苏科版八年级上6.3一次函数的图像(第2课时)同步练习含答案
- 格式:doc
- 大小:83.00 KB
- 文档页数:4
一次函数课后练习主讲教师:奥德题一:函数y=(m2)x+5m是一次函数,则m满足的条件是_________,若此函数是正比例函数,则m的值为_________,此时函数关系式为_________.题二:题面:已知函数y=(m10)x+12m.(1)m为何值时,这个函数是一次函数;(2)m为何值时,这个函数是正比例函数.题三:已知函数y=3x6,求出其与坐标轴的交点坐标,并画出它的大致图象.题四:已知:一次函数y=2x4.(1)在直角坐标系内画出该一次函数的图象;(2)求该函数图象与x轴的交点A及与y轴交点B的坐标.题五:(1)下列问题中,是正比例函数的是()A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系(2)下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x题六:(1)下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y和它的边长x的关系B.圆的面积y与半径x的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60,每个月长高3,x月后这棵的树高度为y(2)在下列函数关系中:①y=kx,②y=23x,③y=x2 (x1)x,④y=x2 +1,⑤y=22 x,一定是一次函数的个数有()A.3个B.2个C.4个D.5个题七:已知一次函数为y=3x+6.(1)求直线与坐标轴的交点坐标,并画出图象;(2)求直线与坐标轴围成的三角形的面积.题八:在同一直角坐标系中,画出一次函数y=x+2与y=2x+2的图象,并求出这两条直线与x轴围成的三角形的面积与周长.题九:在如图所示的计算程序中,y与x之间的函数关系所对应的图象大致是()A.B.C.D.题十:如图所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限题十一:已知:y是x一次函数,且当x=2时,y=3-;且当x=2-时,y=1(1)试求y与x之间的函数关系式并画出图象;(2)在图象上标出与x轴、y轴的交点坐标;(3)当x取何值时,y=5?题十二:已知:下表是函数y=kx+b的两组对应值.(1)求这个函数的解析式;(2)利用描点法画出这个函数的图象,并指该图象是什么图形;(3)当y<4时,求自变量x的取值范围.题十三:函数y=kx+|k|(k≠0)在直角坐标系中的图象可能是() A.B.C.D.题十四:画出函数y=|x|的图象.课后练习参考答案题一:m≠2,m=5,y=3x.详解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.当b=0时,则y=kx(k≠0)称y是x的正比例函数.所以,当m满足的条件是m≠2时,函数y=(m2)x+5m 是一次函数,若此函数是正比例函数,则5m=0,即m=5,此时函数关系式为y=3x.题二:(1)m≠10;(2)m=12.详解:(1)根据一次函数的定义可得:m10≠0,∴当m≠10时,这个函数是一次函数;(2)根据正比例函数的定义,可得:m10≠0且12m=0,∴当m=12时,这个函数是正比例函数.题三:见详解.详解:∵y=3x6,∴当x=0时,y= 6,当y=0时,x=2,∴图象与x轴的交点坐标(2,0),图象与y轴的交点坐标(0,6);图象如下:题四:见详解.详解:(1)当x=0时,y= 4;当y=0,则2x4=0,解得x=2,描点A(2,0)、B(0,4),然后连线即可;(2)A(2,0)、B(0, 4).题五:(1)D;(2)B.详解:(1) A.∵S=ab,∴矩形的长和宽成反比例,故本选项错误;B.∵S=a2,∴正方形面积和边长是二次函数,故本选项错误;C.∵S=12ah,∴三角形的面积一定,底边和底边上的高是反比例关系,故本选项错误;D.∵S=vt,∴速度固定时,路程和时间是正比例关系,故本选项正确.故选D;(2)A.设路程是s,则根据题意知,y=st,是反比例函数关系.故本选项错误;B.根据题意,知10=2(x+y),即y= x+5,符合一次函数的定义.故本选项正确;C.根据题意,知y=πx2,这是二次函数,故本选项错误;D.根据题意,知x2+y2=25,这是双曲线方程,故本选项错误.故选B.题六:(1)A;(2)A.详解:(1)A.依题意得到y= 4x,则yx= 4,所以正方形周长y和它的边长x的关系成正比例函数.故本选项正确;B.依题意得到y=πx2,则y与x是二次函数关系.故本选项错误;C.依题意得到y=90x,则y与x是一次函数关系.故本选项错误;D.依题意,得到y=3x+60,则y与x是一次函数关系.故本选项错误;故选A;(2)①y=kx当k=0时原式不是函数;②y=23x是一次函数;③由于y =x 2 (x 1)x =x ,则y =x 2 (x 1)x 是一次函数;④y =x 2 +1自变量次数不为1,故不是一次函数;⑤y =22 x 是一次函数.故选A .题七:见详解. 详解:(1)令x =0,则y =6,令y =0,则3x +6=0,解得x =2-,所以,直线与x 轴的交点坐标为(2,0),与y 轴的交点坐标为(0,6),函数图象如图所示:(2)直线与坐标轴围成的三角形的面积=12×2×6=6.题八:见详解.详解:如图:直线y =x -+2与x 轴的交点为B (2,0),直线y =2x +2与x 轴的交点为C (1,0);两个函数的交点是A (0,2);∴BC =3,AB 22OB OA +2212+5AC =22 则S △ABC =12BC •OA =3;C △ABC 52.题九:A.详解:由已知可得函数关系式为:y=24--,画出图象得:x故选A.题十:C.详解:由图示计算程序可得:y=3x-<0,∴图象必过第二、四象限,-+1,∵k=3∵b=1>0,∴直线与y轴交于正半轴,∴图象所过象限为第一、二、四象限,故选C.题十一:见详解.详解:(1)设y=kx+b(k、b是常数,且k≠0),把x=2,y=3-代入−3=2k+b;把x=2-,y=1代入1=−2k+b,解得k=−1,b=−1,∴y=1x--;(2)当x=0时,y=1-,当y=0时,x=1-,所以该图象与x轴、y轴的交点坐标分别是(0,1),(1,0);如图所示:(3)当y=5时,5=1x--,解得,x=6-.所以当x=6-时,y=5.题十二:见详解.详解:(1)∵x=1时,y=1,x=3时,y=5,代入解析式y=kx+b,∴k+b=1,3k+b=5,解得:k=2,b=−1,∴y=2x1;(2)根据(1)中解析式得出下表对应点坐标,描点,连线得:∴此函数图象是一条直线;(3)当y<4时,∴2x1<4,解得x<52,∴自变量x的取值范围是:x<52.题十三:B.详解:由题意知,b=|k|>0,故分两情况讨论:初中-数学-打印版初中-数学-打印版 (1)当k >0,图象经过第一、二、三象限;(2)当k <0,图象经过第一、二、四象限. 故选B .题十四:见详解.详解:当x ≥1时,y =x 1;当x <1时,y =x +1.如图:。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练6.3一次函数的性质一、选择题1.当k>0时,正比例函数y=kx的图象大致是()A. B. C. D.2.已知正比例函数y=(m-1)x,若y随x增大而增大,则点(m,1-m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–0.5B.0.5C.–2D.24.下列关于正比例函数y=-5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限5.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B. C. D.6.函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限7.函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是()A.m<0.75B.-1<m<0.75C.m<﹣1D.m>﹣18.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过...的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.某复印店复印收费y(元)与复印面数x(面)的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费()A.0.2元B.0.4元C.0.45元D.0.5元10.如图,点A的坐标为(﹣2,0),点B在直线y=x上运动,当线段AB最短时点B的坐标为()A.(0,0)B.(﹣1,﹣1)C.(,﹣)D.(﹣,﹣)二、填空题11.函数y=-7x的图象在第象限内,经过点(1,),y随x的增大而.12.正比例函数y=(m﹣2)x m的图象的经过第象限,y随着x的增大而.13.如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m的取值范围是.14.函数y=﹣x+1的图象不经过第象限.15.已知点A(0,m)和点B(1,n)都在函数y=﹣3x+b的图象上,则m n.(在横线上填“>”、“<”或“=”)16.已知一次函数y=2x﹣b与两个坐标轴围成的三角形面积为9,则b=.三、解答题17.已知正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?18.如图,已知四边形ABCD是正方形,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=_______.(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化,请说明理由;若会发生变化,求出a的值.19.如图,在直角坐标系中,直线y=kx+4与x轴正半轴交于一点A,与y轴交于点B,已知△OAB的面积为10,求这条直线的解析式.20.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求出△AOB的面积.(5)y的值随x值的增大怎样变化?参考答案1.A2.D3.A4.B5.A6.B.7.C8.C9.B.10.B11.答案为:二、四;7;减小;12.答案为:二、四,减小;13.答案为:m>2;14.答案为:三.15.答案为:>.16.答案是:±6;17.解:(1)∵正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,∴点A的坐标为(-2,4)或(-2,-4).设这个正比例函数为y=kx,则4=-2k或-4=-2k,解得k=-2或k=2,故正比例函数为y=2x或y=-2x.(2)当y=2x时,图象经过第一、三象限;当y=-2x时,图象经过第二、四象限.(3)当y=2x时,函数值y是随着x的增大而增大;当y=-2x时,函数值y是随着x的增大而减小.18.解:(1)2/3∵正方形边长为2,∴AB=2.在直线y=2x中,当y=2时,x=1∴OA=1,OD=1+2=3∴C(3,2),将C(3,2)代入y=kx中,得2=3k,解得k=2/3.(2)k的值不会发生变化理由:∵正方形边长为a∴AB=a,在直线y=2x中,当y=a时,x=0.5a,∴OA=0.5a,OD=1.5a∴C(1.5a,a).将C(1.5a,a)代入y=kx中,得a=k×1.5a,解得k=2/3,∴k值不会发生变化.19.解:当y=0时,kx+4=0,解得x=﹣,则A(﹣,0),当x=0时,y=kx+4=4,则B(0,4),因为△OAB的面积为10,所以•(﹣)•4=10,解得k=﹣,所以直线解析式为y=﹣x+4.20.解:(1)如图:;(2)当y=0时,﹣2x﹣2=0,解得x=﹣1,即A(﹣1,0);当x=0时,y=﹣2,即B(0,﹣2);(3)由勾股定理得AB==;=×1×2=1;(4)S△AOB(5)由一次函数y=﹣2x﹣2的系数k=﹣2<0可知:y随着x的增大而减小.。
《一次函数》(一次函数的图像)一.选择题1.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.当b<0时,一次函数y=x+b的图象大致是()A.B.C.D.3.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.4.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.5.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.6.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.二.填空题7.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是.8.园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为平方米.9.一次函数y=kx+b的图象如图所示,则当x的取值范围是时,能使kx+b>0.10.地铁一号线的列车匀速通过某隧道时,列车在隧道内的长度y(米)与列车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①列车的长度为120米;②列车的速度为30米/秒;③列车整体在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是(填正确结论的序号).11.如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有(填序号).12.一游泳池长90米,甲、乙二人分别在游泳池相对两边同时朝另一边游泳,图中的实线和虚线分别表示甲、乙与游泳池一边距离随时间的变化而变化的图象,若不计转向时间,则从开始起到6分钟止,他们相遇的次数为.13.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有(填所有正确的序号)14.如图,折线ABC是某市在2012年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象,观察图象回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费元.15.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发小时,快车追上慢车行驶了千米,快车比慢车早小时到达B地.三.解答题16.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图象如图所示,根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?18.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)如图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.19.如图所示,A,B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线OPQ和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙出发的时间相差小时?(2)(填写“甲”或“乙”)更早到达B城?(3)乙出发大约小时就追上甲?(4)描述一下甲的运动情况;(5)请你根据图象上的数据,求出甲骑自行车在全程的平均速度.20.端午节假期间,小亮一家到某度假村度假.小亮和他妈妈坐公交车先出发,他爸爸自驾车沿着相同的道路后出发.他爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村.如图是他们离家的距离s(km)与小明离家的时问t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是.因变量是;(2)小亮家到该度假村的距离是km;(3)小亮出发小时后爸爸驾车出发:当爸爸第一次到达度假村后,小亮离度假村的距离是km;(4)图中点A表示;(5)小亮从家到度假村期间,他离家的距离s(km)与离家的时间t(h)的关系式为;(6)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是km.21.一天之中,海水的水深是不同的,如图是某港口从0时到12时的水深情况,结合图象回答下列问题:(1)如图描述了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2)大约什么时刻港口的水最深?深度约是多少?(3)图中A点表示的是什么?(4)在什么时间范围内,水深在增加?什么时间范围内,水深在减少?22.如图,表示甲、乙两同学沿同一条路到达目的地过程中,路程s(千米)与时间t(小时)之间关系的图象,根据图象中提供的信息回答问题:(1)乙的速度为千米/时;(2)两人在乙出发后小时相遇;(3)点A处对应的数字为;(4)甲在出发后1小时至2.5小时之间的速度为千米/时.参考答案与解析一.选择题1.(2016•邵阳)一次函数y=﹣x+2的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【解答】解:∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限.故选C.【点评】本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据函数系数的正负确定函数图象经过的象限是关键.2.(2016•郴州)当b<0时,一次函数y=x+b的图象大致是()A.B.C.D.【分析】根据一次函数系数的正负,可得出一次函数图象经过的象限,由此即可得出结论.【解答】解:∵k=1>0,b<0,∴一次函数y=x+b的图象经过第一、三、四象限.故选B.【点评】本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数图象与系数的关系找出函数图象经过的象限是关键.3.(2015•自贡)小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.4.(2015•新疆)如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.5.(2016•贵阳)星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C. D.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.【点评】本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.6.(2015•巴中)小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.二.填空题(共9小题)7.(2016•德惠市一模)一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是x<2.【分析】首先根据图象可知,该一次函数y=kx+b的图象经过点(2,0)、(0,3).因此可确定该一次函数的解析式为y=.由于y>0,根据一次函数的单调性,那么x的取值范围即可确定.【解答】解:由图象可知一次函数y=kx+b的图象经过点(2,0)、(0,3).∴可列出方程组,解得,∴该一次函数的解析式为y=,∵<0,∴当y>0时,x的取值范围是:x<2.故答案为:x<2.【点评】本题主要考查了一次函数的图象性质,要掌握一次函数的单调性以及x、y交点坐标的特殊性才能灵活解题.8.(2016春•大兴区期末)园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为100平方米.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由纵坐标看出:休息前绿化面积是60平方米,休息后绿化面积是160﹣60=100平方米,故答案为:100.【点评】本题考查了函数图象,观察函数图象的纵坐标得出绿化面积是解题关键.9.(2016•杨浦区三模)一次函数y=kx+b的图象如图所示,则当x的取值范围是x<2时,能使kx+b >0.【分析】根据函数图象与x轴的交点坐标可直接解答.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知x<2时,y>0,即kx+b>0.【点评】此题考查运用观察法解一元一次不等式,运用观察法解一元一次不等式通常是从交点观察两边得解.10.(2016•重庆校级三模)地铁一号线的列车匀速通过某隧道时,列车在隧道内的长度y(米)与列车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①列车的长度为120米;②列车的速度为30米/秒;③列车整体在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是②③(填正确结论的序号).【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【解答】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故②正确;列车的长度是150米,故①错误;整个列车都在隧道内的时间是:35﹣5﹣5=25秒,故③正确;隧道长是:35×30﹣150=1050﹣150=900米,故④错误.故正确的是:②③.故答案是:②③.【点评】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.11.(2016•黄冈模拟)如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有①,②,④(填序号).【分析】根据图象的纵坐标,可判断①,根据图象的横坐标,可判断②,根据图象的横坐标、纵坐标,可判断②③.【解答】解:①由图象的纵坐标可以看出学校离小明家1000米,故①正确;②由图象的横坐标可以看出小明用了20到家,故②正确;③由图象的纵横坐标可以看出,小明前10分钟走的路程较少,故③错误;④由图象的纵横坐标可以看出,小明后10分钟比前10分钟走得快,故④正确;故答案为:①,②,④.【点评】本题考查了函数图象,观察函数图象的纵坐标得是解题关键.12.(2016•建湖县一模)一游泳池长90米,甲、乙二人分别在游泳池相对两边同时朝另一边游泳,图中的实线和虚线分别表示甲、乙与游泳池一边距离随时间的变化而变化的图象,若不计转向时间,则从开始起到6分钟止,他们相遇的次数为10.【分析】分析题意,可知两人第一次相遇时,到游泳池两端的距离和为90米,用时18秒,从第二次开始,两人相遇,所游路程之和为180米,则从第二次开始,两人相遇需用时36秒.【解答】解:∵90÷(3+2)=18(秒),180÷(3+2)=36(秒),60×3﹣18=162(秒),162÷36=4.5≈4(次),4+1=5(次).因此在6分钟内,可以相遇10次.故答案为:10【点评】此题是变相的相遇问题,只要从整体出发,考虑两人单程所用的时间,再结合全局所用的时间,即可解答.13.(2016春•正定县期末)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l、l甲分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:乙①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有①②④(填所有正确的序号)【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,然后根据图象上特殊点的意义进行解答.【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15千米/时;故②正确;④设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×=6km,故③错误;所以正确的结论有三个:①②④,故答案为:①②④.【点评】本题考查了函数的图象,函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.14.(2016春•滦县期末)如图,折线ABC是某市在2012年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象,观察图象回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费 1.4元.【分析】由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,由此可解每多行驶1km要再付的费用.【解答】解:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,所以,每多行驶1km要再付费7÷5=1.4(元).答:每多行驶1km,要再付费1.4元.【点评】本题考查了函数图象问题,解题的关键是理解函数图象的意义.15.(2016春•泾阳县期中)一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地.【分析】根据横纵坐标的意义,分别分析得出即可.【解答】解:由图象直接可得出:一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地.故答案为:2,276,4.【点评】此题主要考查了函数图象,从图象上获取正确的信息是解题关键.三.解答题(共7小题)16.(2016春•通川区期末)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图象如图所示,根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)【分析】把数和形结合在一起,准确理解函数的图象和性质.由图象可知:(1)甲乙出发的先后和到达终点的先后;(2)由路程6公里和运动的时间,可分别求出他们的速度;(3)结合图形可知他们都在行驶的时间段.【解答】解:由图象可知:(1)甲先出发;先出发10分钟;乙先到达终点;先到5分钟.(2)甲的速度为=0.2公里/每分钟,乙的速度为=0.4公里/每分钟.(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.【点评】结合图形理解函数的图象和性质.17.(2016春•高州市期末)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?【分析】(1)根据图象,观察学校与小明家的纵坐标,可得答案;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)读图,对应题意找到其在书店停留的时间段,进而可得其在书店停留的时间;(4)读图,计算可得答案,注意要计算路程.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据图象,12≤x≤14时,直线最陡,故小明在12﹣14分钟最快,速度为=450米/分.(3)根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.(4)读图可得:小明共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.18.(2016春•景泰县期末)如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)如图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.【分析】(1)根据图象中的横纵坐标的意义可得答案;(2)根据图象可看出20分钟到30分钟之间,时间在增加,而路程不增加,故可能在休息;(3)根据图象可以看出45分钟后爷爷李家的距离为零,说明回到了家中,故爷爷每天散步45分钟;(4)根据图象可直接得到答案,爷爷最远时离家900米;(5)利用路程÷时间=速度进行计算即可.【解答】解:(1)反映了距离和时间之间的关系;(2)可能在某处休息;(3)45分钟;(4)900米;(5)20分钟内的平均速度为900÷20=45(米/分),30分钟内的平均速度为900÷30=30(米/分),45分钟内的平均速度为900×2÷45=40(米/分).【点评】此题主要考查了看图象,关键是说先要看懂图象的横纵坐标所表示的意义,然后再进行解答.19.(2016春•黄岛区期末)如图所示,A,B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线OPQ和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙出发的时间相差1小时?(2)乙(填写“甲”或“乙”)更早到达B城?(3)乙出发大约小时就追上甲?(4)描述一下甲的运动情况;(5)请你根据图象上的数据,求出甲骑自行车在全程的平均速度.【分析】(1)根据函数图象可以得到甲和乙出发的时间差;(2)根据函数图象可以得到甲和乙谁先到达B城;(3)根据函数图象可以得到MN和PQ对应的函数解析式,联立方程组即可解答本题;(4)根据图象可以描述出甲的运动情况;(5)根据图象可以求得甲全程的平均速度.【解答】解:(1)由图象可得,甲和乙出发的时间相差1小时,故答案为:1;(2)由图象可知乙先到达B城,故答案为:乙;(3)设MN对应的函数解析式为y=kx+b,,得,故MN对应的函数解析式为y=25x﹣25;设PQ对应的函数解析式为y=mx+n,,得,即PQ对应的函数解析式为y=10x+10,∴,得,,即乙出发小时追上甲,故答案为:;(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B城;(5)由图可知,甲全程的平均速度是:=12.5千米/时,即甲骑自行车在全程的平均速度是12.5千米/时.【点评】本题考查函数的图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(2016春•深圳期末)端午节假期间,小亮一家到某度假村度假.小亮和他妈妈坐公交车先出发,他爸爸自驾车沿着相同的道路后出发.他爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村.如图是他们离家的距离s(km)与小明离家的时问t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是时间或t.因变量是距离或s;(2)小亮家到该度假村的距离是60km;(3)小亮出发1小时后爸爸驾车出发:当爸爸第一次到达度假村后,小亮离度假村的距离是40km;(4)图中点A表示小亮出发2.5小时后,离度假村的距离为10km;(5)小亮从家到度假村期间,他离家的距离s(km)与离家的时间t(h)的关系式为s=20t;(6)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45km.【分析】(1)直接利用常量与变量的定义得出答案;(2)直接利用函数图象结合纵坐标得出答案;(3)利用函数图象求出爸爸晚出发1小时,以及当爸爸第一次到达度假村后,小亮离度假村的距离;(4)根据函数图象的横纵坐标的意义得出A点的意义;(5)直接利用小亮从家到度假村的距离以及所用时间可得出其速度,进而得出s与t的关系式;(6)利用函数图象得出交点的位置进而得出答案.【解答】解:(1)自变量是时间或t,因变量是距离或s;故答案为:时间或t;距离或s;(2)小亮家到该度假村的距离是:60;故答案为:60;(3)小亮出发1小时后爸爸驾车出发:当爸爸第一次到达度假村后,小亮离度假村的距离是40km;故答案为:1;40;(4)图中点A表示:小亮出发2.5小时后,离度假村的距离为10km;故答案为:小亮出发2.5小时后,离度假村的距离为10km;(5)小亮从家到度假村期间,他离家的距离s(km)与离家的时间t(h)的关系式为:s=20t;故答案为:s=20t;。
环节一:复习引入环节二:探索新知问题1.在平面直角坐标系中,描出下列各点的位置:A(4,1),B(-1,4),C(-4,-2),D(3,-2),E(0,1 ),F( -4,0 ) .问题2.写出点G的坐标教师提问:有序数对在平面直角坐标系中是以点的形式呈现的,那么本章我们学习的函数关系在平面直角坐标系中是以怎样的形式呈现的呢?生:函数图像师:什么是函数图像呢?(学生思考片刻,PPT显示潮位图)我们前面所学的潮位图反映的就是一天中潮位与时间之间的函数关系,它是怎么得到的呢?试一试:请同学们尝试在平面直角坐标系中画一画一次函数y=2x+1的图像(大部分学生都能画出函数图像,有些描了多个点,有些描了两个点,和教师课前的预期一致)教师提问没画出来的同学1:这个问题难在哪?生:不知道图像是什么。
本环节通过让学生回忆根据坐标描点及根据点些坐标,将数与形联系起来,而平面直角坐标系正是数形结合的桥梁。
下面一组提问将问题进一步延伸到本章所学的函数中,将函数关系与其图像联系起来,并让同学回忆起函数图像的概念,为本节课描点画函数图像做铺垫。
由于学生小学里已经接触过正比例的图像,学生也在课前利用洋葱数学中的微课环节三:应用新知点来猜想得话不合适,描点越多越好,但是我们无法把所有点都描出来,因此我们要借助信息化手段帮助我们描出足够多的点。
利用几何画板建立参数,从(-8,-15)开始横坐标每隔0.1取一个坐标直到(8,17),并描出。
通过几何画板描点,学生能够合理猜想该函数图像是条直线。
(这里也可以利用EXCEL画散点图,但是效果没有几何画板清晰,震撼。
这里也没有用实验手册上的追踪点的方法画连续的图像,因为现阶段学生对于连续性这件事还是理解有困难的,高中课本上研究函数图像也只用了EXCEL列表画散点图。
)合理猜想:一次函数y=kx+b(k、b为常数,且k≠0)的图像是一条直线(板书)(由于书中没有证明一次函数图像是条直线,所以教师在教学中这里也没有涉及证明,证明作为课后阅读材料提供给学生,并且需要用到以后学到的知识。
苏科版八年级上册数学第六章一次函数含答案一、单选题(共15题,共计45分)1、一次函数y=kx+b与反比例函数y=kx的图象如图所示,则下列说法正确的是( )A.它们的函数值y随着x的增大而增大B.它们的函数值y随着x的增大而减小C.它们的自变量x的取值为全体实数D.k<02、甲以每小时20km的速度行驶时,他所走的路程S(km)与时间t(h)之间可用公式s=20t来表示,则下列说法正确的是()A.数20和s,t都是变量B.s是常量,数20和t是变量C.数20是常量,s和t是变量D.t是常量,数20和s是变量3、已知函数y=在实数范围内有意义,则自变量x的取值范围是()A.x≥2B.x>3C.x≥2且x≠3D.x>24、一次函数y=2x+1的图象不经过第()象限A.一B.二C.三D.四5、早晨,小张去公园晨练,下图是他离家的距离y(千米)与时间t(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小张去时所用的时间多于回家所用的时间B.小张在公园锻炼了20分钟C.小张去时的速度大于回家的速度D.小张去时走上坡路,回家时走下坡路6、若一次函数y=(m﹣3)x+(m+1)(其中m为常数)的图形经过第一、二、四象限,则m的取值范围是()A.﹣1≤m≤3B.m<3C.﹣1<m<3D.m>37、小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个B.2个C.3个D.4个8、函数中,自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.全体实数9、如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是( )A. B. C. D.10、一元一次方程ax-b=0的解是x=3,则函数y=ax-b的图象与x轴的交点坐标是( )A.(-3,0)B.(3,0)C.(a,0)D.(-b,0)11、若直线经过点,直线经过点,且与关于轴对称,则与的交点坐标为()A. B. C. D.12、已知y是x的函数,下表是x与y的几组对应值:x… 3 6 …y… 2 1 …对于y与x的函数关系有以下4个描述①可能是正比例函数关系;②可能是一次函数关系;③可能是反比例函数关系;④可能是二次函数关系.所有正确的描述是()A.①②B.②③C.③④D.①④13、正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是()A. B. C. D.14、小明骑自行车上学,一开始以某一恒定的速度行驶,但行驶至途中自行车发生了故障,只好停下来修车,车修好后,因怕耽误了上课,他比修车前加快了骑车的速度,下面四幅图中最能反映小明这段行程的是()A. B. C.D.15、函数y=中,自变量x的取值范围是()A.x≥2B.x≠2C.x>2D.x≤2二、填空题(共10题,共计30分)16、在关系式=30-2t中,随着t的变化而变化,其中自变量是________,因变量是________,当t=________时,=0.17、函数中自变量x的取值范围是________.18、如果把y= x+1线沿y轴向下平移1个单位,那么得到的直线的表达式为________.19、如图,直线l:y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O 为圆心,OB1长为半径画弧交y一轴于点A2;再过点A 2作y轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,点A4的坐标为________;点An的坐标为________.20、函数自变量的取值范围是________.21、函数y= 的自变量x取值范围是________.22、直角三角形两锐角的度数分别为x,y,其关系式为y=90﹣x,其中变量为________ ,常量为________ .23、已知一次函数,当时,y的取值范围是________.24、一次函数y=﹣2x+3的图象不经过第________象限.25、将直线向右平移2个单位后得到直线则直线的解析式是________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、在给出的网格中画出一次函数的图象,并结合图象求:①方程的解;②不等式的解集;③不等式的解集.28、已知一次函数y=(2m+4)x+(3-n).当m、n是什么数时,y随x的增大而增大.29、某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?30、若两个一次函数:,问x取何值时,>。
苏科版八年级上册数学第六章一次函数含答案一、单选题(共15题,共计45分)1、一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2.2、若直线y=3x+6与直线y=2x+4的交点坐标为(a , b),则解为的方程组是()A. B. C. D.3、一次函数与交于点,则方程组的解是()A. B. C. D.4、如图,一个函数的图像由射线BA,线段BC,射线CD组成,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1,y随x的增大而增大B.当x<1,y随x的增大而减小C.当x>1,y随x的增大而增大D.当x>1,y随x的增大而减小5、如图,直线y=kx+b交坐标轴于两点,则不等式kx+b<0的解集是()A.x>-2B.x>3C.x<-2D.x<36、如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()A.x<2B.x>2C.x<﹣1D.x>﹣17、如图,已知函数y=ax+b和y=kx的图象交于点P ,则根据图象可得,关于x、y的二元一次方程组的解是()A. B. C. D.8、在平面直角坐标系中,直线y=2x﹣6不经过()A.第一象限B.第二象限C.第三象限D.第四象限9、函数自变量x的取值范围是()A.全体实数B.x>0C.x≥0且x≠1D.x>110、一次函数的图象如图所示,当-3< <3时,的取值范围是()A.>4 B.0< <2 C.0< <4 D.2< <411、设半径为r的圆的面积为S,则S=πr2,下列说法错误的是()A.A.变量是S和rB.常量是π和2C.用S表示r为D.常量是π12、同一直角坐标系中,一次函数与正比例函数的图象如图所示,则满足的x取值范围是()A. B. C. D.13、某蓄水池的横断面示意图如图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度和放水时间之间的关系的是()A. B. C. D.14、下列各点一定在函数y=3x-1的图象上的是()A.(1,2)B.(2,1)C.(0,1)D.(1,0)15、一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是( )A.x>0B.x<0C.x>2D.x<2二、填空题(共10题,共计30分)16、若点M(x1, y1)在函数y=kx+b(k≠0)的图象上,当﹣1≤x1≤2时,﹣2≤y1≤1,则这条直线的函数解析式为________.17、某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费.甲厂的总费用y1(干元)、乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示.(l)甲厂的制版费为________ 千元,印刷费为平均每个________ 元,甲厂的费用yl与证书数量x之间的函数关系式为________(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个________ 元;(3)当印制证书数量超过2干个时,求乙厂的总费用y2与证书数量x之间的函数关系式________(4)若该单位需印制证书数量为8干个,该单位应选择________ 厂更节省费用.18、若函数y=2x+(1-m)是正比例函数,则m的值是________。
6.3 一次函数的图像
第2课时
1.一次函数y =2x -3+b 中,y 随着x 的增大而_______,当b =_______时,函数图像经过原点.
2.在直线y =kx +2中,y 随着x 的增大而减小,则直线y =3x -k 经过第_______象限.
3.直线y =-2x +5与坐标轴围成的三角形的面积是_________.
4.把函数y =3x 的图像向_______平移_______个单位得到函数y =63
x . 5.在一次函数y =ax +b 中,a<0,b<0,则它的图像可能是( ).
6.已知一次函数y =(1-a)x +4a -1的图像.
(1)经过原点,求a ;
(2)与直线y =2x 平行,求a ;
(3)与y 轴交于正半轴,且y 随x 的增大而增大,求a 的取值范围.
7.若P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y =-x 图像上的两点,则下列判断正确的是( ).
A .y 1>y 2
B .y 1<y 2
C .当x 1<x 2时,y 1>y 2
D .当x 1<x 2时,y 1<y 2
8.如图,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(a ,b),且2a +b =6,则直线AB 的解析式是( ).
A .y =2x -3
B .y =-2x -6
C .y =-2x +3
D .y =-2x +6
9.在同一平面直角坐标系中,函数y=-kx与y=x+k的图像大致应为( ).
10.已知一次函数y=(2m+4)x+(3-n).
(1)当m,n是什么数时,y随x的增大而增大?
(2)当m,n是什么数时,函数图像与y轴的交点在x轴的下方?
(3)当m,n是什么数时,函数图像经过原点?
(4)当m=-1,n=2时,求此函数的图像与两坐标轴的交点的坐标;
(5)若函数的图像经过第一、二、三象限,求m,n的取值范围.
11.已知一次函数y=kx+b满足下表:
(1)画出一次函数的图像;
(2)求出一次函数的关系式;
(3)求当x为何值,y>0,y=0,y<0?
12.某水果批发市场规定,批发水果不少于100千克,批发价格为每千克2.5元,小王携带现金3000元到该市场采购苹果,并以批发价买进.如果购买的苹果为x千克,小王付款后的剩余现金为y元.
(1)试写出y与x之间的函数关系式,并指出自变量的取值范围;
(2)画出相应函数的图像.
13.请你写出一个图像过点(0,2),且y随x增大而减小的一次函数的解析式_______.14.对于一次函数y=-2x+4,下列结论错误的是( ).
A.函数值随自变量的增大而减小
B.函数的图像不经过第三象限
C.函数的图像向下平移4个单位长度得y=-2x的图像
D.函数的图像与x轴的交点坐标是(0,4)
15.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=ax+c的图像可能是( ).
16.如图(1),A、B、C为三个超市,在A通往C的道路(粗实线部分)上有一点D,D 与B有道路(细实线部分)相通.A与D,D与C,D与B之间的路程分别为25 km,10 km,5 km现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为x km,这辆货车每天行驶的路程为y km
(1)用含x的代数式填空:
当0≤x≤25时,
货车从H到A往返1次的路程为2x km,
货车从H到B往返1次的路程为_______km,
货车从H到C往返2次的路程为_______km,
这辆货车每天行驶的路程y=_______.
当25<x≤35时,
这辆货车每天行驶的路程y=_______;
(2)请在图(2)中画出y与x(0≤x≤35)的函数图像;
(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?
参考答案
1.增大32.一、二、三3.25 4
4.下 2 5.D
6.(1)a=1
4
(2)a=-1 (3)
1
4
<a<1
7.C 8.D 9.B
10.(1)m>-2,n为任意实数.(2)n>3,m≠-2.(3)n=3,m≠-2.(4)(-1
2
,0),(0,
1).(5)m>-2,n<3.
11.(1)略(2)y=-2x+1(3)当x<0.5时,y>0;当x=0.5时,y=0;当x>0.5时,y<0.12.(1)y=3000-2. 5x(100≤x≤1200)(2)略
13.y=-x+2(答案不唯一)
14.D
15.A
16.(1)60-2x 140-4x-4x+200 100(2)画y与x(0≤x≤35)的函数图像如下:
(3)根据(2)图像可得:
当25≤x≤35时,y恒等于100 km,此时y的值最小,得出配货中心H建在CD段,这辆货车每天行驶的路程最短,为100 km.。