数学人教版八年级下册算术平均数
- 格式:doc
- 大小:12.00 KB
- 文档页数:1
20.1.1平均数——人教版版八年级上册第二十章第一节教学设计一、学生状况分析本节课是人教版版数学教材八年级下册第二十章《数据的代表》的第1节——“平均数”的第1课时.学生在小学阶段已经初步学习过算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平.进入初中阶段后,在七年级相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备了一定的合作与交流的能力.二、教学任务分析本节课的教学任务是:让学生理解算术平均数、加权平均数的概念;会求一组数据的算术平均数和加权平均数;能解决有关平均数的实际问题,发展学生的数学应用能力, 达成有关的情感态度目标.根据以上分析,制定本节课的教学任务入下:1.知识与技能(1)认识权、会求加权平均数,并体会权的差异对结果的影响.(2)理解简单平均数和加权平均数的区别和联系,并能利用其解决一些实际问题.2. 过程与方法(1)通过小组活动,初步经历数据的处理过程,发展学生数据处理能力.(2)经历从特殊到到一般的数学探究方法,认识加权平均数的意义和价值,解决简单的实际问题.3. 情感态度与价值观(1)通过小组合作的活动,进一步增强与他人交流的意识与能力,培养学生的合作意识和能力.(2)通过权对结果的影响,使学生体会数学与人类社会的密切联系,通过解决身边的实际问题,体会到从不同角度考虑问题的必要性,认识事物要经历从一般到特殊的过程.了解数学的价值,增进对数学的理解和学好数学的信心.在探索过程中形成实事求是的态度和勇于探索的精神.4、教学重难点 教学重点:(1)加权平均数的概念,会求加权平均数. (2)简单平均数与加权平均数的区别和联系. 教学难点:体会权的差异对结果的影响,认识到权的重要性. 三、教学过程设计本节课由五个教学环节组成,它们是“温旧孕新——探新知权——新知升华—学以致用——小结平均数”.其具体内容与分析如下:按照学生的认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思教 学 内 容教师活动 学生活动 教学目的一、 温旧孕新问题1 2017年2月28日由《重庆晚报》打造的“重庆六一班”小记者培训课,在德普外国语学校开班,并授予德普为小记者培训基地. 经过激烈的比赛,学校现在要在甲、乙两名同学中选拔出一名“德普小记者”,他们的各项成绩(百分制)如下表:现在请计算两名候选者的平均成绩(百分制),如果你是评委,从他们的成绩看,应该选谁呢?展示视频图片以什么样的标准来比较他们的成绩?肯定分配中突出某项的方案具有合理性,并通过计算得出方案的可行性.在总分、平均分相等的情况下,具体该如何比较选拔?学生给出方案计算总分、平均分无法解决问题,让学生感受不同成绩在同一个问题上的重要程度不同,体会数据赋予“权”的必要性.形式变化,实质仍然反映了数据的不同重要程度.二、探新知权 1、加权平均数的概念 由小记者在四个测试中的重要程度不同,在老师的追问中,由学生自己探索出权的呈现形式,引入“权”的概念,导入课题. 权的定义: 权表示:数据的重要程度 数据的权反映数据的相对重要程度. 权形式:比例、百分比 根据不同的权重,所求的平均数就是加权平均数. 归纳: 一般地,若n 个数1x ,2x ,…,n x 的权分别提炼出权的定义:反映数据的重要程度.体会“权”的差异对“加权平均数”结果的影响.“简单平均数”可以看作是权相等的“加权平均数”.给学生一个反思自悟的过程.是 1w ,2w ,…,n w ,则 112212n nnx w x w x w x w w w ++=++叫做这n 个数的加权平均数(weighted average ) .书本171-172页“加权平均数”的相关内容.三、新知升华简单平均数与加权平均数统称为算术平均数. 当数据的权都相等时,所求的加权平均数就是简单平均数,简单平均数是加权平均数地特殊情况, 四、学以致用 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分. 其中一位选手的单项成绩(百分制)如下表:(1)按演讲内容占60%、演讲能力占30%、演讲效果占10%,计算选手的平均成绩;(2)演讲内容、演讲能力、演讲效果按 3:2: 1的比确定,计算选手的平均成绩.五、学以致用 小组编题1. 选择你感兴趣的生活中加权平均数的例子为背景;2. 可以采用不同形式给出相应考察项目的权;3. 小组合作探究,要分工明确,设计出科学合理的求加权平均数的题目;4. 小组活动时间共18分钟;5. 活动结束后 ,每个小组派两个代表上台展示成果.六、小结—平均数 我最大的收获是…我对同学和同伴的表现感到… 我从同学身上学到了…本节课在对你今后的生活中对待一些事情进行分析时,会有什么帮助?七、布置作业.必做题:教科书第113页练习第2题;归纳概括公式(权的百分数的形式与比的形式)从加权平均数的多种形式计算巩固所学知识,并为下面生活中的加权平均例子提供素材.归纳概括公式利用刚才总结的公式列出式子.学生举例巩固所学体会“权”的对结果的影响,进一步理解“权”.感受加权平均数在生活中应用的广泛,体会数学的价值.巩固演练、反馈矫正(备用)1.(★)如果一组数据5, x, 3, 4的平均数是5, 那么x=____;2.(★★)某小区月底统计用电情况:其中有4户用电45度,有5户用电42度, 有6户用电50度, 则平均每户用电_____度;3. (★★)某校规定学生的体育成绩由三部分组成:体育课外活动占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述三项成绩依次为92分、80 分、84 分,则小颖这学期的体育成绩是多少分?4. (★★★)小亮买甲种练习本a本,每本m元;买乙种练习本b本,每本n元,两种练习本平均每本多少元?你得了________颗★。
第二十章数据的分析20.1.1平均数第二课时一、教学目标1.核心素养通过进一步学习算术平均数、加权平均数的概念,加深对加权平均数的理解,初步掌握统计解决问题的基本方法,培养学生收集数据提取信息的能力,学会构建模型分析数据,解释数据蕴含的结论.2.学习目标(1)1.1.1 进一步加深对加权平均数的理解.(2)1.1.2经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,学会频数分布表中应用加权平均数的方法.(3)1.1.3能根据频数分布直方图计算平均数,能正确有效应用平均数知识解决问题,提高分析解决问题的能力.3.学习重点根据频数分布表求加权平均数,根据频数分布直方图计算平均数.4.学习难点理解频数、组中值得概念,根据不同特点的频数分布直方图采取相应的处理方法.二、教学设计(一)课前设计1.预习任务阅读教材P128-P130,思考:平均数的意义是什么?如何利用加权平均数的计算公式求一组数据的平均数?2.预习自测1.数据15,23,17,17,22的平均数是_____________,若4,x,5的平均数是7,则3,4,5,x,6五个数的平均数是__________。
2.利用公式x=x/+a计算105,103,101,100,114,108,110,106,98,102的平均数,其中a=___,x/=_______,x=_______。
3.一个班级有45名学生,其中14岁的有16人,15岁的有17人,16岁的有8人,17岁的有4人,那么这个班的平均龄是_________岁。
预习自测参考答案1.18.8,62.100,4.7,104.73.15(二)课堂设计1.知识回顾(1)加权平均数的意义;(2)加权平均数的计算公式2.问题探究问题探究一:加深对加权平均数的理解问题1:某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个人小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是(分),由上可得,甲组的成绩最高.问题2:阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46(1)前10株西红柿秧上小西红柿个数的平均数是_____,中位数是_____,众数是_____;(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图(3)通过频数分布直方图试分析此大棚中西红柿的长势.解:(1)前10株西红柿秧上小西红柿个数的平均数是(32+39+45+55+60+54+60+28+56+41)÷10=47;把这些数据从小到大排列:28、32、39、41、45、54、55、56、60、60,最中间的数是(45+54)÷2=49.5,则中位数是49.5;60出现了2次,出现的次数最多,则众数是60;故答案为:47,49.5,60;(2)根据题意填表如下:个数分组, 28≤x<36, 36≤x<44, 44≤x<52, 52≤x<60, 60≤x<68频数, 2, 5, 7, 4, 2补图如下:故答案为:5,7,4;(3)此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.问题3:下图反映了甲、乙两班学生的体育成绩。
20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究 探究点一:平均数【类型一】 已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a ,4,6的平均数是5,则a 的值是( )A .8B .5C .4D .3解析:∵数据3,7,2,a ,4,6的平均数是5,∴(3+7+2+a +4+6)÷6=5,解得a =8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】 已知一组数据的平均数,求新数据的平均数已知一组数据x 1、x 2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是( )A.6 B.8 C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( )A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( ) A.14岁 B.14.3岁C.14.5岁 D.15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( ) A.87分B.87.5分C.88分D.89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。
20.1.1 第1课时平均数知识点1 算术平均数1.7名学生的体重(单位: kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是( )A.44 B.45 C.46 D.472.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:若比赛的计分方法如下:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为( )A.9.56分 B.9.57分C.9.58分 D.9.59分3.[2018·株洲]睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一.小强同学通过问卷调查的方式了解到本班三名同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三名同学该天的平均睡眠时间是________小时.4求该同学这五次投实心球的平均成绩.知识点2 加权平均数5.[2018·无锡]某商场为了了解A产品的销售情况,在上个月的销售记录中,随机抽取了5天A则这5天中,A产品平均每件的售价为( )A.100元 B.95元 C.98元 D.97.5元6.[2017·聊城]为了满足顾客的需求,某商场将5 kg奶糖、3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖的售价为每千克20元,水果糖的售价为每千克15元,混合后什锦糖的售价应为每千克( )A.25元 B.28.5元C.29元 D.34.5元7.[2018·桂林]某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,在这次测验中,该学习小组的平均分为________分.8.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是________分.9.[2018·宜宾改编]某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,求被录取教师的综合成绩.10.[2018·淮安]若一组数据3,4,5,x,6,7的平均数是5,则x的值是( ) A.4 B.5 C.6 D.711.[2018·重庆]某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图20-1-1所示的折线统计图,则在这五天里,该工人每天生产零件的平均数是________个.图20-1-112.某次射击训练中,一小组的成绩(单位:环)如下表所示,已知该小组的平均成绩为8环,那么成绩为9环的人数是13.如图20-1-2是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息,可得这些同学跳绳考试的平均成绩为________个.图20-1-214.[2018·日照]某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩按照招聘简章要求,对专业知识、讲课、答辩三项赋权5∶4∶1,请计算三名应聘者的平均成绩,从成绩看,应该录取谁?拓广探究创新练冲刺满分15.某班为了从甲、乙两名同学中选出班长,进行了一次演讲答辩与民主测评,A,B,C,D,E五位老师作为评委,对“演讲答辩”情况进行评价,全班50名同学参与了民主测评,结果如下表所示:演讲答辩得分表(测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1-a)+民主测评分×a(0.5≤a≤0.8).(1)当a=0.6时,甲的综合得分是多少?(2)当a在什么范围内时,甲的综合得分高?当a在什么范围内时,乙的综合得分高?教师详解详析1.C [解析] 平均数为(40+42+43+45+47+47+58)÷7=322÷7=46.2.C [解析] 去掉一个9.8分和一个9.4分,然后计算剩余五个数的平均数,所以小明的最后得分=9.5+9.7+9.8+9.4+9.55=9.58(分).故选C.3.8.4 [解析] 根据题意得(7.8+8.6+8.8)÷3=8.4(时), 则这三名同学该天的平均睡眠时间是8.4小时.4.解:该同学这五次投实心球的平均成绩为:x =10+15(0.5+0.2+0.3+0.6+0.4)=10+0.4=10.4(m).5.C [解析] A 产品平均每件的售价为:(90×110+95×100+100×80+105×60+110×50)÷(110+100+80+60+50) =(9900+9500+8000+6300+5500)÷400 =39200÷400 =98(元).6.C [解析] 根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),即混合后什锦糖的售价应为每千克29元.故选C.7.84 [解析] x -=15(2×85+2×90+1×70)=84(分),故该学习小组的平均分为84分.8.88 [解析] 90×3+90×3+85×43+3+4=88(分).9.解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分.10.B [解析] ∵3+4+5+x +6+76=5.∴x =5.故选B.11.34 [解析] 由图可知这组数据是36,34,31,34,35,故x -=15(36+34+31+34+35)=15×170=34.因此答案为34.12.313.175.5 [解析] 22%×180+27%×170+26%×175+25%×178=175.5(个). 14.解:(1)甲的平均成绩为70×5+85×4+80×15+4+1=77(分);乙的平均成绩为90×5+85×4+75×15+4+1=86.5(分);丙的平均成绩为80×5+90×4+85×15+4+1=84.5(分).因为乙的平均成绩最高,所以应录取乙. 15.解:(1)甲的演讲答辩得分=90+92+943=92(分),甲的民主测评得分=40×2+7×1+3×0=87(分),当a =0.6时,甲的综合得分=92×(1-0.6)+87×0.6=36.8+52.2=89(分).(2)∵乙的演讲答辩得分=89+87+913=89(分),乙的民主测评得分=42×2+4×1+4×0=88(分),∴乙的综合得分=89(1-a)+88a.由(1)知甲的综合得分=92(1-a)+87a.当92(1-a)+87a>89(1-a)+88a时,a<0.75.又∵0.5≤a≤0.8,∴当0.5≤a<0.75时,甲的综合得分高;当92(1-a)+87a<89(1-a)+88a时,a>0.75.又∵0.5≤a≤0.8,∴当0.75<a≤0.8时,乙的综合得分高.。