,高压旁路容量设计为10%〜17%,其目的是机组启动时保护再热器,整机旁路容量设计为20%〜30%,其目的是将各运行工况(启动、电网甩负荷、事故)多余蒸汽排入凝汽器,锅炉超压时可减少安全阀动作或不动作。
3)三级旁路系统由高压旁路、低压旁路和整机旁路组成,其优点是能适应各种工况的调节,运行灵活性高,突降符合或甩负荷时,能将大量的蒸汽迅速排往凝汽器,以免锅炉超压,安全阀动作。
但缺点是设备多、系统复杂、金属耗量大、布置困难等。
4)大旁路系统锅炉来的新蒸汽绕过汽轮机高、中、低压缸经减温减压后排入凝汽器,其优点是系统简单、投资少、方便布置、便于操作;缺点是当机组启动或甩负荷时,再热器内没有新蒸汽通过,得不到冷却,处于干烧状态。
汽轮机主蒸汽旁路阀安全功能及动作原理
作者:谢进枞
来源:《中国高新科技·下半月》2018年第03期
摘要:主蒸汽旁路阀的安全功能主要体现在机组事故工况下旁路的快开和快关功能。
文章针对三菱M701F4型燃机联合循环机组,对汽轮机主蒸汽旁路阀功能及动作原理进行分析,以及时做好事故预想,提高事故处理能力。
关键词:汽轮机;主蒸汽旁路阀;联合循环文献标识码:A 中图分类号:TK262
联合循环机组旁路系统对应汽轮机的3个压力等级,配有高、中、低压3个旁路系统,其中高中压旁路为串联二级旁路。
旁路系统除了有启动、溢流和安全3个主要功能外,还有回收工质、暖管和减少不合格蒸汽对叶片侵蚀等功能。
高压旁路把来自高压过热器的蒸汽排至再热器,中压旁路阀把来自再热器和中压过热器的蒸汽排至凝汽器,低压旁路阀把来自低压过热器的蒸汽排至凝汽器。
本文主要探讨汽机旁路阀安全功能及动作过程。
主蒸汽旁路阀的安全功能主要体现在机组事故工况下旁路的快开和快关功能。
旁路快开,可以防止锅炉超压,安全阀动作;旁路快关,可以保护冷再管道及凝汽器不超温超压。
另外,由于锅炉自身还有安全阀,所以一般会优先保护凝汽器,旁路快关会优先旁路快开。
1主蒸汽高、中、低压旁路阀快开和快关条件
1.1高压旁路阀快开条件(与的关系)
(1)没有凝汽器跳闸保护信号,汽机跳闸或者OPC动作。
(2)高旁后温度小于371.7℃。
(3)高旁后压力小于3.73MPa。
(4)高旁后温度与冷再温度差小于50℃。
1.2高压旁路快关条件(或的关系)
(1)高旁后压力大于3.9MPa。
(2)高旁后温度好质量且高旁后温度大于435℃延时30s。
1.3中压旁路阀快开条件(与的关系)
(1)中旁后温度小于220℃。
(2)中旁后压力小于0.2MPa。
(3)高旁快开或汽机跳闸或OPC动作。
(4)没有中旁快关信号。
1.4中压旁路阀快关条件(或的关系)
(1)凝汽器保护动作。
(2)中旁后温度好质量且高于250℃延时10s。
1.5低压旁路快开条件(与的关系)
(1)中压旁路快开或汽机跳闸或汽机OPC动作。
(2)低旁后温度小于200℃。
(3)低旁后压力小于0.5MPa。
(4)没有低旁快关信号。
1.6低压旁路快关条件(或的关系)
(1)凝汽器保护动作。
(2)低旁后压力大于0.545MPa。
(3)低旁后温度大于220℃。
(4)低压缸后缸温度大于110℃。
2主蒸汽高、中、低压旁路阀快开和快关动作原理分析
以中压旁路阀为例分析中压旁路阀动作原理。
当机组发生紧急情况时需要快关或者快开旁路阀,以保证设备安全。
在正常运行时,中压旁路阀由全开到全关或者全关到全开(一个开关行程)耗时一般只小于10s,不能满足保护功能的要求,而旁路阀的快开和快关通过专门的硬件可以实现阀门的快速关闭或者打开,快开时间或快关时间都小于2s。
图1为中压旁路阀快开快关原理图(图2为现场设备图)。
旁路阀的气源由压缩空气提供,进入各电磁阀、调节器、控制阀。
通过控制电磁阀、控制阀的开合和调节器后的空气压力,即可控制旁路阀操作机构的缸内气压,从而控制旁路阀的动作。
2.1旁路阀正常动作过程
正常运行时,快开电磁阀3a失电,快关电磁阀3b带电:3a、3b接通压缩空气管路,3a、3b后管道带压,控制阀4a、4b、4c、4d在压缩空气的作用下克服弹簧力,使控制阀接通了开阀调节器9a,关阀调节器9b,旁路阀处于可调状态,通过定位器输出控制调节器9a、9b调节下游管道的压力就能实现阀门的开度控制。
2.2旁路阀快开动作过程
旁路快开时,快开电磁阀3a带电,快关电磁阀3b带电:控制阀4c在弹簧力的作用下接通了与压缩空气储罐相连的较粗管段,而4a在压缩空气的作用下克服弹簧力,仍然接通中压旁路阀执行机构的开阀腔室,这样高压压缩空气就快速进入开阀腔室。
与此同时,控制阀4d 在弹簧力的作用下接通排气口,而4b在压缩空气的作用下克服弹簧力,仍然接通中压旁路阀执行机构的关阀腔室,这样就使关阀腔室里的压缩空气迅速泄压,从而实现了中压旁路的快开。
2.3旁路阀快关动作过程
旁路快关时,快开电磁阀3a任意状态,快关电磁阀3b失电:控制阀4b在弹簧力的作用下接通了与压缩空气储罐相连的较粗管段,直接与中压旁路阀执行机构的关阀腔室接通,这样高压压缩空气就陕速进入关阀腔室。
与此同时,控制阀4a在弹簧力的作用下接通排气口,这样就使开阀腔室里的压缩空气迅速泄压,从而实现了中压旁路的快关。
3旁路阀发生快关判断
以中压旁路阀为例来介绍发生快关现象。
机组正常运行时,中压旁路阀是保持全关状态;只有在机组启、停机过程中,才有可能发生中压旁路阀快关情况。
机组启、停过程中,如果中压旁路阀限位器发生脱落,控制系统画面无法监视中压旁路阀的实际开度,中压旁路阀自动控制失去控制调节能力,导致中压旁路阀后温度高于250℃延时10s,触发快关,中压主蒸汽无法及时排出,导致汽包压力突然升高,发生虚假水位,中压汽包水位会迅速下降。
由于高中压旁路为串联二级旁路,中压旁路阀发生快关,会导致高压主蒸汽无法及时排出,高压旁路阀后压力大于3.9MPa,高压旁路阀发生快关,高压汽包发生虚假水位,汽包水位迅速下降。
4故障处理
以中压旁路阀发生快关为例。
当机组在启、停过程中,发生中压旁路阀快关现象,应该立即停止升负荷,必要时适当降低机组负荷,及时加大高、中压汽包的给水流量,维持汽包水位在正常范围以内。
如是超温引起中压旁路阀快关,应及时将中压旁路阀减温器切为手动控制,开大开度,将中压旁路阀后温度降下来,并立即通知检修人员检查中压旁路阀;当中压旁路阀后温度下降至允许开时,不能立即将中压旁路阀开大,应手动缓慢打开,注意观察中压汽包水位变化,配合调节汽包给水流量,逐渐将中压旁路阀开大。
当高压旁路阀后压力下降至允许开时,也必须缓慢打开,注意高、中压汽包水位调节,由于虚假水位的变化,汽包水位调节需提前干预。
如果快关导致机组跳闸时,应调整好汽包水位,保护锅炉受热面,防止受热面发生变形,引起破裂。
5结语
针对汽轮机旁路阀安全功能及动作原理的分析,运行人员在启、停过程中应加强旁路阀的监视和控制,及时做好事故预想,提高事故处理能力,发生类似事故时,能够得心应手,保证设备安全、稳定运行。