3刚体的平面运动例题
- 格式:ppt
- 大小:202.00 KB
- 文档页数:15
刚体的平面运动习题答案刚体的平面运动习题答案刚体的平面运动是力学中的一个重要课题,它涉及到物体在平面上的运动规律和力的作用方式。
在学习这一课题时,我们常常会遇到一些习题,下面我将为大家提供一些关于刚体平面运动的习题答案,希望能够帮助大家更好地理解和掌握这一知识点。
1. 习题一:一个质量为m的刚体在水平地面上受到一个水平力F的作用,求刚体受力情况下的加速度。
解答:根据牛顿第二定律,刚体的加速度与作用在其上的合外力成正比,与刚体的质量成反比。
因此,刚体的加速度可以表示为a = F/m。
2. 习题二:一个质量为m的刚体以速度v沿x轴正方向运动,受到一个大小为F的力沿y轴正方向作用,求刚体的加速度和运动轨迹。
解答:由于刚体受到的力只有在y轴上的F,所以刚体在x轴方向上不受力,即不会有加速度。
而在y轴方向上,刚体受到的力F会引起加速度的产生。
根据牛顿第二定律,我们可以得到刚体在y轴方向上的加速度为a = F/m。
至于刚体的运动轨迹,由于在x轴方向上没有加速度,刚体将以匀速直线运动,而在y轴方向上有加速度,刚体将在y轴上做匀加速运动。
3. 习题三:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向相同,求刚体在力作用下的加速度。
解答:由于力的方向与速度方向相同,所以刚体受到的力将会增加其速度。
根据牛顿第二定律,刚体的加速度可以表示为a = F/m。
4. 习题四:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向相反,求刚体在力作用下的加速度。
解答:由于力的方向与速度方向相反,所以刚体受到的力将会减小其速度。
根据牛顿第二定律,刚体的加速度可以表示为a = -F/m。
5. 习题五:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向成一定的夹角θ,求刚体在力作用下的加速度。
解答:对于这个习题,我们可以将力F分解为两个分力F1和F2,其中F1与刚体的速度方向相同,F2与刚体的速度方向垂直。
第十章刚体的平面运动一、内容提要1、基本概念(1)刚体的平面运动的定义刚体运动时,若其上任一点至某个固定平面的距离保持不变,则称该刚体作平面运动。
(2)刚体的平面运动的简化刚体的平面运动可以简化为平面图形在自身平面内的运动。
(3)刚体平面运动方程为x o'=f1(t) , y o'=f2(t) , ϕ=f3(t) ,(4)刚体平面运动的分解平面图形的运动可以分解为随基点的平动和绕基点的转动。
2、平面图形上各点的速度(1)基点法(速度合成法)V M= V O+V MO(2)速度投影法(V M)MO=(V O)MO(3)速度瞬心法V M=MC∙ω(C点为速度瞬心)3、平面图形上各点的加速度加速度分析主要用基点法(加速度合成法)a M= a O+aτMO+a n MOaτMO =MO∙ε方向垂直于MO,并与ε的转向一致。
a n MO =MO∙ω2 方向由点M指向基点O。
二、基本要求1、熟练掌握平面图形上各点的速度的求解。
2、熟练掌握平面图形上各点的加速度的求解。
三、典型例题例如图所示平面机构,由四杆依次铰接而成。
已知AB=BC=2R,C D=DE=R,AB杆和DE杆分别以匀角速度ω1与ω2绕A、E轴转动。
在图示瞬时,AB与CD铅直,BC与DE水平。
4142 试求该瞬时BC 杆转动的角速度和C 点加速度的大小。
解 AB 杆和DE 杆作定轴转动,BC 杆CD 杆均作平面运动。
(1)求BC 杆的角速度ωBC 因为V B =2R ω1 , V D =R ω2 分别以B 点和D 点为基点,分析C 点速度,有V C = V B + V CB (1)V C = V D + V CD (2) 所以 V B + V CB = V D + V CD (3) 沿BC 方向投影式(3)得V B = V CD则CD 杆的角速度ωCD = V CD /CD=V B /R=2ω1 (逆时针) 沿DC 方向投影式(3)得V CB = V D则BC 杆的角速度ωBC = V CB /BC=V D /2R=0.5ω2 (逆时针)(2)求C 点的加速度a C 因为a B =a B n =2R ω12 ,a D =a D n =R ω22分别以B 点和D 点为基点,分析C 点加速度,有 a C = a B + a CB τ + a CB n (4)a C =a D +a CD τ+a CD n (5)所以 a B + a CB τ + a CB n =a D +a CD τ+a CD n (6) 沿CD 方向投影式(6)得a B n - a CB τ = a CD na CB τ=a B n - a CD n =2R ω12-R(2ω1)2=-2R ω12又将式(4)分别沿x 、y 轴投影式得a Cx =-a CD n =-2R ωBC 2= -0.5R ω22a Cy =-a B n + a CB τ = -2R ω12-2R ω12= - 4R ω12故C 点加速度大小a C =22cy cx a a +=4241642ωω+R43。
刚体平面运动习题第八章刚体平面运动的练习1.真或假(勾选正确和交叉错误)8-1。
刚体的平面运动是一种运动,在这种运动中,刚体上的任何一点与固定平面之间的距离总是平行的。
()8-2。
平面图形的运动可以看作基点的平移和围绕基点的旋转的组合。
()8-3。
平面图形上任意两点的速度都相等地投影在一个固定的轴上。
()()()8-6。
瞬时速度中心的速度为零,加速度为零。
()8-7。
刚体的平移也是一种平面运动。
()2。
填空(在横线上写出正确答案)8-8。
在直线轨道上纯滚动时,圆轮与地面接触点的速度为。
8-9。
平面图上任意两点的速度在上投影中相等。
8-10。
瞬时刚体平移时的角速度是:刚体上每个点的速度;每个点的加速度。
3.简短回答问题8-11。
确定图中所示平面运动物体的瞬时速度中心的位置。
AbabaccωOboaωOdbω(b)Co(a)(c)图8-11 (d)8-12。
如果一个刚体在一个平面上运动,下面平面图中A和B的速度方向是正确的吗?问题8-12图(c)8-13。
下图中O1A和AC的速度分布是否正确?8-14。
当圆形车轮在曲线上滚动时,某一瞬时车轮中心的速度vo和加速度ao,而车轮的半径是R,即车轮中心的角度加速度是多少?如何确定瞬时速度中心的加速度的大小和方向?蟹爪兰O1VβA01ωO2P 8-13图8-148-15。
为什么用基点法计算平面图中单个点的加速度时没有科里奥利加速度?4.计算问题8-16。
椭圆规AB由曲柄OC驱动,曲柄OC以均匀的角速度ω O绕O轴旋转。
如图所示,如果以C为基点,OC=BC=AC=r,试着找出椭圆规AB的平面运动方程。
8-17。
半径为R的齿轮由曲柄OA驱动,沿半径为R的固定齿轮滚动,如图所示。
曲柄以均匀的角加速度α绕O轴旋转,并设定初始角速度ω。
角加速度α?0.角落??0.如果选择移动齿轮的中心C点作为基点,试着找出移动齿轮的平面运动方程。
yay rarαφBMMoxorBx 8-16图ωOO图8-178-18。
刚体的平面运动在前面几节中,物体被看成了没有形状、没有大小的质点. 然而,实际的物体总是有其形状和大小的,而且常常发生形变. 作为一种理想模型,我们把形状和大小不变的物体叫做刚体. 刚体上质点之间的距离在刚体运动时保持不变. 那末,刚体运动有些什么规律呢?一、刚体运动有两种基本形式:平动和定轴转动1、平动刚体上任意两点的连线保持平行的运动叫做刚体的平动,如图1所示. 图中是一个正方体刚体在作曲线平动. 不难看出,刚体上各点的轨迹曲线的形状相同,各点的速度也相同. 因此,只要弄清楚了刚体上任意一点的运动过程,也就弄清楚了整个刚体的运动过程.这就是说,刚体的平动可以用刚体上任意一个质点的运动来代表. 因此,前面几章研究质点运动实际上就是研究刚体的平动.2、定轴转动若刚体上的所有质点围绕同一直线作圆运动,则称这种运动为刚体转动,该直线叫做刚体的转轴. 转轴可以穿过刚体,也可以不穿过刚体. 转轴静止的刚体转动叫做刚体定轴转动.如图2所示。
刚体定轴转动时,刚体上任意质点的轨迹圆所在的平面叫做转动平面. 刚体的各个转动平面相互平行,都垂直于转轴.刚体定轴转动的描述。
类似于圆周运动的描述刚体上各点都绕同一转轴作半径不同的圆周运动,在相同时间内转过相同的角度。
刚体上各点的角位移θ∆、角速度ω、角加速度β均相同。
二、刚体平面运动刚体的平动和转动是最常见、最简单的刚体运动。
我们感兴趣的是另一种刚体运动称为刚体的平面运动。
例如汽车在平直路面上行驶时,其轮子在路面上滚动就是一例。
刚体平面运动的特点是,刚体在运动中刚体上各点始终处在平行于空间一固定平面的各自平面中。
1、刚体平面运动概述和运动分解(1)如图3所示,刚体运动中由位形Ⅰ到位形Ⅱ,总可以认为以刚体上任意选定的参考点(称为基点)为代表的刚体的平动,加上刚体绕此参考点的一个转动的叠加完成。
(2)由图3(a )、(b )看出,基点选取不同,刚体平动运动将不同,但绕基点的转动却是相同的。
刚体的平面运动作业参考答案1.图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。
如曲柄OA 以等角加速度α 绕O 轴转动,当运动开始时,角速度ω0=0,转角ϕ0=0,求动齿轮以中心A 为基点的平面运动方程。
答案: 2A 22)(21, 2sin)( , 2cos )(t r R rt r R y t r R x A A αϕαα+=+=+=2. 图示平面机构中,曲柄OA =R ,以角速度ω 绕O 轴转动。
齿条AB 与半径为2Rr =的齿轮相啮合,并由曲柄销A 带动。
求当齿条与曲柄的交角θ =60º时,齿轮的角速度。
答案:顺时针 31ωω=提示:可先用速度投影法求出齿条上与齿轮重合点的速度。
3.图中曲柄OA 长150mm ,连杆AB 长200mm ,BD 长300mm 。
设OA ⊥OO 1时,AB ⊥OA ,θ =60º,曲柄OA 的角速度为4rad/s ;求此时机构中点B 和D 的速度以及杆AB 、O 1B 和BD 的角速度。
答案:逆时针顺时针顺时针 rad/s 34 , rad/s 4, rad/s 3 , mm/s 800 , mm/s 34001O =====BD B AB D B v v ωωω提示:在图示瞬时,杆AB 的速度瞬心为点C ,杆BD 的速度瞬心为点E 。
4.图示平面机构中,曲柄长OA =r ,以角速度ω0绕O 轴转动。
某瞬时,摇杆O 1N 在水平位置,而连杆NK 和曲柄OA 在铅垂位置。
连杆上有一点D ,其位置为DK =31NK ,求D 点的速度。
答案:←=320ωr v D 提示:在图示瞬时,杆AB 瞬时平动,杆KN 的速度瞬心为点N 。
5.杆AB 长0.4m ,其端点B 沿与水平成倾角θ =30º的斜面运动,而端点A 沿半径OA =0.6m 的圆弧运动,如图所示。
求当杆AB 水平时,端点B 的速度和加速度。
假设此时OA ⊥AB ,杆OA 的角速度为πrad/s ,角加速度为零。
刚体平面运动一、是非题(正确或是用√,错误或否用×,填入括号内。
)1. 刚体的平动和定轴转动均是刚体平面运动的特例。
( √ )2. 刚体作瞬时平动时,刚体的角速度和角加速度在该瞬时一定都等于零。
( × )3. 轮子作平面运动时,如轮上与地面接触点C 的速度不等于零,即相对地面有滑动,则此时轮子一定不存在瞬时速度中心。
( × )4. 若在作平面运动的刚体上选择不同的点作为基点时,则刚体绕不同基点转动的角速度是不同的。
( × )5. 某刚体作平面运动,若A 和B 是其平面图形上的任意两点,则速度投影定理[][]AB B AB A v v =永远成立。
( √ )6. 作平面运动的刚体,某瞬时若角速度、角加速度同时为零,则此时刚体上各点的速度与加速度均相等。
( √ )7. 接上题,在上述条件下,有结论:刚体作平动。
( × )8. 设A 为平面运动刚体上的任意一点,I 为刚体在某时刻的速度瞬心,则A 点的运动轨迹在此处的曲率半径等于A 、I 间的距离。
( × )9. 我们知道,作平面运动的刚体上任意两点A 、B 之间有相对速度,因此,如果将一坐标系固定在此刚体上,在此坐标系中所观察到的A 、B 点之速度一般来说不相等。
( × )10. 刚体作平面运动时,若某瞬时其上有二点加速度相同,则此瞬时刚体上各点的速度都相同。
( √ )11. 平面图形上任意两点的速度在任一直线上的投影始终相等。
( × )12. 平面图形瞬时平动时,其上任意两点的加速度在这两点连线上的投影相等。
( √ )13. 刚体平动必为刚体平面运动的特例,但刚体定轴转动不一定是刚体平面运动的特例。
( × )14. 请判断下述说法是否正确:A. 刚体的平动是平面运动的特殊情况。
( × )B. 刚体的平面运动是平动的特殊情况。
( × )C. 刚体的定轴转动是平面运动的特殊情况。
第六章 刚体的平面运动思考题6-1.判断图示刚体上各点的速度方向是否可能?6-2.试确定图示各系统中作平面运动的构件在图示位置的速度瞬心。
思考题6-2图B思考题6-1图6-3.某瞬时平面图形上A 、B 两点的速度矢分别为A v 和B v ,则该瞬时AB 连线上中点C 的速度矢为()2B A C v v v +=,请问此式是否正确?。
6-4.平面图形瞬时平动时,其上任意两点的加速度在这两点连线上的投影相等。
这种说法是否正确?为什么?6-5.刚体的平动和定轴转动都是平面运动的特例吗?刚体的平动与某瞬时刚体瞬时平动有何区别?6-6.刚体的平面运动通常分解为哪两个运动?它们与基点的选取有无关系?用基点法求平面图形上各点的加速度时,要不要考虑科氏加速度?6-7.如图所示机构中,能否根据A 、B 两点的速度A v 、B v 的方向,按图示的方法确定速度瞬心I 的位置,为什么?6-8.图示杆AB 沿墙角在铅直平面滑落时,试画出其动瞬心轨迹和定瞬心轨迹。
思考题6-7图思考题6-8图第六章 刚体的平面运动习 题6-1 筛子的摆动由曲柄连杆机构带动。
已知曲柄OA 的转速40 r/min, 0.3m, n OA BC BE ===。
求图示瞬时筛子CD 的速度。
6-2 杆AB 的A 端沿水平线以等速v 运动,运动时杆恒与一半径为R 的半圆周相切,如图所示,如杆与水平线间的交角为θ,试以角θ表示杆的角速度。
6-3 图示曲柄连杆机构中,曲柄OA 长20cm ,以匀角速度010rad/s ω=转动,连杆AB 长100cm ,求在图示位置时连杆的角速度与角加速度以及滑块B 的加速度。
6-4 在图示曲柄连杆机构中,曲柄OA 绕轴O 转动,其角速度为0ω,角加速度为0α,在某瞬时曲柄与水平线间成60°角,而连杆AB 与曲柄OA 垂直。
滑块B 在圆形槽内滑动,此时半径O 1B 与连杆AB 间夹角为30°。
如果1, , 2OA r AB O B r ===,求该瞬时,滑块B 的切向和法向加速度。