最新人教版八年级下册数学课本知识点归纳
- 格式:docx
- 大小:81.71 KB
- 文档页数:8
人教版八年级下册数学知识点总结归纳八年级下册数学重点知识点1一次函数知识点(一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。
当b=0时,一次函数y=kx,又叫做正比例函数。
(二)一次函数的图像及性质1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
3.正比例函数的图像总是过原点。
4.k,b与函数图像所在象限的关系:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。
当k0,b0时,直线通过一、二、三象限;当k0,b0时,直线通过一、三、四象限;当k0,b0时,直线通过一、二、四象限;当k0,b0时,直线通过二、三、四象限;当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。
2分解因式一、公式:1、ma+mb+mc=m(a+b+c);2、a2-b2=(a+b)(a-b);3、a22ab+b2=(ab)2。
二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
1、把几个整式的积化成一个多项式的形式,是乘法运算。
2、把一个多项式化成几个整式的积的形式,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法.2、运用公式法。
人教版八年级下册数学知识点汇总第十六章二次根式。
1. 二次根式的概念。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
- 注意:被开方数a必须是非负数,否则√(a)无意义。
例如√(-2)就不是二次根式。
2. 二次根式的性质。
- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。
- (√(a))^2=a(a≥slant0)。
例如(√(5))^2 = 5。
- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。
如√(3^2) = 3,√((-3)^2)=| - 3|=3。
3. 二次根式的乘除。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。
例如√(2)×√(3)=√(2×3)=√(6)。
- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。
如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。
4. 二次根式的加减。
- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。
例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。
- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。
例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。
第十七章勾股定理。
1. 勾股定理。
- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。
- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a≥0,b≥0);b ba a=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。
,那么这个三角形是直角三角形。
3.直角三角形的性质(1)、直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°a (a >0)a -(a <0)0 (a =0);(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC=21AB ∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点4、常用关系式由直角三角形面积公式可得:ch ab 2121= (其中a 、b 是直角边,c 是斜边,h 是斜边上的高。
人教版八年级下册数学知识点全面总结一、实数与代数式1.1 有理数- 概念:整数和分数的统称,包括正整数、0、负整数、正分数、负分数。
- 加减乘除法则:同号相加(减)取其相加(减)后的结果,并保留原来的符号;异号相加(减)取其相加(减)后的结果,并保留绝对值较大的数的符号。
乘法法则:同号得正,异号得负。
除法法则:除以一个不等于0的数等于乘这个数的倒数。
1.2 代数式- 概念:由数字、字母和运算符号组成的式子。
- 代数式的运算:加减乘除、乘方、开方等。
二、方程(组)与不等式(组)2.1 方程- 概念:含有未知数的等式。
- 一元一次方程:形式为ax+b=0,解法:移项、合并同类项、化系数为1。
- 二元一次方程:形式为ax+by=c,解法:消元法、代入法、矩阵法等。
2.2 不等式- 概念:含有不等号的式子。
- 一元一次不等式:形式为ax+b>0或ax+bc或ax+by<c,解法:同二元一次方程。
2.3 方程(组)与不等式(组)的应用- 线性方程组的解法:代入法、消元法、矩阵法等。
- 不等式组的解法:同线性方程组。
三、函数3.1 一次函数- 概念:形式为y=kx+b(k、b为常数,k≠0)的函数。
- 图像:一条直线。
- 性质:随着x的增大,y的值会按照k的正负和大小变化。
3.2 二次函数- 概念:形式为y=ax²+bx+c(a、b、c为常数,a≠0)的函数。
- 图像:一个开口向上或向下的抛物线。
- 性质:开口方向由a的正负决定,顶点坐标为(-b/2a, c-b²/4a)。
四、几何4.1 平面几何- 点、线、面的基本概念。
- 线段的性质:长度、中点、垂直平分线等。
- 角的性质:度量、分类、补角、对顶角等。
- 三角形的基本性质:边长、角度、高、中线、角平分线等。
- 四边形的基本性质:边长、对角线、内角和等。
4.2 立体几何- 空间点、线、面的基本概念。
- 三角形、四边形、圆锥、球等立体图形的性质和计算。
人教版初二下册数学知识点汇总初二下册数学是人教版义务教育课程标准实验教科书的重要组成部分,涵盖了多个关键领域的知识点。
以下是对这些知识点的详细汇总,旨在帮助学生和教师更好地理解和掌握教材内容。
一、二次根式1.二次根式的定义:•一般地,形如√a(a≥0)的代数式叫做二次根式。
•若a>0,则√a表示a的算术平方根,其中√0=0。
2.重要公式:•(√a)^2 = a(a≥0)•√(a^2) = |a|3.积的算术平方根:•若a≥0,b≥0,则√(ab) = √a × √b。
4.二次根式的乘法法则:•若a≥0,b≥0,则√a × √b = √(ab)。
5.二次根式比较大小的方法:•利用近似值比大小。
•把二次根式的系数移入二次根号内,然后比大小。
•分别平方,然后比大小。
6.商的算术平方根:•若a≥0,b>0,则√(a/b) = √a / √b。
7.二次根式的除法法则:•若a≥0,b>0,则√a / √b = √(a/b)。
8.分母有理化:•化去分母中的根号叫做分母有理化。
具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
9.最简二次根式:•满足下列两个条件的二次根式,叫做最简二次根式:•被开方数的因数为整数,因式为整式。
•被开方数中不含能开得尽方的因数或因式。
二、勾股定理1.勾股定理:•如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2 + b^2 = c^2。
2.勾股定理逆定理:•如果三角形三边长a,b,c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形。
三、四边形1.平行四边形的定义:•有两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:•平行四边形的对边相等。
•平行四边形的对角相等。
•平行四边形的对角线互相平分。
3.平行四边形的判定:•两组对边分别相等的四边形是平行四边形。
•对角线互相平分的四边形是平行四边形。
八年级数学人教版下册各章知识点一、有理数的加减运算1. 有理数的概念有理数是整数和分数的统称,包括正数、负数和零。
2. 有理数的加法同号两数相加,异号两数相减,绝对值大的数的符号作为和的符号。
3. 有理数的减法减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
4. 有理数加减混合运算的简便法则先加同号数,再加异号数,同时考虑有括号的运算。
5. 有理数的加减法则的应用例如,温度的变化、海拔的高低、海水深度等都可以用有理数表示,可以考虑使用加减法则进行运算。
二、有理数的乘除运算1. 有理数的乘法同号两数相乘为正,异号两数相乘为负。
2. 有理数的除法被除数和除数同号,商为正;被除数和除数异号,商为负。
除数不能为0。
3. 有理数乘除法综合运用例如,计算温度的变化率、质量比等都可以用有理数的乘除法进行运算。
三、平方根与实数1. 平方数和非平方数2. 平方根的概念3. 二次根式的简化和化简4. 平方根的运算法则乘方和除方的运算法则。
四、一次函数与线性方程组1. 一次函数的概念2. 点斜式和斜截式方程3. 一次函数的分类和性质4. 线性方程组及其解法高斯消元法、分离变量法、克莱姆法则、作图法等。
五、相似形与比例1. 相似形的概念2. 相似比的概念3. 相似形的性质4. 相似形的判定5. 应用:几何建模、图形变换等。
六、几何运算1. 直角三角形的概念和性质勾股定理、正弦定理和余弦定理等。
2. 平行四边形的概念和性质3. 正方形、长方形和平行四边形的关系4. 圆的概念和性质圆的面积和周长、弧度制和角度制等。
七、统计图及其分析1. 统计调查的概念和方法2. 数据的整理和组织方式3. 统计图的分类和意义柱形图、折线图、饼图、散点图等。
4. 统计图的读取和分析如何根据图形信息提取数据特征和规律。
八、概率的概念与计算1. 实验和随机事件的概念2. 概率的定义和性质3. 事件的互斥和独立性质4. 基本概率计算公式的应用5. 事件的总概率和条件概率的计算。
全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。
其中,a被称为被开方数。
最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。
如果两个二次根式的被开方数相同,那么它们就是同类二次根式。
二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。
二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。
应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。
勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
直角三角形还有一些其他的性质,需要我们认真研究和掌握。
1.直角三角形的两个锐角互余,即∠A+∠B=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。
4.三角形面积公式为AB•CD=AC•BC。
5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。
6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。
7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。
8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。
9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。
10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。
第十六章 分式16.1分式(1)分式:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式; (2)①当分母B 不为0时,分式有A B有意义; ②当分母B 不为0,且分子A 的值为0时,分式A B的值为0; (3)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变; 即:①A A C B B C = ②(0)A A C C B B C ÷=≠÷ (4)分式的约分:利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形; (关键:分解因式)(5)最简分式:分子和分母没有公因式的分式;(6)分式的约分,一般要约去分子和分母所有的公因式,使结果成为最简分式或整式(7)分式的通分:利用分式的性质,使分子和分母同乘适当的整式,不改变分式的值,将分式化成分母相 同的分式,这样的分式变形;(关键:确定各分式的最简公分母)(7)最简公分母:各分母的所有因式的最高次幂的积;16.2分式的运算(1)分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母; 即:a c a c b d b d = (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;即:a c a d ad b d b c bc ÷==(3)分式的乘方法则:分式乘方要把分子、分母分别乘方;即:n n n a a b b⎛⎫= ⎪⎝⎭(4)分式的加减: ①同分母分式相加减,分母不变,把分子相加减;即a b a b c c c±±= ②异分母分式相加减,先通分,变为同分母的分式,再加减;即a c ad bc ad bc b d bd bd bd ±±=±=(5)混合运算顺序:先乘方,再乘除,然后加减;(有括号先算括号)(6)规定:一般地,当n 是正整数时,1(0)n n a a a-=≠ (7)正整数指数幂的运算性质可推广到全体整数幂;①同底数的幂的乘法:n m n m a a a+=⋅; ②幂的乘方:mn n m a a =)(;③积的乘方:n n n b a ab =)(;16.3分式方程(1)分式方程:分母中含未知数的方程;(2)解分式方程:关键在于通过“去分母”(方程两边同乘最简公分母)将分式方程转化为整式方程;(3)检验:将整式方程的解代入最简公分母,若最简公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解;(4)解分式方程的一般步骤:①化简方程;②去分母(方程两边同乘最简公分母),化为整式方程;③解整式方程;④检验根;(5)科学记数法:把一个数表示成na 10⨯的形式(其中101<≤a ,n 是整数)的记数方法;(6)①用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n②用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括 小数点前面的一个0) 第十七章 反比例函数17.1反比例函数(1)反比例函数:一般地,形如k y x=(k 为常数,0k ≠)的函数称为反比例函数;(自变量x 的取 值范围是不等于0的一切实数);(2)在反比例函数的解析式k y x=中,x 与y 的位置是对称的,y 可看成x 的反比例函数,x 也可看成y 的反比例函数;(3)确定反比例函数解析式的方法:待定系数法(只需确定比例系数k ,即只需知一点);(4)反比例函数的图像的特征:①双曲线(两支)②图像既是轴对称图形(对称轴是:y=x , y= - x),又是中心对称图形;③图像与坐标轴没有交点;(5)反比例函数的性质:①当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随着x值的增大而减少;②当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随着x值的增大而增大;(6)反比例函数的比例系数k的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
初二数学下册知识梳理人教版
初中数学下册知识梳理(人教版)
一、集合
1.1 基本概念:集合的定义、空集的性质、相等的集合的性质;
1.2 集合的运算:并集、交集、差集;
二、函数
2.1 函数的概念:定义、说明和函数解释中的特殊性质;
2.2 函数的增减性及其应用;
2.3 函数的综合应用:函数的变换、解方程、函数的解析图像;
三、代数式
3.1 幂的概念:定义、常用等式及其应用;
3.2 平方差公式:定义、证明及其应用;
3.3 二次函数:定义、说明及其特征、其它特殊函数,如立方函数;
四、不等式
4.1 不等式的概念:定义、性质、关于有理数的不等式及其解;
4.2 奇偶性:定义和大小关系;
4.3 不等式的变换:定义、性质及其应用;
五、行列式
5.1 行列式的概念:定义、计算公式及其应用;
5.2 行列式的性质:跨行变换、跨列变换及其应用;
5.3 扩充行列式:定义、计算方法及其应用;
六、概率
6.1 概率的概念:定义、分步概念及其应用;
6.2 条件概率:定义、性质及其应用;
6.3 独立性的实质及其应用;
本教材集合、函数、代数式、不等式、行列式及概率等内容,是学习初中数学的基础,而不同的教育版本有着不同的教学设计,上述内容是以人教版的教学设计为例所给出的,希望能为初学者在数学学习上提供一定的参考。
2024年八年级下册数学知识点总结归纳一、实数的认识与运算1. 数轴及实数的表示- 数轴的绘制及利用- 实数的表示及其在数轴上的位置2. 实数的相关性质- 加法运算的性质- 减法运算的性质- 乘法运算的性质- 除法运算的性质3. 实数的运算规则- 加法的运算法则- 减法的运算法则- 乘法的运算法则- 除法的运算法则4. 实数的逆运算- 加法逆元和减法逆元- 乘法逆元和除法逆元5. 有理数的认识与运算- 有理数的表示及其分类- 有理数的加法与减法- 有理数的乘法与除法6. 无理数的认识与运算- 无理数的表示及其性质- 无理数与有理数的关系7. 实数的运算律及运算顺序- 混合运算的顺序和运算律二、线性方程与不等式1. 一元一次方程- 一元一次方程的解的概念- 一元一次方程的解的判断- 一元一次方程的解的求法2. 一元一次方程的应用- 应用问题的方程建立- 使用方程解决实际问题3. 一元一次不等式- 一元一次不等式的解的概念- 一元一次不等式的解的判断- 一元一次不等式的解的求法4. 一元一次不等式的应用- 应用问题的不等式建立- 使用不等式解决实际问题三、平面图形与立体图形1. 平面图形的性质与判断- 五角星和六角星的性质- 四边形的性质- 三角形的性质- 直角三角形的性质2. 平面图形的分类与应用- 三角形的分类- 几何图形的应用3. 立体图形的认识与分类- 立体图形的基本概念- 空间几何图形的识别和分类4. 立体图形的体积与表面积- 直方体和正方体的体积和表面积- 柱体和锥体的体积和表面积四、统计与概率1. 数据的汇总与处理- 数据的收集和整理- 数据的图表表示2. 参数与统计量- 参数的含义与计算- 统计量的含义与计算3. 概率与事件- 概率的概念与性质- 事件与概率的计算4. 概率的应用- 简单事件的计算- 互斥事件的计算- 包含事件的计算五、函数与图像1. 函数的概念与表示- 函数的定义与表示- 函数的自变量和因变量2. 函数的性质与运算- 函数的奇偶性- 函数的增减性- 函数的周期性3. 函数的图像与应用- 函数的图像的绘制- 函数的应用问题解决4. 解析几何的初步认识- 直线的性质与方程- 圆的性质与方程总结:以上是____年八年级下册数学的知识点总结归纳,主要涵盖了实数的认识与运算、线性方程与不等式、平面图形与立体图形、统计与概率、函数与图像等重要内容。
新人教版数学八年级下册知识点汇总本文档汇总了新人教版数学八年级下册的知识点。
第一章函数与线性方程1. 函数的概念与性质2. 线性方程与函数3. 一次函数4. 函数图像与线性方程的解5. 函数关系与线性方程的解6. 函数的运算第二章四边形1. 任意四边形2. 平行四边形3. 矩形4. 正方形5. 菱形6. 梯形7. 三角形的面积第三章几何变换1. 平移与错切2. 原点对称与轴对称3. 尺规作图第四章图形的相似与尺寸1. 相似的概念与性质2. 相似三角形的判定3. 相似三角形与相似比例4. 对应边成比例与对应角相等第五章数据及其概率1. 数列的概念与表示2. 等差数列3. 概率的概念与计算第六章方程1. 方程的解2. 一元一次方程3. 一元一次方程的应用4. 两个变量的线性方程组5. 二次方程的概念与解法第七章平面直角坐标系中的图形1. 直角坐标系2. 线段的中点3. 相交线与平分线4. 解析几何中的实线和虚线5. 圆第八章有理数和实数1. 有理数2. 实数的简介第九章三角形1. 三角形的元素及其关系2. 三角形的相似判定3. 中线、垂线与高线4. 全等三角形及其判定5. 合同三角形的性质第十章配方法等式1. 用配方法解方程2. 一元二次方程第十一章平面图形的性质1. 线段的垂直平分线2. 过点作圆3. 正多边形4. 螺旋线第十二章多边形的面积1. 平行四边形的面积2. 三角形的面积3. 高度与四边形的面积第十三章浓度和密度1. 浓度与密度的计算第十四章投影与视图1. 平行投影2. 视图第十五章集合1. 集合的概念与表示2. 集合间的关系以上是数学八年级下册的知识点汇总。
请根据具体需求查阅相关章节,以帮助研究和复。
(此文档内容仅适用于新人教版数学八年级下册,不包含其他版本的内容)。
最新人教部编版初中八年级数学下册全册
知识点总结
本文档总结了最新人教部编版初中八年级数学下册全册的知识点。
下面是每个单元的主要内容:
第一单元:一元一次方程与应用
- 了解一元一次方程的基本概念和求解方法
- 掌握利用一元一次方程解决实际问题的方法
第二单元:不等式与应用
- 掌握不等式的基本概念和性质
- 学会利用不等式解决实际问题
第三单元:平面图形的认识
- 研究平面图形的基本概念
- 掌握平面图形的性质和判定方法
第四单元:图形的相似与尺寸
- 了解相似图形的定义和性质
- 学会应用相似图形解决问题
第五单元:三角形的面积
- 掌握计算三角形面积的方法
- 研究应用三角形的面积解决实际问题
第六单元:整式与分式
- 理解整式和分式的概念和性质
- 掌握整式和分式的运算方法
第七单元:统计与概率
- 了解统计学的基本概念和统计图表的绘制方法- 研究概率的基本理论和计算方法
第八单元:函数的认识
- 研究函数的定义和基本性质
- 掌握函数的图像和函数关系的表示方法
第九单元:一元二次方程
- 了解一元二次方程的定义和性质
- 学会利用一元二次方程解决实际问题
每个单元的知识点总结包括了基本概念、性质、解题方法和应用等方面的内容。
希望这份文档能帮助您更好地理解和应用八年级数学下册的知识点。
八年级下册数学知识点归纳总结人教版《八年级下册数学知识点归纳总结人教版》在人教版八年级下册数学里呀,有好多有趣又重要的知识点呢。
函数可是个大块头。
一次函数那是相当关键,y = kx + b这个式子就像魔法咒语一样。
k是斜率呀,它决定了直线的倾斜程度,就像小山坡的坡度似的。
b呢是截距,就是直线和y轴相交的那个点的纵坐标。
知道了k和b,这条直线在坐标系里的样子就基本确定啦。
再说说反比例函数,y = k/x这个式子也很奇妙。
它的图像是双曲线呢,当k大于0的时候,双曲线在一、三象限,就像两只快乐的小螃蟹在这两个象限里玩耍。
当k小于0的时候呀,双曲线就跑到二、四象限去喽。
而且反比例函数里,x可不能等于0,因为分母为0就没意义啦,这就像游戏里有一些规则必须遵守一样。
还有勾股定理,那可太酷了。
直角三角形两条直角边的平方和等于斜边的平方,a² + b² = c²。
这个定理就像一把万能钥匙,可以用来求直角三角形里不知道的边长。
想象一下,一个直角三角形站在那,你只要知道其中两条边,就能用这个定理算出第三条边,就像猜谜语一样有趣。
四边形这部分也很有意思。
平行四边形的性质可不少呢,对边平行且相等,对角相等,对角线互相平分。
矩形呢是特殊的平行四边形,它的四个角都是直角,就像方方正正的小盒子。
菱形也是特殊的平行四边形,它的四条边都相等,就像一颗超级规则的小星星。
正方形就更厉害了,它既是矩形又是菱形,集万千宠爱于一身呢。
数据的分析也不能小瞧。
平均数、中位数、众数都是描述数据集中趋势的。
平均数就是所有数据的总和除以数据的个数,就像把一堆苹果平均分一样。
中位数是把数据从小到大排列后,中间的那个数(如果数据个数是奇数)或者中间两个数的平均数(如果数据个数是偶数)。
众数呢就是数据里出现次数最多的那个数,就像一群小伙伴里最受欢迎的那个小朋友。
在我看来呀,八年级下册数学的这些知识点就像一个个小宝藏,每一个都有它独特的魅力和价值。
整理版人教版八年级下册数学全册知识点
大全
本文档整理了人教版八年级下册数学全册的知识点,帮助学生
和老师更好地研究和教授数学课程。
以下是该文档的主要内容:
1. 整数运算: 包括整数的概念、整数的加减乘除运算规则、整
数的大小比较等。
2. 分数运算: 包括分数的基本概念、分数的相加、相减、相乘、相除运算规则等。
3. 小数运算: 包括小数的概念、小数的四则运算、小数的大小
比较等。
4. 代数式和方程: 包括代数式的概念、代数式的加减乘除运算、一元一次方程等。
5. 平面图形: 包括平面图形的基本概念、各种图形的性质、图
形的面积、周长计算等。
6. 空间与图形: 包括立体图形的基本概念、各种立体图形的性质、体积和表面积计算等。
7. 数据与统计: 包括数据的收集和整理、图表的制作和分析、概率的计算等。
8. 几何变换: 包括平移、旋转、翻转等基本变换,以及变换后的图形性质。
9. 计算器的使用: 包括计算器的基本使用方法,如加减乘除、分数运算等。
这份文档旨在为学生和老师提供一个全面且易于理解的数学知识点参考,帮助大家更好地掌握八年级下册数学课程。
请注意,本文档只是知识点的整理,具体的教学内容和例题请参考人教版八年级下册数学教材。
初二数学下册知识点人教版(优秀5篇)初二下册数学知识点篇一第三章图形的平移和旋转1、图形的平移①在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状大小②一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等③一个图形依次沿x轴方向,y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的2、图形的旋转①在平面内,将一个图形绕一个定点按某一个方向转动一个角度,这样的图形运动称为旋转,这个顶点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小②一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等3、中心对称①如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心②成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分③把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心4、简单的图案设计初二下数学知识总结篇二第四章因式分解1、因式分解①把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式2、提公因式法①多项式ab+bc的各项都含有相同的因式b,我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式,如b 就是多项式ab+bc各项的公因式②如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来。
从而将多项式化成两个因式乘积的形式。
这种因式分解的方法叫做提公因式法3、公式法①A2-b2=(a+b)(a-b)②当多项式的各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解③a2+2ab+b2=(a+b)2 。
一、分式1.分式及其基本性质o分式:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A/B就叫做分式,其中A称为分子,B称为分母。
o分式的基本性质:分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的值不变。
2.分式的运算o乘法:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
o除法:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
o加减法:▪同分母分式相加减,分母不变,把分子相加减。
▪异分母分式相加减,先通分,变为同分母的分式,再加减。
3.分式的混合运算o顺序:先乘方,再乘除,最后加减,有括号先算括号里面的。
o约分与通分:约分是化简分式的过程,通分则是将异分母分式化为同分母分式的过程。
二、一次函数与正比例函数•一次函数:形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数。
•正比例函数:当b=0时,一次函数y=kx,又叫做正比例函数。
•性质:o在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
o一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
o正比例函数的图像总是过原点。
三、分解因式•定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
•方法:o提公因式法。
o运用公式法(如平方差公式、完全平方公式)。
四、三角形与全等三角形1.三角形o性质:三角形三个内角的和等于180°。
o推论:▪直角三角形的两个锐角互余。
▪三角形的一个外角等于和它不相邻的两个内角的和。
▪三角形的一个外角大于任何一个和它不相邻的内角。
2.全等三角形o定义:能够完全重合的两个三角形叫做全等三角形。
o性质:全等三角形的对应边相等,对应角相等。
o判定:▪边边边(SSS):三边对应相等的两个三角形全等。
▪边角边(SAS):两边和它们的夹角对应相等的两个三角形全等。
▪角边角(ASA):两角和它们的夹边对应相等的两个三角形全等。
人教版八年级下册数学知识点概述第一章:二次根式
1.1 二次根式的概念与性质
- 二次根式的定义
- 二次根式的性质
1.2 二次根式的运算
- 二次根式的乘法
- 二次根式的除法
- 二次根式的加法和减法
1.3 二次根式在实际问题中的应用
- 利用二次根式求解实际问题
第二章:实数
2.1 实数的概念与分类
- 有理数
- 无理数
- 实数
2.2 实数的运算
- 实数的加法
- 实数的减法
- 实数的乘法
- 实数的除法
2.3 实数与方程
- 线性方程
- 一元二次方程
第三章:平行四边形
3.1 平行四边形的基本性质- 定义与性质
- 平行四边形的判定
3.2 平行四边形的面积
- 平行四边形面积的计算
3.3 平行四边形的应用
- 利用平行四边形解决实际问题第四章:概率初步
4.1 概率的基本概念
- 随机事件
- 必然事件
- 不可能事件
4.2 概率的计算
- 古典概型
- 几何概型
4.3 概率在实际问题中的应用- 利用概率解决实际问题
以上是对人教版八年级下册数学知识点的概述,每个章节都涵盖了基本概念、运算规则、实际应用等方面,帮助学生全面掌握数学知识。
人教版八年级下册数学课本知识点归纳第十六章 分式一、分式1. 分式:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
(分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 )2. 分式的基本性质:分式的分子与分母同乘(或除)以一个不等于0的整式,分式的值不变。
用式子表示如下:(C ≠0) 其中A,B,C 是整式3.最简公分母:取各分母的所有因式的最高次幂的积做公分母,它叫做最简公分母4.通分:分子和分母同乘最简公分母,不改变分式值,把几个整式化成相同分母的分式。
这个过程叫通分。
(分母为多项式时要分解因式)5.约分:约去分子和分母的公因式,不改变分式值,这个过程叫约分。
二、分式的运算1.分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2.分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
上述法则可以用式子表示:3分式乘方法则:一般地,当n 为正整数时这就是说, 分式乘方要把分子、分母分别乘方4.分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减。
上述法则可用以下式子表示:,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 5.整数指数幂C B C A B A ⋅⋅=C B CA B A÷÷=bc ad c d b a d c b a bd ac d c b a =⋅=÷=⋅;n n n ba b a =)(1.任何一个不等于0的数的0次幂等于1, 即)0(10≠=a a ; 当n 为正整数时,n n a a 1=- ()0≠a ,也就是说a n (a≠0)是a -n 的倒数。
正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:n m n m a a a +=⋅;(2)幂的乘方:mn n m a a =)(;(3)积的乘方:n n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);(5)商的乘方:n nn b a ba =)(( n 是正整数);(b ≠0) 三、分式方程1. 分式方程:分母中含未知数的方程叫分式方程。
(解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
)2.解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根。
3.分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
四、列方程应用题1.列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答。
2.应用题有几种类型;基本公式是什么?基本上有五种:(1)行程问题:基本公式:路程=速度×时间 而行程问题中又分相遇问题、追及问题.(2)数字问题 在数字问题中要掌握十进制数的表示法.(3)工程问题 基本公式:工作量=工时×工效.(4)顺水逆水问题 v 顺水=v 静水+v 水. v 逆水=v 静水-v 水.五、科学记数法:把一个数表示成na 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数的负数(包括小数点前面的一个0)第十七章 反比例函数一、反比例函数 1.反比例函数:一般地,函数x k y =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
其他形式xy=k 1-=kx yx k y 1=2.反比例函数的图象和性质①图像:反比例函数的图像属于双曲线。
它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
②性质:当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小;当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大。
③|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
K=xy二、实际问题与反比例函数由于在反比例函数中,只有一个待定系数k ,因此只需要一对对应值或图像上的一个点的坐A D标,即可求出k (K=xy)的值,从而确定其反比例函数解析式。
一般用待定系数法。
第十八章 勾股定理一、勾股定理1.勾股定理:命题1:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a2+b2=c2。
2.勾股定理的逆定理:如果三角形三边长a,b,c 满足a2+b2=c2。
,那么这个三角形是直角三角形。
2.经过证明被确认正确的命题叫做定理。
3.逆命题:我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)第十九章 四边形19.1平行四边行19.1.1平行四边形的性质1.平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等。
③平行四边形的对角线互相平分。
19.1.2平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
5.三角形的中位线:连接三角形两边中点的线段。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
19.2特殊的平行四边形19.2.1矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
2.矩形的性质:①矩形的四个角都是直角;②矩形的对角线平分且相等。
AC=BD3.矩形判定定理:①有一个角是直角的平行四边形叫做矩形。
②对角线相等的平行四边形是矩形。
③有三个角是直角的四边形是矩形。
4.黄金矩形:宽和长的比是21-5(约为0.618)的矩形叫做。
19.2.2菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
2.菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
3.菱形的判定定理:①一组邻边相等的平行四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③四条边相等的四边形是菱形。
S菱形=1/2×ab(a、b为两条对角线)19.2.3正方形1.正方形定义:一个角是直角的菱形或邻边相等的矩形。
2.正方形的性质:四条边都相等,四个角都是直角。
3.正方形判定定理:①邻边相等的矩形是正方形。
②有一个角是直角的菱形是正方形。
19.3梯形1.梯形:一组对边平行,另一组对边不平行的四边形叫做梯形。
2.直角梯形:有一个角是直角的梯形3.等腰梯形:两腰相等的梯形。
4.等腰梯形的性质:①等腰梯形同一底边上的两个角相等;②等腰梯形的两条对角线相等。
5.等腰梯形判定定理:①同一底上两个角相等的梯形是等腰梯形。
6.解梯形问题常用的辅助线:如图19.4课题学习重心重心:是物体的质量中心,能够保持物体平衡的点就是重心。
(是一个平衡点)①线段的重心就是线段的中点。
②平行四边形的重心是它的两条对角线的交点。
③三角形的三条中线交于一点,这一点就是三角形的重心。
第二十章数据的分析20.1数据的代表20.1.1平均数:包括加权平均数和算术平均数。
加权平均数与算术平均数类似,不同点在于,数据中的每个点对于平均数的贡献并不是相等的,有些点要比其他的点更加重要。
加权平均数的概念在描述统计学中具有重要的意义,并且在其他数学领域产生了更一般的形式。
如果所有的权重相同,那么加权平均数与算术平均数相同。
加权平均数作为算术平均数的更广义的表现形式1.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
20.1.2中位数和众数1.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
2.众数:一组数据中出现次数最多的数据就是这组数据的众数。
20.2.数据的波动20.2.1极差1.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。
20.2.2方差方差的定义:衡量一组数据的波动大小的一个数据s2,其计算方法如下:备注:方差等于各数据与平均数的差的平方的平均数1.方差:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
2. 平均数:平均数受极端值的影响,众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。
20.3课题学习体质健康测试中的数据分析7.数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流(1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。