《高等数学》第二套复习题评讲(学生版)
- 格式:ppt
- 大小:3.47 MB
- 文档页数:47
x 2 + y 2 - 1 3 1- y 2《高等数学》2 期末复习题一、填空题:1. 函 数 z = + ln(3 - x 2 - y 2 ) 的 定 义 域 是 1≦X^2+Y^2<3 . 2.设 z = (1 + x ) y, 则∂z =∂y(1+ x ) yln(1+ x ) .3.函数 z = ln(1+ x 2 + y 2 ) 在点(1, 2) 的全微分dz = 1dx + 2 dy(1,2)3 34.设 f (x + y , xy ) = x 2 + y 2 , 则 f (x , y ) =.设 f (x + y , y) = x 2 - y 2 , 则 f (x , y ) = .x5. 设 z = e u sin v 而 u = xy v = x + y 则 ∂z =∂ye xy [x sin(x + y ) + cos(x + y )]6. 函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点(2,2 + )的方向导数是1+ 222 y 17. 改换积分次序⎰0dy ⎰y 2f (x , y )dx =; ⎰0 dy ⎰y -1f (x , y )dx = .8. 若 L 是抛物线 y 2 = x 上从点 A (1,-1) 到点 B (1,1) 的一段弧,则⎰xydx =L9. 微分方程(1+ e 2x )dy + ye 2x dx = 0 的通解为.二、选择题: 1.lim ( x , y )→(2,0) tan(xy )y 等于 ()(上下求导)A .2,B. 12C.0D.不存在2. 函 数 z = 的定义域是( D )A. {(x , y ) x ≥ 0, y ≥ 0} C. {(x , y ) y ≥ 0, x 2 ≥ y }B. {(x , y ) x 2 ≥ y } D. {(x , y ) x ≥ 0, y ≥ 0, x 2 ≥ y }3 x - y23.∂f (x , y ) | ∂x( x0 ,y 0 ) = ( B )A. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 , y 0 )∆xB. lim∆x →0f (x 0 + ∆x , y 0 ) - f (x 0 , y 0 )∆xC. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 + ∆x , y 0 )∆xD. lim∆x →0 f (x 0 + ∆x , y 0 ) ∆x5. 设 z = F (x 2 + y 2 ) ,且 F 具有导数,则∂z + ∂z= (D )∂x ∂yA. 2x + 2 y ;B. (2x + 2 y )F (x 2 + y 2 ) ;C. (2x - 2 y )F '(x 2 + y 2 ) ;D. (2x + 2 y )F '(x 2 + y 2 ) .6. 曲线 x = a cos t , y = a sin t , z = amt ,在 t = 处的切向量是 ( D )4A . (1,1, 2)B. (-1,1, 2)C. (1,1, 2m )D. (-1,1, 2m )7. 对于函数 f (x , y ) = x 2 + xy ,原点(0,0)( A )A .是驻点但不是极值点B.不是驻点C.是极大值点D.是极小值点8.设 I= ⎰⎰5Dx 2 + y 2 -1dxdy , 其中 D 是圆环1 ≤ x 2 + y 2 ≤ 4 所确定的闭区域, 则必有( ) A .I 大于零 B.I 小于零C.I 等于零D.I 不等于零,但符号不能确定。
(2008.12.03)高等数学(2)期末复习指导(文本)赵坚:各位老师,各位同学,大家好!现在是高等数学(2)教学活动时间,欢迎大家的参与。
今天活动的主题是:课程教学答疑和期末复习指导。
考试采取半开卷笔试的形式,考试时间为90分钟。
本学期高等数学(2)考试时间为09年1月9日8:30-10:00试题类型及结构:本课程的考试题型分为四种:填空题、单项选择题、计算题和应用题,相应的分数比例大致为15:15:52:18.命题依据:本课程使用的教学大纲是《中央广播电视大学高等专科高等数学课程教学大纲》.使用的教材为分别是《高等数学(下册)——多元函数微积分》和《高等数学(上册)》中第七章无穷级数中7,8,9节(柳重堪教授主编,中央电大出版社出版,2000年1月).考试说明是考试命题的依据.第7章无穷级数(7,8,9节傅里叶级数部分)考核知识点:1.傅里叶级数:傅里叶级数的概念、傅里叶系数公式,周期为函数或定义在上的函数的傅里叶级数,狄利克雷定理.2.正弦级数或余弦级数:定义在上的函数展为正弦级数或余弦级数.考核要求:1.熟练掌握周期为或定义在上的函数的傅里叶级数展开,并会利用狄利克雷定理讨论它的收敛性.2.掌握定义在上的函数展开成正弦级数或余弦级数,并会利用狄利克雷定理讨论它的收敛性.第9章空间解析几何与向量代数考核知识点:1.空间直角坐标:空间直角坐标系概念,两点间距离公式.2.向量代数:向量概念,向量的模,单位向量,向量的坐标,方向余弦,向量的加减法,数乘向量,向量的数量积、向量积,两向量的夹角,平行、垂直的条件.3.空间平面:平面的点法式方程,一般方程,点到平面的距离.4.空间直线:直线的标准方程,参数方程,一般方程.平面与直线的位置关系的讨论.5.空间曲面与曲线:球面、椭球面,旋转抛物面,母线平行于坐标轴的柱面、以坐标轴为轴的圆锥面,空间曲线的参数方程.考核要求:1.了解空间直角坐标系概念,掌握两点间的距离公式.2.了解向量、向量的模、单位向量、方向余弦等概念,掌握它们的坐标表示.掌握向量的加减法、数乘向量及它们的坐标表示.了解向量的数量积和向量积概念,掌握它们的坐标表示,熟练掌握向量平行和垂直的判别方法.3.熟练掌握平面的点法式方程,掌握平面的一般方程,会求点到平面的距离.4.熟练掌握空间直线的标准方程,掌握参数方程和一般方程,会进行这三种方程间的互化.掌握用方向向量和法向量讨论平面之间、直线之间以及平面与直线之间的位置关系(平行、垂直、重合等).5.知道球面、椭球面,旋转抛物面,母线平行于坐标轴的柱面、以坐标轴为轴的圆锥面的方程及图形;知道空间曲线的参数方程.第10章多元函数微分学考核知识点:1.多元函数:多元函数定义,二元函数的几何意义.2.偏导数与全微分:偏导数定义和求法,二阶偏导数,全微分,复合函数的(一阶)偏导数,隐函数的(一阶)偏导数.3.偏导数应用:空间曲线的切线与法平面,曲面的切平面与法线. 4.多元函数极值:二元函数极值的概念,极值点存在的必要条件,拉格朗日乘数法.考核要求:1.知道二元函数的定义和几何意义,会求二元函数的定义域.2.了解偏导数的概念,熟练掌握给定的具体函数的一阶、二阶偏导数的计算方法.掌握复合函数(包括含有函数符号的,如)一阶偏导数的计算方法,会计算隐函数一阶偏导数.掌握全微分的求法.3.会求曲线(参数方程表示)的切线与法平面方程,曲面的切平面与法线的方程.4.了解二元函数极值的概念,知道极值点存在的必要条件,掌握用拉格朗日乘数法求较简单的极值应用问题.第11章重积分考核知识点:1.重积分概念:二重积分的定义,几何意义、性质.2.二重积分的计算:直角坐标系下二重积分的计算方法、极坐标系下二重积分的计算方法.3.二重积分的应用:求立体的体积.考核要求:1.知道二重积分的定义,了解二重积分的几何意义和性质.2.熟练掌握直角坐标系下二重积分的计算方法.会在直角坐标系下交换积分次序.掌握在极坐标系下二重积分的计算方法.3.掌握曲顶柱体的体积的求法,会求由简单曲面围成的空间立体的体积.第12章第二类曲线积分考核知识点:1.曲线积分概念:第二类曲线积分的概念、性质.2.曲线积分计算方法:把曲线积分化为定积分再计算.3.格林公式:用格林公式将曲线积分化为二重积分计算.4.曲线积分与路径无关的条件.考核要求:1.了解第二类曲线积分的概念和性质(线性性质、对积分路径的可加性).2.掌握把曲线积分化为定积分的计算方法;掌握用格林公式将曲线积分化为二重积分的方法;3.了解曲线积分与路径无关的条件.高数(2)(08)秋期末综合练习一、填空题1.两向量b a ,满足b a //的充分必要条件是 .2.球心在点)0,1,1(-,半径为2的球面方程为 .3.设函数2e xy z =,则=∂∂yz . 4.设函数y x z 22=,则=z d .5.若改变累次积分的次序,则⎰⎰=xx y y x f x 2d ),(d 10 . 6.设l 是圆周422=+y x 的正向,则=+-⎰l y x x y d d 21 . 7.设D 是由封闭曲线l 围成的区域,若在D 内恒有等式 ,则有0d ),(d ),(=+⎰l y y x Q x y x P .二、单项选择题1.平面053=-+z y x 的位置关系是( ).A .与OXY 面平行B .与OXZ 面平行C .经过坐标原点D .与X 轴垂直2.下列方程中表示锥面的方程是( ).A .22y x z +=B .222y x z +=C .1222=++z y xD .22y z =3.函数yx z arcsin =的定义域为( ). A .11≤≤-y x B .11<<-yx C .y x <-1 D .1<y x 4. 若函数y x z 2=,则=∂∂∂xy z 2( ). A .yx 2 B . 2x C .x 2 D . 22y x -5. =⎰⎰Dy x d d ( ),其中D 是由x 轴、y 轴及直线x y -=1围成的区域.A .1B .21C .31D .41 6.若)(x f 是以π2为周期的奇函数,则)(x f 的傅氏系数的计算公式是( ).A .),2,1(d sin )(π1,),2,1,0(0π0ΛΛ====⎰n x nx x f b n a n n B .),2,1(0,),2,1,0(d cos )(π1π0ΛΛ====⎰n b n x nx x f a n n C .),2,1(d sin )(π2,),2,1,0(0π0ΛΛ====⎰n x nx x f b n a n n D .),2,1(0,),2,1,0(d cos )(π2π0ΛΛ====⎰n b n x nx x f a n n 三、计算题1.求过点)0,1,1(且平行于直线⎩⎨⎧-=+=-2312z y y x 的直线方程. 2.求过点)1,0,2(且平行于平面52=-y x 的平面方程.3.设),(22y x y x f z +=,求yz ∂∂. 4.设)cos ,e (2y x x f z y =,求y z ∂∂. 5.设z y xz e =,求z d .6.设y z z x e sin +=,求z d .7.计算⎰⎰+Dy x y x d d 22,其中D 是区域:由0,422≥≤+x y x .8. 计算⎰⎰Dy x y d d ,其中D 是由x y x y ==,2围成的区域.9.将函数⎩⎨⎧≤<-≤<=0π,0π0,)(x x x x f 展成周期为π2的傅里叶级数. 10.将函数⎪⎩⎪⎨⎧<<--=≤<=0π,10,0π0,1)(x x x x f 展成周期为π2的傅里叶级数.四、 应用题1.在直线1+=x y 上找一点,使它与点)0,1(A 的距离最短.2.在一个半径为R 的半圆内内接一个矩形,矩形的边长取何值时其面积最大?高数(2)(08)秋期末综合练习参考答案一、填空题1. 0=⨯b a2. 4)1()1(222=+++-z y x3. 2e2xy xy 4. y x x xy d 2d 42+ 5.⎰⎰y y x y x f y d ),(d 10 6.π4 7.y P x Q ∂∂=∂∂ 二、单项选择题1.C 2.B 3. A 4. D 5. B 6.C三、计算题1.解: 因为所求直线的方向向量为:)6,2,1()1,3,0()0,1,2(--=⨯-=n所以直线方程为: 62111z y x =--=-- 2.解: 因为所求平面的法向量为:)0,2,1(-=n 所以平面方程为:022=--y x3.解:设),(v u f z =,其中y x v y x u 22,=+=,得 vz x u z y y v v z y u u z y z ∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂22 4.解:设),(v u f z =,其中y x v x u y cos ,e 2==,因为 vz y x u z x y v v z y u u z y z y ∂∂-∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂sin e 2 5.解 左)d d (21)(d 21)(d z x x z xz xz xz xz +=== 右y z y y y y z z z z z d e d e d e )e (d )e (d +=+==由此得 y xz y x xzx xz y x zz z z z d e 2e 2d e 2d -+--=6.解:等式两端求微分得左z z x x z z x d cos d sin )sin (d +==右y z z z y y y d e d )e (d d )e (d +=+=+=由此得 y z x x z x z z yd 1cos e d 1cos sin d -+--= 7.解:利用极坐标计算 π38d d d d 2022π2π22==+⎰⎰⎰⎰-r r y x y x D θ8.解:将二重积分化为累次积分得 ⎰⎰⎰⎰=xx Dy y x y x y 2d d d d 10 203)d (21d )2(1041022=-==⎰⎰x x x x y xx 9.解:)(x f 的傅氏系数为 2πd π1d )(π1π0π00===⎰⎰x x x x f a ⎰⎰-==π0π0π0d sin π1sin π1d cos π1x nx n nx x n x nx x a n ]1)1[(π1cos π12π2--==n n nx n ⎰⎰+-==π0π0π0d cos π1cos π1d sin π1x nx n nx x n x nx x b n 1)1(1--=n n故 )ππ(]sin )1()12cos()12(2[4π)(112≤<--+---+=-+∞=∑x nx n x n n x f n n π 10.解:因为)(x f 为奇函数,故0=n a ,Λ,2,1,0=n⎰⎰==ππ00d sin π2d sin )(π2x nx x nx x f b n ])1(1[π2cos π20n n nx n --=-=π故 )ππ()12sin(π)12(4)(1≤<---=∑+∞=x x n n x f n . 四、 应用题 1.解: 直线1+=x y 上找一点距点)0,1(A 的距离平方为 22)1(),(y x y x f +-=条件函数为 1+=x y作辅助函数 )1()1(),,(22+-++-=y x y x y x F λλ由 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=∂∂=-=∂∂=+-=∂∂0102022y x F y yF x x F λλλ解得1,0==y x ,可以断定,直线1+=x y 上点)1,0(M 与点)0,1(A 的距离最短.2. 解: 设矩形的长、宽分别为y x ,2,则矩形的面积为 ),(y x f =xy 2条件函数为 222R y x =+作辅助函数 )(2),,(222R y x xy y x F -++=λλ由 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=∂∂=+=∂∂=+=∂∂0022022222R y x F y x yF x y x F λλλ第 11 页 解得R y x 22==,当矩形的长、宽分别为R 2与R 22时面积最大. 马少帅:赵老师好!有什么新指示?赵坚:马老师好,欢迎参加教学活动。
2010秋《高等数学(2)》期末复习应考指南(成专)第一部份 课程考核说明1.考核目的通过本次考试,了解学生对本课程的基本内容、重点和难点的掌握程度,以及运用本课程的基本知识、基本方法和基本理论分析和解决实际问题的能力。
同时还考察学生在平时的学习中是否注意了理解和记忆相结合,理解和运用相结合。
2.考核方式本课程期未考试为开卷笔试,考试时间为90分钟。
3.适用范围、教材本复习指导适用于成人教育专科电子信息技术、建筑工程技术和机械制造与自动化等专业的课程《高等数学(2)》。
本课程考试命题依据的教材采用由柳重堪主编,中央电大出版的《高等数学(下册)》和《高等数学(上册第二分册)》。
4.命题依据本课程的命题依据是《高等数学(2)》课程教学大纲、教材、实施意见。
5.考试要求本次考试主要考学生掌握基本概念、基本计算方法和应用能力。
在能力层次上,从了解、理解、掌握三个角度来要求。
了解要求学生对本课程相关知识有所了解,考试不作要求;理解要求学生对有关抽象概念和运算过程较复杂题目的方法理解;要求学生能对基本概念、基本计算方法技能及运用所学知识解决实际问题的技能的掌握。
6、考题类型及比重考题类型及分数比重大致为:填空题(24%);单项选择题(24%);计算题(32%);积分应用题 (20%)。
第二部份 期末复习要求第7章 无穷级数(7,8,9节傅里叶级数部分)一、重点掌握周期为π2或定义在],[ππ-上的函数的傅里叶级数展开,并会利用狄利克雷定理讨论它的收敛性。
二、一般掌握定义在],0[π上的函数展开成正弦级数或余弦级数,并会利用狄利克雷定理讨论它的收敛性。
第9章:空间解析几何与向量代数一、重点掌握1.平面的点法式方程,平面的一般方程,会求点到平面的距离;2.空间直线的标准方程,掌握参数方程和一般方程,会进行这三种方程间的互化.用方向向量和法向量讨论平面之间、直线之间以及平面与直线之间的位置关系(平行、垂直、重合等);3.知道球面、椭球面,旋转抛物面,母线平行于坐标轴的柱面、以坐标轴为轴的圆锥面的方程及图形;知道空间曲线的参数方程。
第六章 定积分的应用学习指导一、基本内容 (一)微元法根据问题的具体情况选取积分变量x 与变化区间,再小区间[]dx x x +,。
求出部分量的近似值的积分元素()dx x f du =,从而求出所求量()⎰=ba dxx f u 。
(二)平面图形的面积1.由平面曲线()x f y =,直线a x =,b x =和0=y 所围图形的面积:()dxx f A b a⎰=。
2.由平面曲线()x f y 1=,()x f y 2=和直线a x =,b x =所转图形的面积:()()⎰-=b adxx f x f A 21。
3.由极坐标曲线()θγγ=, αθ=、βθ=转的图形的面积:()⎰=βαθθγd A 221。
4.由参数方程()t x x =,()t y y =给出的曲线和直线()()αx a x ==,()()βx b x ==,0=y 所围图形的面积:()()⎰⎰'==βαdtt x t y dx y SA b a。
(三)体积1.由曲线()x f y =和直线a x =,b x =,0=y 所围图形绕x 轴旋转一周所得旋转体体积:()⎰+=ba x dxx f V 2π。
2.由曲线()y x x =和直线c y =,d y =,0=x 所围图形绕y 轴旋转一周所得旋转体积:()⎰=dc y dyy x V 2π。
3.垂直于x 轴的平行截面面积为x 的函数()x A 的立体的体积:()⎰=ba dxx A V 。
(四)平面曲线的弧长1.直角坐标曲线()x f y =b x ≤≤0:()[]⎰'+=b adxx f L 21。
2.参数方程曲线()t x x =,()t y y =,βα≤≤t :()[]()[]⎰'+'=βαdtx y t x L 22。
3.极坐标曲线()θγγ=,βθα≤≤:()()[]⎰'+=βαθθγθd r L 22。
(五)定积分在物理上的应用对实际问题先取积分变量,积分区间,求出所求量的微元,利用微元法求解。
⼀、试卷中线性代数部分所占⽐例变化 1.题量 在题量上2004年1⽉以后试卷的题量由原来的32道题⽬减少为26道题⽬,⽽线性代数的题⽬总量由原来的13道题,变为12道题⽬,仅减少了⼀道简答题。
2.分值 整份试卷的总分仍然为100分,但是两部分在分值上所占的⽐例发⽣了变化,线性代数题⽬合计分数原来是41分,⽽2004年1⽉以后变为 48分。
与概率统计内容在合计分数上的差距减少,原来两部分相差18分,⽽2004年1⽉以后两部分内容相差变为4分。
⼆、试卷中涉及到的线性代数知识点 1.试卷中曾经出现过知识点 综合10次⾃学考试《⾼等数学(⼆)》试卷分析可以得到10次考试中涉及到的线性代数考试的知识点为: n阶⾏列式计算;解求由阶⾏列式确定的⽅程;矩阵的⾏列式;代数余⼦式;伴随矩阵;矩阵运算;逆矩阵;解矩阵⽅程;初等变换与初等矩阵;求矩阵的秩;向量的线性表⽰;线性相关判断;线性⽆关判断;求向量的极⼤⽆关组;求向量空间的基;线性⽅程组解的讨论;求线性⽅程组的解;利⽤初等变换解⽅程组、求逆矩阵、求秩;⾮奇异矩阵;特征向量;特征根;对称矩阵;相似矩阵;合同矩阵;正交向量;正交阵;正交变换;实⼆次型;合同阵;正定矩阵等。
2.试卷中出现较多的章节 根据出现频次统计,试卷中出现较多的知识点主要集中在教材中的以下章节:1.3⾏列式的计算;2.2矩阵的计算;2.3逆矩阵;3.2线性相关与线性⽆关;3.3极⼤⽆关组;3.4秩;3.5线性⽅程组解的讨论;3.6线性⽅程组解的结构;4.4向量的正交化;4.5正交矩阵;5.1特征值与特征向量;5.2相似矩阵;5.3实⼆次型与矩阵的合同;5.6正定⼆次型与正定矩阵。
三、各种题型中涉及的线性代数知识点 根据《⾼等数学(⼆)》试卷中的五种试题类型涉及到的知识点,按照知识点出现的频次的多少,可以得到五种类型试题中以往考试的重点章节和内容。
1.单选题 单选题的试题曾经出现在1.3⾏列式的计算;2.2矩阵的计算;2.3逆矩阵;2.5初等变换与初等矩阵;3.2线性相关与线性⽆关;3.3极⼤⽆关组;3.4秩;3.5线性⽅程组解的讨论;3.6线性⽅程组解的结构;4.1线性空间与基;4.4向量的正交化;4.5正交矩阵;5.2相似矩阵;5.3实⼆次型与矩阵的合同;5.6正定⼆次型与正定矩阵。
北京化工大学2016-2017学年第二学期《高等数学(Ⅱ)》期末考试试卷参考答案一.填空题 1. 02.)(32dy dx + 3.224. 35.2ππ-+e e 6.x e c c 321-+二.解答题 1.,,0xy z y x z z x z x x z yy +--=∂∂⇒=+∂∂+∂∂+zy zx y x y x y y x zz x +--=∂∂⇒=∂∂+∂∂++,0zx y x z y z y z z y xx y +--=∂∂⇒=∂∂+∂∂++01-=∂∂∂∂∂∂∴z yy x x z 2. )1(141114414103413x d x dx x x dy x dx I x ---=-=-=⎰⎰⎰⎰61)1(6101234=-=x 3.,02,111lim,1<<-⇒<∴==++=∞→x t R nnx t n 令)0,2(,2,0-=收敛域为时,皆发散x )111)(1(])1()[1()1)()1(()(,111'--++='++=++=∑∑∞=∞=-x x x x x x x n x s n n n n )0,2(,1)(2-∈+=x x xx s 4. 22111)2,1,0(,2)0(,1)0(,1)0(-=-==='=='=='z y x t z t y t x 故切线方程为此点坐标为5.22)313(,02:,022πππ=-==-+=∴→=⎰⎰D DS dxdy x x I y x 总补线:,42,4)2(20022-=∴==-=⎰π求补I y dy y I6.xy x xy yx yye yx x x y 163)83()128(22223+=+∂∂=++∂∂偏积分即有两边同时对该方程为全微分方程。
x xy yx xu∴+=∂∂∴∴2283y ye yx x yx x y yuy x yx y y x u 1288)(,4)(),(2323223++=++'=∂∂∴++=ψψ.2234)1(12),(),1(12)(y x yx y e C y x u y e C y y y ++-+=-+=ψC y x yx y e y =++-∴2234)1(12通解为7.==-⇒-=-=='∑∑∞=∞=-)()0()(,!)1(!)()(02022x f f x f n x n x ex f n nn n n x ),()12(!)1(012+∞-∞∈+-∑∞=+x n n x n n n , 三.解答题 1.共四个坐标,2,0,3,10360963212122==-==⇒⎪⎪⎩⎪⎪⎨⎧=-=∂∂=-+=∂∂y y x x y y yfx x xf ,,66,0,662>--====+==B AC y f C f B x f A yy xy xx 若有极值,则1,11,1>-<<->⇒y x y x 或为极值点和只有)2,3()0,1(-∴,4)0,1(,012),0,1(-=∴>=f A 极小值为对于32)2,3(,0),2,3(=-∴<-f A 极大值为对于2.⎰⎰⎰⎰⎰⎰ΩΩΩ+++=+-++=V dV z y x dV x z y x I )(]12[222222)(由奇偶性可知⎰⎰⎰Ω=-0)2(dV x ⎰⎰⎰⎰⎰⎰=++=ΩΩππϕϕθπ010420222sin )(;34drr d d dV z y x V 而15323454,5451*2*2πππππ=+=∴==求I3. ∑∑∞=∞=∞→∴=>=111,111sin lim ),0(1sin n a n n a a n a n nu nn a n u 同敛散与即收敛时,1,1,1∑∞=>n a n a 绝对收敛即收敛∑∑∞=∞=11,n n n nu u)2,0(sin )2,0()1,0(1,101ππ∈⊆∈≤<∑∞=x x n u a a n n 在且发散。
高数Ⅱ复习资料一. 关于二元函数在一点的极限、连续性和是否存在偏导数的讨论 例1.求极限)ln(lim 2222)0,0(),(y x y x y x +→,解:)ln(lim2222)0,0(),(y x y x y x +→2222222222(,)(0,0)lim [()ln()]()x y x yx y x y x y →=+++,由0ln lim 2=→z z z ,通过变量代换22y x z +=知:0)ln()(lim22222)0,0(),(=++→y x y x y x ,又41)(22222≤+y x yx ,所以2222222222(,)(0,0)lim [()ln()]0()x y x yx y x y x y →++=+,即0)ln(lim2222)0,0(),(=+→y x y x y x 。
注:多元函数极限可通过变量代换化成一元函数极限,利用一元函数求极限方法求出其极限,一般都非常简单。
例2.求极限xy y x e y x -+∞→+∞→+)lim(44解:因为4lim ()0xyx y xy e-→+∞→+∞=,所以444444lim ()lim ()()xyxyx x y y x y x y exy exy --→+∞→+∞→+∞→+∞++=⋅44411lim ()()0xyx y xy exy-→+∞→+∞=⋅+=。
例3.求极限xyy x y x xy⎪⎪⎭⎫⎝⎛++∞→+∞→22lim , 解:因2122≤+yx xy ,所以 0lim 22=⎪⎪⎭⎫ ⎝⎛++∞→+∞→xyy x y x xy,例4. 求极限22(,)(0,0)lim()ln()x y x y x y →++解:222(,)(0,0)lim ()ln()cos ,sin lim (cos sin )ln 4ln x y r x y x y x r y r r r r r θθθθ→→++==+≤令,而0lim ln 0r r r →=,于是22(,)(0,0)lim ()ln()x y x y x y →++=0例5.⎪⎪⎩⎪⎪⎨⎧=+≠+++=0,00,)sin()(),(222222y x y x yx xy y x y x f ,证明),(y x f 在)0,0(点连续,且存在偏导数。
成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。
⾼等数学II试题C(含答案)⼀、单项选择题(从下列各题四个备选答案中选出⼀个正确答案,并将其号码写在题⼲后⾯的括号内。
共8⼩题,每⼩题2分,共16分)1、下列命题正确的是( B )A.若lim 0n n u →∞=,则级数1n n u ∞=∑收敛 B.若lim 0n n u →∞≠,则级数1n n u ∞=∑发散C.若级数1n n u ∞=∑发散,则lim 0n n u →∞≠ D.级数1n n u ∞=∑发散,则必有lim n n u →∞=∞2、若幂级数0nn n a x ∞=∑收敛半径为R ,则()02nn n a x ∞=-∑的收敛开区间是( D )A.(-R ,R )B.(1-R ,1+R )C.(),-∞+∞D.(2-R ,2+R )3、微分⽅程32220d y dy x dx dx ??++=的阶数是( B ).2 C4、设直线1158:121x y z L --+==-与2L :515112--。
则1L 与2L 的夹⾓为( C ).A . 6π B.4π C.3π D.2π5、设=+≠++=0,00,),(222222y x y x y x xy y x f ,则在)0,0(点关于),(y x f 叙述正确的是( B )A .连续但偏导也存在 B.不连续但偏导存在 C. 连续但偏导不存在 D.不连续偏导也不存在 6、若函数()y x f ,在点()00,y x 处取极⼤值,则 (B )A.()00,0x f x y =,()00,0y f x y =B .若()00,y x 是D 内唯⼀极值点,则必为最⼤值点 C.()()()()200000000,,,0,,0xy xx yy xx f x y f x y f x y f x y ??-?<7、下列级数中条件收敛的是(A )A.n n n 1)1(11∑∞=+- B.211)1(n n n∑∞=- C.1)1(1+-∑∞=n n n n D.)1(1)1(1+-∑∞=n n n n8、⽅程y xdy dx e dx +=的通解是( C ) A.x y cxe = B.x y xe c =+C.()ln 1y cx =--D.()ln 1y x c =-++⼆、填空题(将正确的内容填在各题⼲预备的横线上,内容填错或未填者,该空⽆分。
高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ] (A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得 242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ] (A) –2和2; (B) –3和3; (C)2和–2; (D) 3和–3;解:选C 。
x y axy yPxy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(rrdr r r d A πθ;()()⎰⎰+-22220412rdr r r d B πθ; ()()⎰⎰-22202rdr r d C πθ;()()⎰⎰+-22220412rdr r r d D πθ。
解:选D 。
()⎰⎰+-=22220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ] (A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
单项选择题1、级数为( )B、条件收敛但不绝对收敛2、曲线在t=2处的切向量是()。
A、(2,1, 4)3、在)处均存在是在处连续的()条件。
D、既不充分也不必要4、设a为常数,则级数( )A、绝对收敛5、二元函数的定义域是()。
A、6、方程表示的曲面是()。
D、球面7、有且仅有一个间断点的函数是()。
B、8、下列级数中,收敛级数是()A、9、按牛顿冷却定律:物体在空气中冷却的速度与物体的温度和空气的温度之差成正比。
已知空气温度为300C,而物体在15分钟内从1000C冷却到700C,求物体冷却到400C所需的时间为()分钟。
C、5210、平面4y-7z=0的位置特点是()D、通过x轴11、若满足,则交错级数。
C、可收敛也可发散12、下列无穷级数中发散的是()。
C、13、下列说法正确的是()。
C、两向量之间的夹角范围在14、级数收敛,则参数a满足条件()A、a>e15、下列方程中( )是表示母线平行于y轴的双曲柱面。
D、16、求点(1,2,3)到平面的距离是()。
D、17、以下各方程以为解的是()。
A、18、,且收敛,则( )。
A、绝对收敛19、当k =()时,平面与互相垂直。
A、020、设,u=cos x, v=sin x,则=()。
C、121、二元函数的定义域是( )。
A、22、方程x=2在空间表示( )D、与yoz面平行的平面23、设的三个线性无关的解,则该方程的通解为()。
D、24、设和是微分方程的解,则()也是微分方程的解。
D、25、设,当a=()时。
B、26、当D是由()围成的区域时,= 2。
D、|x y|=1,|x-y|=127、(),其中L为直线y = x上从点(0,0)到(1,1)的那一段。
A、28、已知某微分方程的通解和初始条件分别为和,则常数和分别等于()。
A、a,029、设,则以下结果正确的是()。
C、30、设,其中(x>y>0),则=()。
A、31、已知级数的部分和,则该级数的通项为()C、32、总长度为2的一根铁丝,可以围成矩形的最大面积是()。
成考专升本高等数学(二)重点知识及解析(占130分左右) 第一章、函数、极限和连续(22分左右)第一节、函数(不单独考,了解即可)一、复合函数:要会判断一个复合函数是由哪几个简单函数复合而成的。
2ln sin y x =是由ln y u =,2u v =和sin v x =这三个简单函数复合而成.3arctan x y e =是由arctan y u =,vu e =和3v x =这三个简单函数复合而成.该部分是后面求导的关键!二、基本初等函数:(1)常值函数:y c = (2)幂函数:y x μ= (3)指数函数:xy a =(a 〉0,1)a ≠且 (4)对数函数:log a y x =(a 〉0,1)a ≠且(5)三角函数:sin y x =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x = (6)反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x = 其中: (正割函数)1sec cos x x =, (余割函数)1csc sin x x= 三、初等函数:由基本初等函数经过有限次的四则运算和复合运算,并能用一个解析式表示的函数称为初等函数。
他是高等数学的主要研究对象!第二节、无穷小与无穷大(有时选择题会单独考到,也是后面求极限的基础)一、无穷小1、定义:以0为极限的量称为无穷小量。
注意:(1)一个变量否是无穷小量与他的自变量的变化趋势紧密相关。
(2)只有0能能作为无穷小的唯一常量,千万不能将无穷小与很小的常量混为一谈。
()21lim 10x x →-=,即当1x →时,变量21x -是无穷小;但是当0x →时,21x -就不是无穷小,因为此时他的极限值不为零。
所以表述无穷小时必须指明自变量的变化趋势。
例变量在给定的变化过程中为无穷小的是( ).A 、1sin x→(x 0) B 、1x e →(x 0) C 、()2ln 1x +→(x 0) D 、239x x --()3x →E 、1cos x -→(x 0)F 、21x -→(x 0)G 、()211x -1→(x ) H 、sin xx→(x 0) 答案:选C 、E 、F 、H ,因为上述选项的极限值均为零!二、无穷大1、定义:当o x x →(或x →∞)时,()f x 无限地增大或无限减小,则称()f x 是当o x x →(或x →∞)的无穷大。