初一数学测试题有理数的运算
- 格式:doc
- 大小:98.50 KB
- 文档页数:4
有理数计算题单(含答案)篇一:50道初一数学有理数计算题含答案篇二:有理数及其运算单元测试题(含答案)有理数及其运算单元测试题姓名一、判断题:1.若a、b互为倒数,则?11ab??0() 222.x+5一定比x-5大。
()3.1111?(?)?(?)? () 32234.+(—3)既是正数,又是负数.()5.数轴上原点两旁的数是相反数.()6.任意两个有理数都可以相减.()7.有绝对值最小的数,没有绝对值最大的数.()8.a是有理数,—a一定是负数.()9.任何正数都大于它的倒数.()10.大于0的数一定是正数,a2一定是大于0的数.()二、填空题:1.、2.白天的温度是零上10°C记作午夜的温度比白天低15°,那么午夜的温度记作°C.3.平方得9的有理数是?4.比?1的有理数是 273的倒数小2的数是 25.5与—12的和的绝对值是6.倒数与它本身相等的数是.7.若aa?1,则a 0;若aa??1,则a 0.8.在数轴上,从1.5的点向左移动2个单位得到点A,再从A 点向右平移4个单位得到点B,则点A表示的数为,点B表示的数为.9.大于-5的负整数是,绝对值小于5而大于2的非负整数是10.?3的相反数的倒数是,-(-5)的倒数的绝对值是 4 11.如果x<0,那么-|x|=|-x|=|-3|,那么.12.如果a2+|b-1|=0,则3a-4b=.13.若a?2b,2b?a?.14.(2a?1)?1的最小值是.15.已知a<2,则|a-2|=4,则a的值是 2三、选择题:1.下列说法错误的是()(A )整数的相反数一定是整数(B)所有的整数都有倒数(C)相反数与本身相等的数只有0 (D)绝对值大于1而不大于2 的整数有±22.如图所示,数轴上两点分别表示数m、n,则|m-n|为()(A)m-n (B)n-m (C)±(m-n)(D) m+n3.计算(-3)2-(-2)3-22+(-2)2,其结果是()(A )17 (B)-18(C)-36(D)184.若两个有理数的和为负,那么这两个有理数()(A)都为负(B)一个为零,另一个为负(C)至少有一个为负(D)异号5..若a?b,则()33(A)a?b(B)a?b . (C)a?b?0 (D)a??b. 22334?(?)?(?,其结果是() 4433344(A)?(B)(C)? (D) 43436.计算?7.下列结论正确的是()(A)一个有理数的平方不可能为负数(B)一个有理数的平方必为正数(C)一个数的平方与它的绝对值相等(D)一个数的平方一定大于这个数8.若a为有理数,则下列各式的值一定为正数的是()3+1322(A)a(B)a(C)a+1(D)(a+1)9.计算(-2)2004+(-2)2005所得的结果是()(A)22004 (B)-22004(C)(-2)2004 (D)-210.如果0<x<1,那么下列各式正确的是()(A)1111?x?x2 (B)x2?x? (C)x2??x (D)x??x2 xxxx四、把下列各数填入它相应所属的集合内:?2-1,(-2),0,-[+(-3.4)],-, ?,0.1010010001?,-(-5),32—32,-(-2)3正整数集合{ ?};分数集合{ ?}负数集合{ ?};有理数集合{ ?}五、把下列各数在数轴上表示出来,并用“<”号将各数从小到大排列起来:.4,—?,0,—(—3.5),—?11. 2六、计算:1. 0?(?3)?(?)??(?) 2.3. 281132 3243353?(?6) 4.(?2) 3685.?1?(?)?1 6.?2?[?232319211?(1??)?(?2)2] 451211?4?(?1)2?3?(?)2?1?2?(?2)2334 7.?(?1)2?82七、求值:.1.已知x=-2,y=1,z=-3,求x4-(x2y2-y2)-z3-7的值.2.已知|a|=3,|b|=5,|a-b|=b-a,且ab<0,求a+b 与a-b的值.3.已知a、b互为相反数,c、d互为倒数,x的绝对值是2 .220042003试求代数式x-(a+b+cd)x+(a+b)+(-cd)的值.12114.已知a=?7?2?(?3)?(?6)?(?);b?3?6??2?2; 332222 c=83251211?6?(?)?(?1)?(?)2;d=1?[3?(?)2?(?1)4]??(?)3,814772342试确定ab—cd的符号.5.三个有理数a,b,c,abc?0,a?b?c?0.当x?※aa?bb?cc时,求x-92x+2的值. 19答案一.判断题:1. [ √ ] 2. [ √ ] 3. [ × ] 4. [ × ]5. [ × ] 6. [ √ ] 7. [ √ ]8. [× ] 9. [ × ] 10. [ × ]二、填空题12] 4. [?2] 5. [7,-7] 6. [±1]33417. [>,<=] 8. [-,] 9.[-4、-3、-2、-1,3、4] 10.[,] 351.[整数、分数] 2. [+10°C] 3. [±3,?11.[x,±3] 12. [-4] 13. [a-2a] 14. [-1] 15. [-2]三、选择题:1.[B] 2.[B] 3.[A] 4.[C] 5.[A] 6.[C] 7.[A] 8.[C] 9.[B] 10.[A] 四、把下列各数填入它相应所属的集合内:?22[(-2),-(-5),-(-2)],[-[+(-3.4)],-,?],[-1,-,—332、3?23,],[-1,(-2),0,-[+(-3.4)],-, ?,0.1010010001?,-(-3225),—32,-(-2)3 ]五、把下列各数在数轴上表示出来,并用“<”号将各数从小到大排列起来:.[??111?0??(?)?4] 21451]4. 63六、计算: 1. [-] 2. [?] 3.[?173139714] 6.[?]7.[-] 41009七、求值:. 5.[5. [33]6. [2,-8]7. [当x=2时,原式=1;当x=-2时,原式=5]8. [a=-85,b=4,c=371,d=?,原式=-339] 4865. [a、b、c三数只能是二正一负,所以x=1,原式=-89]篇三:专题练习(含答案)专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列各组中两个式子的值相等的是A.6÷(3×2)与6÷3×2B.(-3+4)3与(-3)3+(-4)3C.-3×(5-8)与-3×5-8D.(-4×3)2与(-4)2×322.下列各式计算正确的是A.-8-2×6=-60C.2÷ B.?23+??2?=0 D.-(-4)2=8 343×=2343.若两个有理数的和与积都是正数,则这两个有理数A.都是负数B.一正一负且正数的绝对值大C.都是正数D.无法确定4.计算:-2×32-(-2×32)的结果是A.0 B.-54C.-72D.-185.-24÷??2?的结果是A.46.计算: B.-4C.2D.-2 211×(-5)÷(-)×5的结果是 55D.35A.1 B.25C.-57.下列说法正确的是A.零除以任何数都得0B.绝对值相等的两个数相等C.几个有理数相乘,积的符号由负因数的个数决定D.两个数互为倒数,则它们的相同次数幂仍互为倒数8.计算:-÷×2÷(-2)3的结果是A.9 100 B.-9 100C.9 200 D.-9 2009.计算:-2?517?+×(-)的结果是 5?8612?B. C.- D.3A.- ?a?ab?c?10.若a,b互为倒数,a,c互为相反数,且d=2,则代数式d-d.??的值2??2为A.33 4 B.41 4 C.331和4 44D.321和4 33二、填空题(每小题3分,共24分)11.在计算器上,依次按键得到的结果是______.12.32×+3×(-)=_______.13.一个负数减去它的相反数后,再除以这个负数的绝对值,所得的商是_______.14.如图所示是一个数值转换机,若输入数是3,则输出数是_______15.欢欢发烧了,欢欢妈妈带她去看医生,结果测量出体温是℃,用了退烧药后,以每15分钟下降℃的速度退烧,则两小时后,欢欢的体温是_______℃.16.计算:(9-10)×(10-11)×(11-12)×?×(108-109)=_______.17.若“!”是一种数学运算符号,并且知道:1!=1;2!=2x1=2;3!=3x2x1=6;?.则2014!?_______. 2013!18.“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+?+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+?+98+99+100 ①,S=100+99+98+?+3+2+1 ②,①+②,有2S=(1+100) ×100,解得S=5050.请类比以上做法,回答:令S=3+5+7+?+51,则S=_______.三、解答题(共46分)19.(10分)计算:(1)24+16÷(-2)2÷(-10);?21??1?(2)12?; ?32??12?2?5?(3)??3??[];3?9?2 2?3??2?(4)2?;23??3?1?(5)162??4?. ?8?20.(6分)光的速度是3×108m/s,太阳光从太阳射到地球上的时间约为500 s,求太阳离地球的距离大约为多少米.(结果用科学记数法表示)21.(6分)做一个圆柱形有盖铁桶,要求底面的半径为 dm,高为 dm,制作这样的铁桶所需的材料面积是多少(精确到 dm2)?22.(6分)某种细菌在培养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过5个小时,这种细菌由1个可分裂成多少个?23.(10分)小红爸爸上星期六买进某公司股票1 000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)通过上表你认为星期三收盘时,每股是多少元?(2)本周内每股最高是多少元?最低是多少元?(3)已知小红爸爸买进股票时付了?的手续费,卖出时还需付成交额?的手续费和1?的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?24.(8分)计算:(1)21×75%-125×+×;25.先观察下列等式,再完成题后问题: (2)34111. 1?22?39?10111111111?? ???? 2?3233?4344?5451(1)请你猜想:= _________. 2010?2011(2)若a、b为有理数,且a??(ab?2)?0, 2求:1111的值. ab(a?1)(b?1)(a?2)(b?2)(a?2009)(b?2009)参考答案一、二、11. 12.0 13.-2 14.65 15. 16.117.2014 18.675三、19.(1).(2)168. (3)-11. (4)75 (5)- 3220.×1011 m21.1206 dm2.22.1024个23.(1)元;(2)(元);26(元);(3)赚了元24.(1)-60. (2)9 10。
七年级有理数四则混合运算题九十道(有答案的)39+[-23]+0+[-16]= 0[-18]+29+[-52]+60= 19[-3]+[-2]+[-1]+0+1+2= -3[-301]+125+301+[-75]= 50[-1]+[-1/2]+3/4+[-1/4]= -1[-7/2]+5/6+[-0.5]+4/5+19/6= 1.25[-26.54]+[-6.14]+18.54+6.14= -81.125+[-17/5]+[-1/8]+[-0.6]= -3[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)5+21*8/2-6-5968/21-8-11*8+61-2/9-7/9-564.6-(-3/4+1.6-4-3/4)1/2+3+5/6-7/12[2/3-4-1/4*(-0.4)]/1/3+222+(-4)+(-2)+4*3-2*8-8*1/2+8/1/8(2/3+1/2)/(-1/12)*(-12)(-28)/(-6+4)+(-1)2/(-2)+0/7-(-8)*(-2)(1/4-5/6+1/3+2/3)/1/218-6/(-3)*(-2)(5+3/8*8/30/(-2)-3(-84)/2*(-3)/(-6)1/2*(-4/15)/2/3-3x+2y-5x-7y有理数的加减混合运算回答者:370116 - 翰林文圣十八级1-22 10:56我来评论>>您觉得最佳答案好不好? 目前有 5 个人评价60% (3)40% (2)相关内容·初中一年级有理数混合计算题(300道以上)带答案·谁有小学六年级至初一有理数的计算的计算题啊?·关于有理数计算题和答案·谁有初一有理数计算题(我要1000道)·编写一个小学数学辅助教学软件,主要是测试小学低年... 更多关于300道简单的有理数运算的问题>>查看同主题问题:有理数的混合运算其他回答共 1 条1.计算题(1)3.28-4.76+1 - ;(2)2.75-2 -3 +1 ;(3)42÷(-1 )-1 ÷(-0.125); (4)(-48) ÷82-(-25) ÷(-6)2;(5)- +( )×(-2.4).2.计算题:(10′×5=50′)(1)-23÷1 ×(-1 )2÷(1 )2;(2)-14-(2-0.5)××[( )2-( )3]; (3)-1 ×[1-3×(- )2]-( )2×(-2)3÷(- )3 (4)(0.12+0.32) ÷[-22+(-3)2-3 ×];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624. [-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-5968/21-8-11*8+61-2/9-7/9-564.6-(-3/4+1.6-4-3/4)1/2+3+5/6-7/12[2/3-4-1/4*(-0.4)]/1/3+222+(-4)+(-2)+4*3-2*8-8*1/2+8/1/8(2/3+1/2)/(-1/12)*(-12)(-28)/(-6+4)+(-1)2/(-2)+0/7-(-8)*(-2)(1/4-5/6+1/3+2/3)/1/218-6/(-3)*(-2)(5+3/8*8/30/(-2)-3(-84)/2*(-3)/(-6)1/2*(-4/15)/2/3-3x+2y-5x-7y75÷〔138÷(100-54)〕85×(95-1440÷24)80400-(4300+870÷15) 240×78÷(154-115)1437×27+27×563 〔75-(12+18)〕÷152160÷〔(83-79)×18〕280+840÷24×5325÷13×(266-250) 85×(95-1440÷24)58870÷(105+20×2) 1437×27+27×56381432÷(13×52+78) [37.85-(7.85+6.4)] ×30156×[(17.7-7.2)÷3] (947-599)+76×6436×(913-276÷23) [192-(54+38)]×67[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕(31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35)0.8×[(10-6.76)÷1.2](136+64)×(65-345÷23)(6.8-6.8×0.55)÷8.50.12×4.8÷0.12×4.8 (58+37)÷(64-9×5)812-700÷(9+31×11)(3.2×1.5+2.5)÷1.685+14×(14+208÷26)120-36×4÷18+35(284+16)×(512-8208÷18)9.72×1.6-18.305÷74/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/1012.78-0÷(13.4+156.6 )37.812-700÷(9+31×11)(136+64)×(65-345÷23)3.2×(1.5+2.5)÷1.685+14×(14+208÷26)(58+37)÷(64-9×5)(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)0.12×4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6120-36×4÷18+35 10.15-10.75×0.4-5.75.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷5232.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.65.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-63.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.65.8×(3.87-0.13)+4.2×3.7433.02-(148.4-90.85)÷2.5(一)计算题:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)(9)(-17/4)+(-10/3)+(+13/3)+(11/3)(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)(11)(+1.3)-(+17/7)(12)(-2)-(+2/3)(13)|(-7.2)-(-6.3)+(1.1)|(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)(15)(-2/199)*(-7/6-3/2+8/3)(16)4a)*(-3b)*(5c)*1/61. 3/7 × 49/9 - 4/32. 8/9 × 15/36 + 1/273. 12× 5/6 – 2/9 ×34. 8× 5/4 + 1/45. 6÷ 3/8 – 3/8 ÷66. 4/7 × 5/9 + 3/7 × 5/97. 5/2 -(3/2 + 4/5 )8. 7/8 + (1/8 + 1/9 )9. 9 × 5/6 + 5/610. 3/4 × 8/9 - 1/30.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.411. 7 × 5/49 + 3/1412. 6 ×(1/2 + 2/3 )13. 8 × 4/5 + 8 × 11/514. 31 × 5/6 – 5/615. 9/7 - (2/7 –10/21 )16. 5/9 × 18 – 14 × 2/717. 4/5 × 25/16 + 2/3 × 3/418. 14 × 8/7 – 5/6 × 12/1519. 17/32 – 3/4 × 9/2420. 3 × 2/9 + 1/321. 5/7 × 3/25 + 3/722. 3/14 ×× 2/3 + 1/623. 1/5 × 2/3 + 5/624. 9/22 + 1/11 ÷ 1/225. 5/3 × 11/5 + 4/326. 45 × 2/3 + 1/3 × 1527. 7/19 + 12/19 × 5/628. 1/4 + 3/4 ÷ 2/329. 8/7 × 21/16 + 1/230. 101 × 1/5 – 1/5 × 2131.50+160÷40 (58+370)÷(64-45)32.120-144÷18+3533.347+45×2-4160÷5234(58+37)÷(64-9×5)35.95÷(64-45)36.178-145÷5×6+42 420+580-64×21÷2837.812-700÷(9+31×11)(136+64)×(65-345÷23)38.85+14×(14+208÷26)39.(284+16)×(512-8208÷18)40.120-36×4÷18+3541.(58+37)÷(64-9×5)42.(6.8-6.8×0.55)÷8.543.0.12× 4.8÷0.12×4.844.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.645.6-1.6÷4= 5.38+7.85-5.37=46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.948.10.15-10.75×0.4-5.749.5.8×(3.87-0.13)+4.2×3.7450.32.52-(6+9.728÷3.2)×2.551.-5+58+13+90+78-(-56)+5052.-7*2-57/(353.(-7)*2/(1/3)+79/(3+6/4)54.123+456+789+98/(-4)55.369/33-(-54-31/15.5)56.39+{3x[42/2x(3x8)]}57.9x8x7/5x(4+6)58.11x22/(4+12/2)59.94+(-60)/101.a^3-2b^3+ab(2a-b)=a^3+2a^2b-2b^3-ab^2=a^2(a+2b)-b^2(2b+a)=(a+2b)(a^2-b^2)=(a+2b)(a+b)(a-b)2.(x^2+y^2)^2-4y(x^2+y^2)+4y^2 =(x^2+y^2-2y)^23.(x^2+2x)^2+3(x^2+2x)+x^2+2x+3 =(x^2+2x)^2+4(x^2+2x)+3=(x^2+2x+3)(x^2+2x+1)=(x^2+2x+3)(x+1)^24.(a+1)(a+2)+(2a+1)(a-2)-12=a^2+3a+2+2a^2-3a-2-12=3a^2-12=3(a+2)(a-2)5.x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2=(xz+yz)^2=z^2(x+y)^26.3(a+2)^2+28(a+2)-20=[3(a+2)-2][(a+2)+10]=(3a+4)(a+12)7.(a+b)^2-(b-c)^2+a^2-c^2=(a+b)^2-c^2+a^2-(b-c)^2=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)=(a+b-c)(a+b+c+a-b+c)=2(a+b-c)(a+c)8.WORD格式编辑整理x(x+1)(x^2+x-1)-2=(x^2+x)(x^2+x-1)-2=(x^2+x)^2-(x^2+x)-2=(x^2+x-2)(x^2+x+1)=(x+2)(x-1)(x^2+x+1)(尽力了!)专业知识分享。
初一有理数计算题一、有理数加法计算题:9 + (-13) = -2212) + 27 = 1528) + (-34) = -6267 + (-92) = -2527.8) + 43.9 = 16.123) + 7 + (-152) = -168521|5| + (-13) = 5085) + |-3| = 238 + (-22) + 62 + (-78) = 0111 + (-8) + (-10) + 2 + (-1) = 9423) + 0 + 4 + (-6) + (-2) = -278) + 47 + 18 + (-27) + (-5) + 21 + (-95) + 29 = -20 8.25) + 8.25 + (-0.25) + (-5.75) + (-7.5) = -136 + (-7) + 9 + 272 + 65 + (-105) + (-28) = 212 23) + |-63| + |-37| + (-77) = -13719 + (-195) + 47 + (-32) + (-16) + 26 = -1511 + (-0.8) + (-1.2) + (-0.6) + (-2.4) = -48) + (-312) + 2 + (-2) + xxxxxxx|5| + (-523) + 45 + (-3) = xxxxxxx改写:在有理数加法中,我们需要将两个数相加。
例如,计算-9 + (-13),结果为-22.同样地,计算(-12) + 27,结果为15.我们还需要注意符号,例如(-28) + (-34)的结果为-62.接下来的计算题可以用类似的方法解决。
二、有理数减法计算题:7 - 9 = -27 - 9 = -169 - (-25) = 1613 - (-31/2) = 5.554 - (-125/2) = 103.512.5 - (-7.5) = -53(-26) - (-12) - 12 - 18 - 1 - (-1/2) - 2 = -77.520) - 5 - (-5) - (-12) = -832| - (-12) - 72 - (-5) = -47103) - (-47) - (-25) - 107 + 17 - (-27) - 37/23 - (-134) - (-123) - 1.75 = 174.652834 - 579 + 416 - 329 = -13260.5 + (-1/4) - (-2.75) + 1/2 = 3.2523) - (-59) - (-3.5) = 32.51/4) - (-58/5) - 18 - (-165/8) - 3 - (-3.2) - 7 + 6.1 - (-4.3) - (-2.1) - 5.1 = 30.75323) - 2(3/4) - (-123) - (-1.75) = -190.25改写:在有理数减法中,我们需要将两个数相减。
初一数学有理数的加减乘除以及乘方试题答案及解析1. =___________.【答案】6.【解析】根据负整数指数幂和零次幂的意义分别进行计算再求和即可得出答案.试题解析:原式=5+1=6.【考点】1.负整数指数幂;2.零次幂.2.计算:= .【答案】.【解析】针对负整数指数幂,零指数幂2个考点分别进行计算,然后根据实数的运算法则求得计算结果:.【考点】1.负整数指数幂;2.零指数幂.3.计算:_____________;【答案】.【解析】根据积的乘方运算简化该式即可计算..【考点】积的乘方运算.4.气象部门测定发现:高度每增加1 km,气温约下降5 ℃.现在地面气温是15 ℃,那么4 km 高空的气温是()A.5 ℃B.0 ℃C.-5 ℃D.-15 ℃【答案】C【解析】.5.若规定“!”是一种数学运算符号,且则的值为()A.B.99!C.9 900D.2!【答案】C【解析】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴=100×99="9" 900,故选C.6.若与互为相反数,则.【答案】16.【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此,由与互为相反数,得.∴.【考点】1.相反数;2.绝对值和偶次幂的非负数性质.7.据人民网5月20日电报道:中国森林生态系统年涵养水源量约4948亿立方米,将4948亿用科学记数法表示为()A.4.948×1013B.4.948×1012C.4.948×1011D.4.948×1010【答案】C.【解析】 4 948亿="4" 948×108=4.948×1011.故选C.【考点】科学记数法—表示较大的数.8.某市在一次扶贫助残活动中,捐款约3180000元,请将3180000元用科学记数法表示为( ) A.0.318×106元B.3.18×106元C.31.8×106元D.318×106元【答案】B【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.,故选B.【考点】本题考查的是科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.9.)室内温度10℃,室外温度是-3℃,那么室内温度比室外温度高A.-13℃B.-7℃C.7℃D.13℃【答案】D【解析】室内温度10℃,室外温度是-3℃,温差是10-(-3)=13,有理数加减法在实际生活中的应用。
初一数学有理数的加减混合运算试题1.计算:【答案】-【解析】先根据有理数的减法法则统一为加,再根据有理数的加法法则计算即可.【考点】本题考查的是有理数的加减法点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.2.计算:【答案】【解析】先算绝对值,再根据有理数的加法法则计算即可.【考点】本题考查的是有理数的加减法点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.3.计算:.【答案】【解析】先根据有理数的减法法则统一为加,再根据有理数的加法法则计算即可.====【考点】本题考查的是有理数的加减法点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.4.计算:;【答案】【解析】先根据有理数的减法法则统一为加,再根据有理数的加法法则计算即可.====.【考点】本题考查的是有理数的加减法点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.5.某气象员为了掌握一周内天气的变化情况,测量了一周内的气温.下表是一周内气温变化情况(用正数表示比前一日上升数,用负数记下降数字)星期一二三四五六日试分析这个星期气温的总体变化情况.【答案】上升了2℃【解析】直接将表中数据相加即可判断.2+(-1)+(-2)+4+(-2.5)+1+0.5=2(℃)答:这星期气温上升了2℃.【考点】本题考查的是有理数加法法则的应用点评:此题就是要比较一下经过一个周,气温是上升还是下降了.表中每一个数都是与前一天的气温比较得来,有上升的,有下降的,将这些数字求和,得到的结果即为这周内气温的总变化.若结果为正,则气温比上周上升了;若结果为负,则气温比上周下降了.6.计算:-5-9+3;【答案】-11【解析】先根据有理数的减法法则统一为加,再根据有理数的加法法则计算即可.-5-9+3=(-5)+(-9)+3=-11.【考点】本题考查的是有理数的加减法点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.7.计算:【答案】【解析】先根据有理数的减法法则统一为加,再根据有理数的加法法则计算即可.【考点】本题考查的是有理数的加减法点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.8.计算:(—36)—(—25)—(+36)+(+72);【答案】25【解析】先根据有理数的减法法则统一为加,再根据有理数的加法法则计算即可. (—36)—(—25)—(+36)+(+72)=(—36)+25+(—36)+72=25.【考点】本题考查的是有理数的加减法点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.9.计算:(—8)—(—3)+(+5)—(+9);【答案】-9【解析】先根据有理数的减法法则统一为加,再根据有理数的加法法则计算即可. (—8)—(—3)+(+5)—(+9)=(—8)+3+5+(—9)=—9.【考点】本题考查的是有理数的加减法点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.10.计算:4.7-(-8.9)-7.5+(-6);【答案】0.1【解析】先根据有理数的减法法则统一为加,再根据有理数的加法法则计算即可.4.7-(-8.9)-7.5+(-6)=4.7+8.9+(-7.5)+(-6)=13.6+(-13.5)=0.1.【考点】本题考查的是有理数的加减法点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.。
初一数学有理数的加减乘除以及乘方试题答案及解析1.“十二五”期间,我国将新建保障性住房36 000 000套,用于解决中低收入人群和新参加工作的大学生住房的需求,将36 000 000用科学记数法表示应是()A.B.C.D.【答案】A.【解析】科学计数法的定义:将一个数字表示成(×10的n次幂的形式),其中1≤<10,n表示整数.对于10的指数大于0的情形,数出“除了第一位以外的数位”的个数,即代表0的个数;本题中第一个数为3,3后面有7位数.故选A.【考点】科学计数法.2.若正整数使得在计算的过程中,各数位均不产生进位现象,则称为“本位数”.例如:2和30是“本位数”,而5和91不是“本位数”.在不超过100的所有本位数中,全体奇数的和为 .【答案】64.【解析】先确定出所有大于0且小于100的“本位数”,再确定奇数后,再求和.试题解析:所有大于0且小于100的“本位数”有:1、2、10、11、12、20、21、22、30、31、32共有11个,但奇数只有:1,11,21,31四个,故和为1+11+21+31=64.【考点】有理数的概念与运算.3.()A.2B.C.D.【答案】B.【解析】.故选B.考点: 1.负整数指数幂;2.积的乘方.4.如果a-3与a+1互为相反数,那么a= .【答案】1【解析】若a-3与a+1互为相反数,则a-3+a+1=0,解得a=1.5.计算(-2.5)×0.37×1.25×(-4)×(-8)=_________.【答案】-37【解析】原式=[(-2.5)×(-4)]×[1.25×(-8)]×0.37=10×(-10)×0.37=-37.6.已知:且,求的值.【答案】-125【解析】解:因为=3,所以=±3.因为=2,所以=±2.又因为,所以=-3,=±2.所以或.7.某股民上周五收盘时买进某公司股票1000股,每股27元.股票交易时间是周一到周五上午9:30-11:30,下午1:00-3:00. 下表为本周内每日股票的涨跌情况:(单价:元)星期一二三四五(1)根据上表填空:星期三收盘时,每股是元;本周内最高价是每股元,最低价是每股元;(2)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期五收盘时才将股票全部卖出,请算算他本周的收益如何.【答案】(1)34.5,35.5,28;(2)889.5元.【解析】(1)先根据题意列出式子解出结果即可;(2)先算出刚买股票后去掉手续费剩余的钱是多少,然后再算出周五卖出股票后所剩的钱,最后再减去当时的钱,剩下的钱就是所收益的.试题解析:(1)根据题意得:每股价(元);最高价(元);最低价(元).(2)∵27×1000×(1+0.15%)=27000×(1+0.15%)=27040.5(元),28×1000-28×1000×0.15%-28×1000×0.1%=28000-28000×0.15%-28000×0.1%=28000-42-28=27930(元),∴他本周的收益为27930-27040.5=889.5(元)【考点】有理数的混合运算.8.已知,,则、、按从小到大的顺序排列为()A.B.C.D.【答案】B.【解析】∵,,∴,,∴.故选B.【考点】有理数大小比较.9.如果三个有理数的积是负数,那么这三个有理数中().A.只有一个负数B.有两个负数C.三个都是负数D.有一个或三个负数【答案】D【解析】几个不相等0的数相乘,积得符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正.解:如果三个有理数的积是负数,那么这三个有理数中有一个或三个负数,故选D.【考点】有理数乘法的符号法则点评:本题属于基础应用题,只需学生熟练掌握有理数乘法的符号法则,即可完成.10.有理数0.0050400的有效数字的个数是().A.3个B.4个C.5个D.6个【答案】C【解析】有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:有理数0.0050400的有效数字有5、0、4、0、0这5个,故选C.【考点】近似数和有效数字点评:本题是基础应用题,只需学生熟练掌握有效数字的定义,即可完成.11.计算:(1)(2)(3)【答案】(1);(2);(3)【解析】(1)先算有理数的乘方,再算加减即可;(2)先算幂的乘方、同底数幂的乘法,再合并同类项即可;(3)先根据完全平方公式、多项式乘多项式法则去括号,再合并同类项即可.(1)原式;(2)原式;(3)原式.【考点】有理数的乘方,整式的化简点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是【】美元.A.1.5×104B.1.5×105C.1.5×1012D.1.5×1013【答案】C【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.15000亿,故选C.【考点】科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.13.(1);(2)解方程:【答案】(1)101;(2)【解析】(1)有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算;(2)解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1(1);(2).【考点】有理数的混合运算,解一元一次方程点评:有理数的混合运算及解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.14.在,,,这四个数中,最大的数比最小的数要大A.13B.10C.8D.5【答案】A【解析】先根据有理数的乘方法则计算出各个数的值,再用最大的数减最小的数即可.∵=-1,=1,=-4,=9∴最大的数比最小的数要大故选A.【考点】有理数的乘方,有理数的减法点评:解题的关键是熟记正数的任何次幂均为正数,负数的奇数次幂为负,负数的偶数次幂为正.15.若x=(-4),则x=【答案】±4【解析】先计算出(-4)=16,再根据有理数的乘方法则即可求得结果.x=(-4)x=16x=±4.【考点】有理数的乘方点评:解题的关键是熟练掌握互为相反数的两个数的平方相同.16.据科学家估计,地球的年龄大约是4600000000年,这个数用科学记数法表示为A.4.6×108B.46×108C.4.6×109D.0.46×1010【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.有效数字的计算方法是:从左边第一个不是0的开始,后面所有的数都是有效数字.所以4600000000=4.6×109【考点】科学计数法点评:任何一个数都可以用科学记数法表示成a×10n(1≤|a|<10,n是整数)的形式,表示时关键要正确确定a的值以及n的值17.计算:(1)-2+6÷(-2)×;(2)(-2)3-(1-)×.【答案】(1)-;(2)-12【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=-2+6×(-)×=-2-=-;(2)原式=-8-×6=-8-4=-12.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算,即可完成.18.下列式子中,正确的是A.5-|-5|=10B.(-1)99= -99C.-102 = (-10)×(-10)D.-(-22)=4【答案】D【解析】解:A中,5-|-5|=0B中,(-1)99= -1C中,-102 = -100,故不选D中,正确故选D【考点】绝对值,平方的符号点评:负数的绝对值是其相反数,正数的绝对值是其本身。
初一数学有理数试题与答案题目一:将一个有理数4/5化成分子为1的有理数。
解析:要将一个有理数化成分子为1的有理数,可以利用等式性质进行变形。
有理数4/5可以写成等式4/5=(4/5)/1。
答案:将有理数4/5化成分子为1的有理数的等式为4/5=(4/5)/1。
题目二:将一个有理数5/3化成分母为1的有理数。
解析:要将一个有理数化成分母为1的有理数,可以利用等式性质进行变形。
有理数5/3可以写成等式5/3=5/(3/1)。
答案:将有理数5/3化成分母为1的有理数的等式为5/3=5/(3/1)。
题目三:计算有理数2/3和5/6的和。
解析:计算有理数的和可以直接将两个有理数的分子相加,再将分母保持不变即可。
有理数2/3和5/6的和为(2+5)/3=7/3。
答案:有理数2/3和5/6的和为7/3。
题目四:计算有理数3/4和1/2的差。
解析:计算有理数的差可以直接将两个有理数的分子相减,再将分母保持不变即可。
有理数3/4和1/2的差为(3-2)/4=1/4。
答案:有理数3/4和1/2的差为1/4。
题目五:计算有理数1/2和2/3的积。
解析:计算有理数的积可以直接将两个有理数的分子相乘,再将分母相乘即可。
有理数1/2和2/3的积为(12)/(23)=2/6。
答案:有理数1/2和2/3的积为2/6。
题目六:计算有理数3/5和2/7的商。
解析:计算有理数的商可以直接将两个有理数的分子相除,再将分母相除即可。
有理数3/5和2/7的商为(3/5)/(2/7)=(37)/(52)=21/10。
答案:有理数3/5和2/7的商为21/10。
题目七:将一个有理数5/9化成小数形式。
解析:将有理数化成小数形式,可以进行除法运算。
有理数5/9可以进行除法运算得到小数形式为0.5555,即0.5。
答案:将有理数5/9化成小数形式为0.5555。
题目八:将一个小数0.375化成有理数。
解析:将小数化成有理数可以利用分数的形式表示。
初一数学有理数的加减乘除以及乘方试题1.计算:= .【答案】-1.【解析】原式=.【考点】平方差公式.2.若规定,则的值为 .【答案】-9【解析】.3.如果,则的值是()A.4B.-2C.4或-2D.-4或2【答案】C【解析】由,得或,所以或.故选C.4.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个【答案】B【解析】①错误,如,符号改变; ③错误,如0×0,积为0;②④正确.5.计算=______.【答案】-4【解析】6.计算:;【答案】【解析】先根据有理数的除法法则统一为乘,再根据有理数的乘法法则计算,最后算减即可得到结果.解:原式.【考点】有理数的混合运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.7.有一种原子的直径约为0.00000053米, 用科学记数法表示为 .【答案】5.3×10-7【解析】较小的数的科学记数法的一般形式为:a×10-n,在本题中a应为5.3,10的指数为-7.0.000 000 53=5.3×10-7.【考点】科学计数法点评:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.计算:.【答案】13【解析】原式【考点】简单有理数的混合运算点评:本题难度不大,考查的是学生对于有理数的混合运算的掌握,先进行乘除的运算,再进行加减的运算9.计算:2+(-3)的结果是()A.-1B.1C.-5D.5【答案】A【解析】2+(-3)去括号得2-3=-1.【考点】实数运算点评:本题难度较低,主要考查学生对实数的运算学习。
10.计算:(4分×2=8分)(1).14-(-12)+(-25)-7 (2).(-+-)×12+(-1)2011【答案】①②-12.5【解析】(1)14-(-12)+(-25)-7=14+12-25=-6(2)(-+-)×12+(-1)2011=【考点】代数式的运算点评:代数式的运算中,通分和化简是其中的重中之重,要学会很好的去区分11.)下列叙述中,出现近似数的是A.七年级(4)班有40名学生B.小李买了5支铅笔C.晶晶向希望工程捐款100元D.小明的体重为46千克【答案】D【解析】A、B、C都是确切数字,只有D是大约的数字,即近似数。
初一数学有理数的加减乘除以及乘方试题1.计算;(1)(2)(-)2007×1.52008×(-1)2008【答案】(1)0 (2)-【解析】有理指数幂运算,注意负指数幂.(1)原式==4+1-5=0(2)原式=(-)2007×()2008×1=(-)2007×()2007×=(-×)2007×=(-1)2007×=-【考点】指数幂运算.2.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,•若坐飞机飞行这么远的距离需 _________ 小时【答案】4.8×102.【解析】先根据时间=路程÷速度,算出时间为(3.84×105)÷(8×102),利用单项式除单项式的法则计算,然后再按照科学记数法的方法的形式表示即可.试题解析:依题意得(3.84×105)÷(8×102),=0.48×103=4.8×102(小时).∴坐飞机飞行这么远的距离需4.8×102小时.考点: 1.整式的除法;2科学记数法—表示较大的数.3.李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):星期一二三四五六日(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?【答案】(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.【解析】分析:(1)七天的收入总和减去支出总和即可;(2)首先计算出平均一天的节余,然后乘30即可;(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.解:(1)由题意可得:(元).(2)由题意得:14÷7×30=60(元).(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).答:(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.4.(1)|﹣4|﹣(﹣2)2+(﹣1)2011﹣1÷2;(2)(﹣2)2+3×(﹣2)﹣1÷()2.【答案】(1)﹣1(2)﹣18【解析】(1)根据运算顺序先算乘方运算,(﹣2)2表示两个﹣2的乘积,(﹣1)2011表示2011个﹣1的乘积,其结果为﹣1,同时根据负数的绝对值等于它的相反数化简原式的第一项,根据互为相反数的两数和为0化简,然后利用同号两数相加的法则即可得到结果;(2)根据运算顺序先算乘方运算,(﹣2)2表示两个﹣2的乘积,()2表示两个的乘积,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,利用两数相乘,同号得正、异号得负,并把绝对值相乘来计算乘法运算,利用减法法则:减去一个数等于加上这个数的相反数把减法运算化为加法运算,利用同号及异号两数相加的法则即可得到结果.解:(1)|﹣4|﹣(﹣2)2+(﹣1)2011﹣1÷2=4﹣4+(﹣1)﹣=﹣1+(﹣)=﹣1;(2)(﹣2)2+3×(﹣2)﹣1÷()2=4+(﹣6)﹣1÷=4+(﹣6)﹣1×16=4+(﹣6)+(﹣16)=4+(﹣22)=﹣18.点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号里边的,然后利用各种运算法则进行计算,有时可以利用运算律来简化运算,注意(﹣2)2与﹣22的区别,前者表示两个﹣2的乘积,后者表示2平方的相反数.5.2003年10月15日,航天英雄杨利伟乘坐“神舟五号”载人飞船,于9时9分50秒准确进入预定轨道,开始巡天飞行.飞船绕地球飞行了十四圈后,返回舱与推进舱于16日5时59分分离,结束巡天飞行.飞船共用了20小时49分10秒,巡天飞行了约6×105千米,则“神舟五号”飞船巡天飞行的平均速度约为________千米/秒.(结果精确到0.1)【答案】8.0【解析】仔细分析题意,再根据平均速度=总里程÷总时间列式计算即可.解:10月15日9时50秒到16日5时59分期间共有20小时50分10秒,共计75 010秒.6×105÷75 010=7.99千米/秒≈8.0千米/秒.答:“神舟五号”飞船巡天飞行的平均速度是8.0千米/秒.【考点】有理数的除法的应用点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.6.计算:(1);(2)【答案】(1);(2)1【解析】(1)先根据积的乘方、幂的乘方法则化简,再算同底数幂的乘法,最后合并同类项;(2)先根据有理数的乘方法则计算,再算加减即可.(1)原式;(2)原式.【考点】整式的混合运算,实数的运算点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.7.用“<”号,将、、、连接起来______【答案】【解析】先根据有理数的乘方法则依次计算出各个数的值,再根据有理数的大小比较法则比较. ∵,,,∴.【考点】有理数的乘方点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.8.今年3月26日20:30至21:30,在参与“地球一小时”活动中,南京全城节约用电约10万度.约可以减少二氧化碳排放量99700千克,这个排放量用科学记数法表示为千克.【答案】9.97´104【解析】99700有效数字为9.97.小数点向左移动4位。
初一数学(七年级上册)有理数的混合运算100题(含答案)1.计算 (1)3122-+(2)()()1199-÷-⨯(3)()21382-⨯+-÷(4)()()201732241⎡⎤⨯⎣÷-⎦-+-2.计算:(1)()()181763-⨯-÷÷-;(2)()()321263323⎡⎤-+-÷⨯-+-⎣⎦.3.计算:(1)()53+-;(2)()()91121--+-.4.计算:()221151324538⎛⎫-+-÷-⨯- ⎪⎝⎭5.计算:(1)()()16222836+----;(2)()()232183-⨯+-÷.6.计算:(1)()24327⨯-+÷;(2)()()22022151188236⎛⎫-+-⨯--÷- ⎪⎝⎭.7.计算(1)()2324315-⨯-⨯-+; (2)1351124936⎛⎫-+÷⎪⎝⎭.8.计算:2023211251||[2(3)24]3238⎛⎫-÷--+--⨯+- ⎪⎝⎭9.计算:(1)()411283⎛⎫-+-÷--- ⎪⎝⎭; (2)158146936⎛⎫⎛⎫--+÷- ⎪ ⎪⎝⎭⎝⎭.10.计算: (1)2202272(7)(1)2⎛⎫-+-÷--- ⎪⎝⎭(2)131(24)643⎛⎫-+-⨯- ⎪⎝⎭11.计算: (1)42421(3)4|4|3⎛⎫-+-⨯--÷- ⎪⎝⎭(2)3511(8)472-⨯-÷-12.计算: (1)711145438228⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)2202211212(1)|3|24-÷-⨯+---13.计算:(1)()()723---+-;(2)()()23121261-+-⨯--÷-.14.计算:(1)()()735--+-(2)()2412123⎡⎤--÷--⎣⎦15.计算:(1)()()3777⨯-+⨯-;(2)()()()320221162418÷--⨯-+-.16.计算:(1)()()1031222-⨯-+-÷ (2)75336964⎛⎫-+⨯ ⎪⎝⎭17.计算:2311322214381⎛⎫⎛⎫-÷--⨯--+ ⎪ ⎪⎝⎭⎝⎭;18.计算;(1)()()34287⨯-+-÷;(2)()()232524-⨯--÷.19.计算:(1)()()385--+-; (2)()32124323⎛⎫ ⎪⎝-⎭÷-⨯-20.计算:(1)()151318+-+(2)()10.254-⨯-(3)1243-÷⨯(4)()232323-⨯+⨯- 21.计算:(1)()()426--+-(2)()54257⎛⎫ ⎪⎝÷-⨯⎭-22.计算:(1)()()()()56134-+--+--; (2)()32823-+÷--23.计算:(1)(5)(3)(10)-+-++; (2)1(8)(4)42-÷-+⨯.24.计算: (1)()3262-⨯+-÷; (2)()2411237⎡⎤--⨯--⎣⎦.25.计算:(1)()()1218715----+; (2)()110.53 2.75742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭ (3)()5413654⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭(4)()457369612⎛⎫-⨯-+- ⎪⎝⎭26.计算: (1)21212133434⎛⎫⎛⎫⎛⎫-++---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)1111320.253436⎛⎫⎛⎫⎛⎫--+--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭27.计算:(1)()()1352119+----(2)2111393⎛⎫-+-÷⨯- ⎪⎝⎭28.计算:(1)7.38.2 5.1 1.2-+-+;(2)()2322363--⨯÷.29.计算: (1)()31512436⎛⎫--⨯- ⎪⎝⎭ (2)()215410.225⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦(3)211112632⎛⎫⎛⎫+÷-⨯- ⎪ ⎪⎝⎭⎝⎭ (4)()()241110.5233---⨯⨯-- 1.30.计算: (1)233112()|2|()22-⨯---+-;(2)()()22|342|3----+--.31.计算:(1)()()123124--+-+-(2)()()318652-÷+⨯-32.计算:(1)7.48.2 6.610.8-+- (2)2331(2)0.25(4)45⎛⎫-⨯--÷-⨯- ⎪⎝⎭33.计算:()23116235-÷--+⨯-34.计算:2(3)0.8020227-⨯-÷+.35.计算:(1)310910-+-- (2)()157246812⎛⎫-+-⨯- ⎪⎝⎭(3)121123537337⎛⎫--+- ⎪⎝⎭ (4)()2211314|1|0.544-+÷⨯--⨯-36.计算:202220114()(5)3π--⨯+-+-.37.计算:20203111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭38.计算: (1)1116235⎛⎫-⨯÷- ⎪⎝⎭; (2)()()3202211102232⎡⎤-+-÷⨯---⎣⎦.39.计算:(1)3712--+; (2)31524468⎛⎫⨯--+ ⎪⎝⎭.40.计算:(1)2353(2)-+⨯- (2)317239⎛⎫-÷- ⎪⎝⎭.41.计算:(1)()()6354-++---(2)2342293⎛⎫-÷⨯- ⎪⎝⎭42.计算 (1)211000.25353⎛⎫⎛⎫---+÷-- ⎪ ⎪⎝⎭⎝⎭ (2)23315(2)2(6)(2)263⎛⎫--÷+-⨯-+- ⎪⎝⎭43.计算:()()2121424-⨯+-÷.44.计算: (1)323.7 1.355⎛⎫---- ⎪⎝⎭(2)3751412824⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭(3)()221131410.544-+÷⨯--⨯-45.计算: (1)1244030235⎛⎫-⨯++ ⎪⎝⎭(2)3215333⎛⎫⨯-÷ ⎪⎝⎭46.计算:(1)()()4791+---+;(2)()31229--+47.计算(1)()1274-⨯-;(2)()2114333⎡⎤----÷⨯⎣⎦. 48.计算:(1)()70.7513.50.25-+-+--(2)()7412361712935⎡⎤⎛⎫--⨯-+÷⎪⎢⎥⎝⎭⎣⎦ 49.计算: (1)()99123241111234⎛⎫⎛⎫-÷---⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()()202311110.523⎛⎫-⨯+-÷- ⎪⎝⎭.50.计算:(1)()()16122418---+-+;(2)20221[-+23()()()264]5⨯---÷- .51.计算:.(1)()()()12.5253⎛⎫-⨯-÷-÷- ⎪⎝⎭(2)()()232424-⨯--÷52.计算:(1)()()1562---+-;(2)422563⎛⎫---+÷- ⎪⎝⎭53.计算:(1)()()()()2202323331-÷---⨯-; (2)37711148128⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭.54.计算: (1)124()(63)9721-+⨯- (2)2212(3)|4|(3)4(1)2-+-⨯---+÷-55.计算:()()()()0.5 3.2 2.8 6.5---++-+.(1)()()13262118⎡⎤---+-⎣⎦;(2)()()3211234⎡⎤--⨯--⎣⎦.57.计算:()()421510233⎛⎫-⨯+-÷-⨯- ⎪⎝⎭.58.计算:(1)523--+.(2)()22833⎛⎫+-⨯- ⎪⎝⎭.59.计算:(1)4.7(0.8) 5.3(8.2)+-++-;(2)3220243(4)(2)(2)(1)-⨯-+-÷---.60.计算 (1)32133110.25248⎛⎫-+-÷-- ⎪⎝⎭; (2)()23123133⎡⎤⎛⎫⎛⎫-⨯-+-÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.61.计算:(1)()()32353128⨯---÷(2)()22022211222721343⎛⎫⎛⎫-⨯--÷⨯--- ⎪ ⎪⎝⎭⎝⎭62.计算:423181(3)(1)2--÷-+⨯-.63.计算:()()242362-÷+---+.(1)367⎛⎫-÷- ⎪⎝⎭ (2)()3233524-+---÷65.计算: (1)()32021213212⎛⎫-⨯-+-÷- ⎪⎝⎭; (2)3741418936⎛⎫-+÷ ⎪⎝⎭.66.计算.(1)(7)(5)(4)(10)--++---(2)2256(2)(2)⎡⎤-+-÷-⎣-⎦67.计算:(1)()8210-⨯--(2)93(-÷-12-232123⨯-)68.计算:(1)252397-+-+ (2)13351.7563122848⎛⎫⎛⎫+-++-+ ⎪ ⎪⎝⎭⎝⎭ (3)157362612⎛⎫-⨯+-⎪⎝⎭ (4)11121(7)367⎛⎫-⨯-÷-⨯ ⎪⎝⎭ (5)(15)18(3)|5|--÷-+- (6)3076231-⨯ (7)44453(9)3173777⎛⎫⎛⎫⎛⎫-⨯-++⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (8)15[1(420)]-----69.用简便算法计算: (1)()2449525⨯- (2)()11175250.1255088⎛⎫⨯+-⨯--⨯ ⎪⎝⎭70.计算:(1)()2111212346⎛⎫--++⨯ ⎪⎝⎭ (2)()()24112376⎡⎤--⨯--÷-⎣⎦71.计算:(1)()()3233625-÷⨯--+⎡⎤⎣⎦; (2)()()23512422463⎛⎫-+⨯-+-⨯ ⎪⎝⎭.72.计算:(1)()()12141115----++; (2)202221312(1)22⎛⎫-+--⨯÷- ⎪⎝⎭.73.计算:(1)(12)5(14)(39)--+--- (2)41(2)89-+-÷+-74.计算题.(1)()()58---(2)()222524-⨯--÷75.计算:(1)()211813-+--;(2)()2202321110.5223---⨯⨯-.76.计算:()32132162⎛⎫-+⨯---÷- ⎪⎝⎭77.计算:(1)()()221110.5222⎡⎤---⨯⨯--⎣⎦; (2)18191919-⨯. 78.计算: (1)()5353432 3.68112221222⎛⎫⎛⎫+-+-+-+ ⎪ ⎪⎝⎭⎝⎭ (2)()()221110.5225⎡⎤---÷⨯--⎣⎦79.计算下列各式(1)()2618732-+--(2)()()115324⎛⎫-÷-⨯÷- ⎪⎝⎭(3)13124346⎛⎫⨯+- ⎪⎝⎭(4)()()3116248⎛⎫÷---⨯- ⎪⎝⎭80.计算:(1)()2394173⨯--÷+(2)()215146363612⎡⎤⎛⎫---++-⨯ ⎪⎢⎥⎝⎭⎣⎦81.计算:(1)()()2341232-+⨯---(2)()23211.252153⎛⎫-⨯-÷- ⎪⎝⎭82.计算:(1)()()852+---; (2)()220227193+-⨯-÷-.83.计算: (1)211322555775⎛⎫⎛⎫++--- ⎪ ⎪⎝⎭⎝⎭ (2)()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭84.计算:(1)()()()312178-++-++ (2)()32125 2.755433⎛⎫++-+- ⎪⎝⎭85.计算: (1)()157362612⎛⎫+-⨯- ⎪⎝⎭(2)55577675612612⎛⎫⎛⎫-⨯+⨯- ⎪ ⎪⎝⎭⎝⎭86.计算(1)()()35531242⎛⎫⨯-+-⨯-- ⎪⎝⎭ (2)()5714816128⎛⎫-⨯-+- ⎪⎝⎭ (3)()()()202322113130.13210⎡⎤⎛⎫-+-⨯-⨯÷- ⎪⎢⎥⎝⎭⎣⎦87.计算小列各题 (1)2141420.8263553⎛⎫+-+--- ⎪⎝⎭ (2)31113428⎛⎫⎛⎫⎛⎫-⨯-÷-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (3)27(3)24(3)284-⨯+⨯--÷ (4)412(63)7921⎛⎫-+⨯- ⎪⎝⎭88.计算:(1)()32112436⎛⎫-⨯-+ ⎪⎝⎭ (2)()2202211322-+-÷--89.计算:(1)()()()()75410--++--- (2)111135532114⎛⎫⨯-⨯÷ ⎪⎝⎭ (3)()()()242104332⎡⎤-+--+⨯⎣⎦.90.计算: (1)1554()(1)( 3.2)566+-+++-. (2)4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦.91.计算:(1)()()569-+---;(2)()1100.163-⨯⨯⨯ (3)12230235⎛⎫⨯-+ ⎪⎝⎭; (4)457136824⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭92.计算:(1)3(9)(6)+---(2)()()2123522⎛⎫⨯--÷-⨯- ⎪⎝⎭93.计算:(1)2(5)4(28)4-⨯-+--÷(2)()202222531594⎛⎫-⨯-+--÷- ⎪⎝⎭94.计算:(1)()()3212 3.50.1--+-÷; (2)()21413010654⎛⎫-⨯+-⨯- ⎪⎝⎭95.计算:(1)()()117125+----(2)()322524-⨯--÷ -22×5-(-2)3÷496.计算:(1)()347-+ (2)113 1.251248⎛⎫++-⨯ ⎪⎝⎭97.计算:()31320.752468⎛⎫ ⎪⎝+⎭---⨯-.98.计算:(1)()()20141813-+----; (2)121123357373⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭; (3)13124243⎛⎫-⨯-+- ⎪⎝⎭; (4)24491025-⨯(简便运算); (5)()221833235⎡⎤⎛⎫-+-⨯--÷ ⎪⎢⎥⎝⎭⎣⎦; (6)55533843838111111⎛⎫⎛⎫⨯--⨯-- ⎪ ⎪⎝⎭⎝⎭. 99.计算:(1)()562825-÷--⨯(2)()2412237⎡⎤--⨯--⎣⎦100.计算: (1)13114212424⎛⎫⎛⎫------ ⎪ ⎪⎝⎭⎝⎭ (2)41111136218⎛⎫⎛⎫---+÷- ⎪ ⎪⎝⎭⎝⎭参考答案:1.(1)1-(2)181(3)7-(4)162.(1)17-(2)133.(1)2(2)1-4.515.(1)2(2)126.(1)5-(2)67.(1)9(2)4-8.1-9.(1)3-(2)710.(1)3-(2)6-11.(1)71-(2)19-16 12.(1)7-(2)13-13.(1)8-;(2)9-14.(1)5 (2)215.(1)70-(2)1-2 16.(1)2-(2)2517.1 18.(1)16-(2)2219.(1)6 (2)020.(1)20(2)41(3)9-(4)6-21.(1)0 (2)622.(1)20-(2)16-23.(1)2 (2)424.(1)3 (2)025.(1)8(2)4(3)1-2 (4)726.(1)18-(2)15627.(1)10 (2)128.(1)3-;(2)7.29.(1)5(2)1320-25(3)2-(4)13-6 30.(1)8-(2)2 31.(1)7 (2)43-32.(1)5-(2)83-33.7 34.14.2 35.(1)12-(2)3(3)10-(4)19-4 36.6 37.7-38.(1)5 (2)70-39.(1)2 (2)7-40.(1)20-(2)32 41.(1)4-(2)8-42.(1)8-15(2)113 43.6-44.(1)4-(2)19(3)19-4 45.(1)29-(2)1-5 46.(1)7(2)899 47.(1)40 (2)4-9 48.(1)5.5(2)115 49.(1)23-(2)050.(1)10-(2)351.(1)3 (2)1852.(1)2-(2)3-53.(1)4-(2)13 54.(1)1-(2)33-55.1-56.(1)16-(2)34 57.2 58.(1)4-(2)2 59.(1)1 (2)960.(1)45-8 (2)261.(1)13 (2)5-62.23-.2 63.11 64.(1)14 (2)5-65.(1)10-(2)2966.(1)6-(2)29-67.(1)6-(2)10-68.(1)18 (2)1-2 (3)27-(4)1-18(5)4-(6)494-(7)75-(8)30-69.(1)4-2495 (2)2570.(1)5-(2)11-6 71.(1)47-;(2)10.72.(1)0 (2)4-3 73.(1)8(2)374 74.(1)3 (2)21-75.(1)10 (2)7-676.1 77.(1)1-2 (2)379-78.(1)17-325(2)4 79.(1)31-(2)40-(3)22(4)5-2 80.(1)16-;(2)17-.81.(1)25 (2)5-82.(1)5 (2)6-83.(1)5 (2)1-84.(1)0(2)13 85.(1)27-(2)94-86.(1)8.5-(2)14-(3)7587.(1)1155(2)1-(3)10-(4)35-88.(1)3-(2)1589.(1)6-;(2)2-;25 (3)9992.90.(1)2(2)1691.(1)2-(2)2-(3)7(4)3392.(1)0;(2)36-.93.(1)21 (2)3 94.(1)9 (2)695.(1)3-;(2)-1896.(1)57-(2)1497.-3 98.(1)29-(2)10-(3)2(4)3499-5 (5)28-5 (6)099.(1)8 (2)15-100.(1)3 (2)11。