电路设计基础知识
- 格式:pdf
- 大小:201.28 KB
- 文档页数:25
电路设计有哪些知识点电路设计是电子工程中的一项重要任务,它涉及到多个领域的知识和技能。
在进行电路设计时,需要掌握以下几个主要知识点:1. 电路基础知识:了解电流、电压、电阻等基本概念和基本定律,如欧姆定律、基尔霍夫定律等。
理解电路的串联、并联以及电源的连接方式对电路特性的影响。
2. 元器件特性:了解各种常用电子元器件的特性,包括电阻、电容、电感、二极管等,并了解它们在电路中的作用和使用方法。
3. 信号处理与放大:学习如何设计和配置放大电路,以增加信号的幅度和改善信号质量。
了解放大器的类型、参数和工作原理,掌握不同应用场景下的放大电路设计技巧。
4. 滤波器设计:了解滤波器的原理和分类,学习如何设计和构建低通滤波器、高通滤波器、带通滤波器和带阻滤波器等,以满足电路对频率响应的要求。
5. 功率电路设计:了解功率电子器件的工作原理和性能参数,熟悉开关电源、逆变器、整流器等功率电路的设计原理和技术。
6. 数字电路设计:熟悉数字电路的基本逻辑门、触发器、计数器等,掌握数字电路的组合逻辑和时序逻辑设计方法。
7. 射频电路设计:了解射频电路的特点和常见设计技术,包括射频放大器、频率合成器、混频器等。
8. PCB设计:熟悉PCB(Printed Circuit Board)的设计原则和常用工具,掌握布局、布线和阻抗匹配等关键技术。
9. 仿真与测试:掌握使用电路仿真软件进行电路性能评估和分析的方法,学习使用示波器、信号发生器等仪器设备进行电路测试和验证。
10. 电磁兼容性:了解电磁干扰和电磁兼容性的基本概念,学习如何设计防护措施以保证电路的正常工作。
电路设计涉及的知识点众多,以上仅为其中的一部分。
随着科技的不断发展和电子产品的日益智能化,电路设计也在不断演变和创新。
因此,作为电路设计工程师,需要不断学习和更新自己的知识,以适应不同领域和应用场景的需求。
电路设计的成功不仅仅依靠知识点的掌握,还需要实践经验和创新思维的结合,才能完成高效且具有良好性能的电路设计。
电路单元知识点总结一、电路基础知识1. 电流、电压、电阻的概念及关系2. 串联电路和并联电路的特点及区别3. 电路的基本元件:电源、导线、电阻、电容、电感4. 安全用电知识:绝缘、漏电保护、过载保护等二、电阻电路1. 电阻的基本性质及分类2. 串联电阻、并联电阻的计算方法3. 电阻的等效电路4. 电阻的功率计算三、电容电路1. 电容的基本性质及分类2. 电容的充放电规律3. 电容的串联和并联4. 电容的能量计算四、电感电路1. 电感的基本性质及分类2. 电感的串联和并联3. 电感的能量存储4. 交流电路中的电感五、交流电路1. 交流电的基本概念2. 交流电的参数:频率、周期、有效值3. 交流电的基本电路:电容电路、电感电路、RLC电路4. 交流电的复数分析六、二极管和晶体管1. 二极管的基本特性2. 二极管的工作原理3. 晶体管的基本特性4. 晶体管的工作原理七、运算放大器1. 运算放大器的基本原理2. 运算放大器的输入输出特性3. 运算放大器的基本电路:放大电路、求和电路、积分电路4. 运算放大器的应用八、数字电路1. 逻辑门电路的基本概念2. 逻辑门电路的基本元件与符号3. 逻辑门电路的基本特性4. 组合逻辑电路和时序逻辑电路的基本原理以上是电路单元的基本知识点总结,下面我将详细展开一些典型的知识点进行解释和说明。
首先我们来谈一谈电路基础知识。
在电路中,电流、电压、电阻是最基础且最重要的概念。
电流是电荷的流动,一般用符号“I”表示,单位是安培(A);电压是电场的作用力,一般用符号“U”表示,单位是伏特(V);电阻是阻碍电流流动的物理量,一般用符号“R”表示,单位是欧姆(Ω)。
它们之间有一个很重要的关系:欧姆定律。
根据欧姆定律,电压等于电流乘以电阻,即U=IR。
这是电路中最基本的公式之一,也是很多问题的起点。
电路单元中,最常见的电路分类是串联电路和并联电路。
串联电路是指电流只有一条路径,通过各个电阻、电容、电感等元件,而并联电路是指电流有多条路径,并行通过各个元件。
电路设计基础知识(一)电路设计基础知识(一)电路设计基础知识(1)——电阻导电体对电流的阻碍作用称着电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。
一、电阻的型号命名方法:国产电阻器的型号由四部分组成(不适用敏感电阻)第一部分:主称,用字母表示,表示产品的名字。
如R表示电阻,W表示电位器。
第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。
第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。
1-普通、2-普通、3-超高频、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。
第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等例如:R T 1 1 型普通碳膜电阻a1}二、电阻器的分类1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。
2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。
3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。
4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。
三、主要特性参数1、标称阻值:电阻器上面所标示的阻值。
2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。
允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。
电子电路设计的根底知识一、电子电路的设计根本步骤:1、明确设计任务要求:充分了解设计任务的具体要求如性能指标、内容及要求,明确设计任务。
2、方案选择:根据掌握的知识与资料,针对设计提出的任务、要求与条件,设计合理、可靠、经济、可行的设计框架,对其优缺点进展分析,做到心中有数。
3、根据设计框架进展电路单元设计、参数计算与器件选择:具体设计时可以模仿成熟的电路进展改良与创新,注意信号之间的关系与限制;接着根据电路工作原理与分析方法,进展参数的估计与计算;器件选择时,元器件的工作、电压、频率与功耗等参数应满足电路指标要求,元器件的极限参数必须留有足够的裕量,一般应大于额定值的1.5倍,电阻与电容的参数应选择计算值附近的标称值。
4、电路原理图的绘制:电路原理图是组装、焊接、调试与检修的依据,绘制电路图时布局必须合理、排列均匀、清晰、便于看图、有利于读图;信号的流向一般从输入端或信号源画起,由左至右或由上至下按信号的流向依次画出务单元电路,反应通路的信号流向那么与此相反;图形符号与标准,并加适当的标注;连线应为直线,并且穿插与折弯应最少,互相连通的穿插处用圆点表示,地线用接地符号表示。
二、电子电路的组装电路组装通常采用通用印刷电路板焊接与实验箱上插接两种方式,不管哪种方式,都要注意:1.集成电路:认清方向,找准第一脚,不要倒插,所有IC的插入方向一般应保持一致,管脚不能弯曲折断;2.元器件的装插:去除元件管脚上的氧化层,根据电路图确定器件的位置,并按信号的流向依次将元器件顺序连接;3.导线的选用与连接:导线直径应与过孔〔或插孔〕相当,过大过细均不好;为检查电路方便,要根据不同用途,选择不同颜色的导线,一般习惯是正电源用红线,负电源用蓝线,地线用黑线,信号线用其它颜色的线;连接用的导线要求紧贴板上,焊接或接触良好,连接线不允许跨越IC或其他器件,尽量做到横平竖直,便于查线与更换器件,但高频电路局部的连线应尽量短;电路之间要有公共地。
电路基础第三章知识点总结第三章节的内容主要涉及电路的分析和维持,包括各种电路的分析方法、戴维南定理、诺尔顿定理、极限定理、最大功率传输定理以及电路维持的相关知识。
通过本章的学习,我们可以更好地理解电路的工作原理和分析方法,为我们今后的学习和工作打下扎实的基础。
本篇总结将主要围绕本章的知识点展开,总结出电路的分析方法和维持知识点,让读者对电路有更全面的了解。
一、电路分析方法1.节点分析法节点分析法是一种电路分析方法,通过寻找电路中的节点,应用基尔霍夫电流定律(KCL)进行节点电压的分析。
通过节点电压的计算,可以找到各个支路中的电流,从而进一步分析电路的特性。
节点分析法的手续步骤为:(1)选取一个节点作为参考点,为了简化计算,一般选为电压源的负极或接地点;(2)对不确定电压的节点进行标记;(3)应用基尔霍夫电流定律,列出各节点处的电流之和为零;(4)利用基尔霍夫电流定律和欧姆定律,列出各节点处的电压。
2.支路分析法支路分析法是一种电路分析方法,通过寻找电路中的支路,应用基尔霍夫电压定律(KVL)进行支路电流和电压的分析。
通过支路电流和电压的计算,可以找到各个支路中的电流和电压,从而进一步分析电路的特性。
支路分析法的手续步骤为:(1)选择一个支路作为参考方向,可以沿着电流的方向或者反方向;(2)按照已选的方向,利用基尔霍夫电压定律,列出各支路的电流和电压;(3)应用欧姆定律,列出支路中的电流和电压。
3.戴维南定理戴维南定理是电路理论中的一项重要理论,它指出了任意线性电路可以用一个恒电压源和一个串联电流源的组合来替代。
通过戴维南定理,可以将一个复杂的电路简化为一个等效的电压源和串联电流源的组合,从而方便进一步的分析和计算。
4.诺尔顿定理诺尔顿定理是电路理论中的另一项重要理论,它指出了任意线性电路可以用一个恒电流源和一个并联电阻的组合来替代。
通过诺尔顿定理,可以将一个复杂的电路简化为一个等效的电流源和并联电阻的组合,从而方便进一步的分析和计算。
电路设计基础知识点电路设计是电气工程中的关键环节,它涉及到电路的组成、布局和元件的选择,对于电子产品的性能和可靠性都有着重要影响。
下面我们将介绍一些电路设计的基础知识点。
一、电路的基本概念在开始学习电路设计之前,我们先来了解一些电路的基本概念。
1. 电路电路是由电子元件、导线和其他连接元件组成的电子装置。
它可以传输、控制和处理电信号或电能。
2. 电流电流是电荷通过导线或电子元件流动的速度,用符号“I”表示,单位是安培(A)。
3. 电压电压是电荷在电路中移动时所受的力,用符号“V”表示,单位是伏特(V)。
4. 电阻电阻是电流在电路中流动时所遇到的阻碍,用符号“R”表示,单位是欧姆(Ω)。
二、电路元件在电路设计中,我们需要选择适当的电子元件来实现电路的功能。
下面介绍几种常见的电子元件。
1. 电源电源是提供电流和电压的装置,它可以为整个电路系统提供所需的能量。
常见的电源有电池和电源适配器。
2. 电阻器电阻器是控制电路中电流的大小和电压的分配的装置。
它的主要作用是通过消耗电能来降低电压或限制电流。
3. 电容器电容器是一种能够储存电荷的元件,它可以在电路中储存和释放电能。
电容器的容量大小可以影响电路的响应速度和稳定性。
4. 电感器电感器是一种能够储存磁能的元件,它常用于电压和电流的转换以及滤波器的设计。
5. 二极管二极管是一种电子元件,具有只允许电流单向通过的特性。
它可以在电路中实现整流、开关和保护等功能。
6. 晶体管晶体管是一种半导体器件,具有放大和开关功能,常用于电源放大和信号放大的电路设计中。
三、基本电路的设计在掌握了电路的基本概念和常见元件之后,我们可以开始进行基本电路的设计了。
1. 串联电路串联电路是将电子元件按照一定的顺序连接起来的电路。
在串联电路中,电流按照固定的路径依次通过每个元件。
2. 并联电路并联电路是将电子元件同时连接在同一节点上的电路。
在并联电路中,电流通过各个元件的路径相同,而电压则相等。
设计电路要掌握哪些知识点在进行电路设计时,我们需要掌握一些基本的知识点,这些知识点涉及电路的基础理论、元件的选择和电路的分析。
本文将介绍设计电路所必需的一些关键知识点。
一、电路基础理论1. 电流和电压:了解电流和电压的基本概念和特性,掌握欧姆定律和基尔霍夫定律等基本电路分析方法。
2. 电阻与电功率:了解电阻的概念和分类,掌握电阻的串并联关系,了解电功率的计算方法。
3. 电容与电感:了解电容和电感的特性和应用,掌握电容充放电过程和电感的自感和互感现象。
二、集成电路与模拟电路设计1. 模拟电路基础:了解模拟电路的基本概念和特点,掌握常见的模拟电路组成元件和其特性,如放大电路、滤波电路等。
2. 运放的原理与应用:理解运放的基本工作原理、特性和参数,熟悉运放在各种电路中的应用,如比较器、放大器等。
3. 可变电阻和电位器:了解可变电阻和电位器的特性和应用,掌握其在电路中的调节和控制功能。
三、数字电路设计1. 逻辑门电路:了解逻辑门电路的基本概念和特性,熟悉与、或、非门等常见逻辑门的真值表和逻辑运算规则。
2. 组合逻辑电路:了解组合逻辑电路的设计方法和实现原理,掌握编码器、解码器、多路选择器等组合逻辑电路的应用。
3. 时序逻辑电路:了解时序逻辑电路的设计原理和时序分析方法,掌握触发器、计数器、存储器等时序逻辑电路的应用。
四、信号与系统1. 信号特性:了解信号的基本特性,包括周期性、奇偶性、功率谱等,掌握常用信号的表达和分析方法。
2. 系统模型与响应:了解线性时不变系统(LTI)的基本概念,掌握系统的传递函数、冲激响应等表示方法和分析技巧。
3. 模拟滤波器:了解滤波器的分类和设计方法,熟悉常见的模拟滤波器,如低通滤波器、高通滤波器等。
五、EDA工具与仿真1. 电路设计软件:熟悉常见的电路设计软件,如Altium Designer、Cadence、Proteus等,掌握其基本操作和电路设计流程。
2. 电路仿真:了解电路仿真的基本原理和方法,学会使用仿真工具进行电路性能评估和优化。
电路设计基础知识电感线圈电感线圈是电子电路中常用的元件之一,多用于储能、滤波、变压、耦合等方面。
本文将介绍电感线圈的基本概念、工作原理、设计要点和应用。
一、电感线圈的基本概念电感线圈,简称线圈,是由绕在闭合磁路上的导线所组成。
当导线中有电流通过时,会产生磁场,进而储存电能,形成电感。
线圈的基本单位是亨利(H),它的国际单位是量纲安培(A)/伏特(V)。
线圈的电感与其自感系数和其平均绕组截面面积有关。
线圈的自感电压与其自感系数和电流变化速率有关。
线圈的自感系数可以通过下式计算:L=N^2×μ×A/l其中,L是线圈的自感,N是线圈的匝数,μ是磁导率,A是线圈的平均绕组截面面积,l是线圈的长度。
二、电感线圈的工作原理电感线圈的工作原理基于电磁感应。
当导体中有变化的电流通过时,会产生磁场,从而导致磁场中的磁通量发生变化。
根据法拉第电磁感应定律,磁通量变化会引起电动势产生,从而在电感线圈两端产生感应电压。
电感线圈的自感特性使其能够储存电能。
当电流变化时,线圈中的磁场也会发生变化,从而储存电能。
当电流突然断开时,线圈中的磁场会尝试维持电流的流动,导致感应电压的产生。
三、电感线圈的设计要点1.线圈的匝数:匝数决定了自感系数的大小。
为了满足特定设计需求,我们可以通过增加或减少线圈的匝数来调整电感的大小。
2.线圈的截面积:截面积决定了线圈的自感。
通过增大线圈的截面积,可以增加其自感,从而提高线圈的电感。
3.线圈的长度:线圈的长度也会对其电感产生影响,但影响较小。
一般情况下,我们通过调整线圈匝数和截面积来满足设计要求,而长度往往是固定的。
4.线圈的材料和结构:线圈的材料和结构也会对其电感特性产生影响。
在实际应用中,我们需要考虑线圈的材料耐高温性、磁性和导电性等特性。
四、电感线圈的应用1.储能元件:电感线圈能够储存电能,因此常被用作储能元件。
在直流电路中,线圈的两端带有电荷,当突然断开电路时,线圈释放存储的电能。
什么是电路电路基础知识1. 电路的定义电路是由电子元件和导线等组成的路径,它能够使电流在其中流动。
通常,电路可以分为开路和闭路两种状态。
开路表示电流无法通过电路流动,闭路表示电流可以顺利通过电路。
2. 电路的组成电路由以下几个要素组成:2.1 电源电源是电路的能量来源,通常用电池或者电网供电。
它提供了电路所需的电压和电流。
2.2 电子元件电子元件是电路中的构建基石,它们包括电阻、电容、电感、二极管、晶体管等。
这些元件能够对电流和电压进行控制、调节和转换。
2.3 导线导线是电流在电路中的传输通道,可以是金属线材或者印刷线路板。
导线的材料和截面积会对电流的传输能力产生影响。
2.4 连接方式连接方式指的是电路中元件和导线之间的连接方式。
常见的连接方式有串联和并联。
串联连接是将元件或导线依次相连,电流只有一个路径可以流动;并联连接是将元件或导线同时连接在一起,电流可以有多个路径可以流动。
3. 电路基础知识在了解电路的组成之后,我们需要掌握一些电路基础知识:3.1 电流电流是电荷在电路中传输的量度,单位是安培(A)。
电流的方向是从正电荷流向负电荷。
在闭路中,电流大小是恒定的,由电源和电路中的电子元件共同决定。
3.2 电压电压是电路中的电势差,也叫电位差,单位是伏特(V)。
电压表示了电荷的能量转换。
电压的正负表示了电场方向。
正负电压的产生是由电源产生的,电压差会促使电流在电路中流动。
3.3 电阻电阻是电流在电路中的阻碍程度,单位是欧姆(Ω)。
它用来限制电流的大小,阻碍电流的流动。
电阻通常由电阻元件提供,并且会把电能转化为其他形式的能量。
3.4 电功率电功率是电路中的能量转换速率,单位是瓦特(W)。
它表示电流在单位时间内消耗的能量。
电功率的大小与电流和电压的乘积有关。
4. 结论电路是电子技术中的基础概念,掌握电路的基础知识对于理解和应用电子技术非常重要。
通过了解电路的定义、组成和基础知识,我们可以更好地应用电子元件和电路,设计出符合需求的电路布局和电路功能。
电路设计基础知识(1---5)【浩惠电子 /bbs 版权所有】电路设计基础知识(1)——电阻导电体对电流的阻碍作用称着电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。
一、电阻的型号命名方法:国产电阻器的型号由四部分组成(不适用敏感电阻)第一部分:主称 ,用字母表示,表示产品的名字。
如R表示电阻,W表示电位器。
第二部分:材料 ,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。
第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。
1-普通、2-普通、3-超高频 、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。
第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等例如:R T 1 1 型普通碳膜电阻a1}二、电阻器的分类1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。
2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。
3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。
4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。
三、主要特性参数1、标称阻值:电阻器上面所标示的阻值。
2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。
允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。
线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、1004、额定电压:由阻值和额定功率换算出的电压。
5、最高工作电压:允许的最大连续工作电压。
在低气压工作时,最高工作电压较低。
6、温度系数:温度每变化1℃所引起的电阻值的相对变化。
温度系数越小,电阻的稳定性越好。
阻值随温度升高而增大的为正温度系数,反之为负温度系数。
7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。
8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。
9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。
四、电阻器阻值标示方法1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。
2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。
符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。
表示允许误差的文字符号文字符号 D F G J K M允许偏差 ±0.5% ±1% ±2% ±5% ±10% ±20%3、数码法:在电阻器上用三位数码表示标称值的标志方法。
数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。
偏差通常采用文字符号表示。
4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。
国外电阻大部分采用色标法。
黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9、金-±5%、银-±10%、无色-±20%当电阻为四环时,最后一环必为金色或银色,前两位为有效数字, 第三位为乘方数,第四位为偏差。
当电阻为五环时,最後一环与前面四环距离较大。
前三位为有效数字, 第四位为乘方数, 第五位为偏差。
五、常用电阻器1、电位器电位器是一种机电元件,他靠电刷在电阻体上的滑动,取得与电刷位移成一定关系的输出电压。
1.1 合成碳膜电位器电阻体是用经过研磨的碳黑,石墨,石英等材料涂敷于基体表面而成,该工艺简单, 是目前应用最广泛的电位器。
特点是分辩力高耐磨性好,寿命较长。
缺点是电流噪声,非线性大, 耐潮性以及阻值稳定性差。
1.2 有机实心电位器有机实心电位器是一种新型电位器,它是用加热塑压的方法,将有机电阻粉压在绝缘体的凹槽内。
有机实心电位器与碳膜电位器相比具有耐热性好、功率 大、可靠性高、耐磨性好的优点。
但温度系数大、动噪声大、耐潮性能差、制造工艺复杂、阻值精度较差。
在小型化、高可靠、高耐磨性的电子设备以及交、直流电 路中用作调节电压、电流。
1.3 金属玻璃铀电位器用丝网印刷法按照一定图形,将金属玻璃铀电阻浆料涂覆在陶瓷基体上,经高温烧结而成。
特点是:阻值范围宽,耐热性好,过载能力强,耐潮,耐磨等都很好,是很有前途的电位器品种,缺点是接触电阻和电流噪声大。
1.4 绕线电位器绕线电位器是将康铜丝或镍铬合金丝作为电阻体,并把它绕在绝缘骨架上制成。
绕线电位器特点是接触电阻小,精度高,温度系数小,其缺点是分辨力差,阻值偏低,高频特性差。
主要用作分压器、变阻器、仪器中调零和工作点等。
1.5 金属膜电位器金属膜电位器的电阻体可由合金膜、金属氧化膜、金属箔等分别组成。
特点是分辩力高、耐高温、温度系数小、动噪声小、平滑性好。
1.6 导电塑料电位器用特殊工艺将DAP(邻苯二甲酸二稀丙脂)电阻浆料覆在绝缘机体上,加热聚合成电阻膜,或将DAP电阻粉热塑压在绝缘基体的凹槽内形成的实心体作 为电阻体。
特点是:平滑性好、分辩力优异耐磨性好、寿命长、动噪声小、可靠性极高、耐化学腐蚀。
用于宇宙装置、导弹、飞机雷达天线的伺服系统等。
1.7 带开关的电位器有旋转式开关电位器、推拉式开关电位器、推推开关式电位器1.8 预调式电位器预调式电位器在电路中,一旦调试好,用蜡封住调节位置,在一般情况下不再调节。
1.9 直滑式电位器采用直滑方式改变电阻值。
1.10 双连电位器有异轴双连电位器和同轴双连电位器1.11 无触点电位器无触点电位器消除了机械接触,寿命长、可靠性高,分光电式电位器、磁敏式电位器等。
2、实芯碳质电阻器用碳质颗粒壮导电物质、填料和粘合剂混合制成一个实体的电阻器。
特点:价格低廉,但其阻值误差、噪声电压都大,稳定性差,目前较少用。
3、绕线电阻器用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。
绕线电阻具有较低的温度系数,阻值精度高, 稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。
4、薄膜电阻器用蒸发的方法将一定电阻率材料蒸镀于绝缘材料表面制成。
主要如下:4.1 碳膜电阻器将结晶碳沉积在陶瓷棒骨架上制成。
碳膜电阻器成本低、性能稳定、阻值范围宽、温度系数和电压系数低,是目前应用最广泛的电阻器。
4.2 金属膜电阻器。
用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。
金属膜电阻比碳膜电阻的精度高,稳定性好,噪声, 温度系数小。
在仪器仪表及通讯设备中大量采用。
4.3 金属氧化膜电阻器在绝缘棒上沉积一层金属氧化物。
由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。
4.4 合成膜电阻将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。
由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压, 高阻, 小型电阻器。
5、金属玻璃铀电阻器将金属粉和玻璃铀粉混合,采用丝网印刷法印在基板上。
耐潮湿, 高温, 温度系数小,主要应用于厚膜电路。
6、贴片电阻SMT片状电阻是金属玻璃铀电阻的一种形式,他的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,电极采用银钯合金浆料。
体积小,精度高,稳定性好,由于其为片状元件,所以高频性能好。
7、敏感电阻敏感电阻是指器件特性对温度,电压,湿度,光照,气体, 磁场,压力等作用敏感的电阻器。
敏感电阻的符号是在普通电阻的符号中加一斜线,并在旁标注敏感电阻的类型,如:t. v等。
7.1、压敏电阻主要有碳化硅和氧化锌压敏电阻,氧化锌具有更多的优良特性。
7.2、湿敏电阻由感湿层,电极, 绝缘体组成,湿敏电阻主要包括氯化锂湿敏电阻,碳湿敏电阻,氧化物湿敏电阻。
氯化锂湿敏电阻随湿度上升而电阻减小,缺点为测试范围小,特性重复性不好,受温度影响大。
碳湿敏电阻缺点为低温灵敏度低,阻值受温度影响大,由老化特性, 较少使用。
氧化物湿敏电阻性能较优越,可长期使用,温度影响小,阻值与湿度变化呈线性关系。
有氧化锡,镍铁酸盐,等材料。
7.3、光敏电阻光敏电阻是电导率随着光量力的变化而变化的电子元件,当某种物质受到光照时,载流子的浓度增加从而增加了电导率,这就是光电导效应。
7.4、气敏电阻利用某些半导体吸收某种气体后发生氧化还原反应制成,主要成分是金属氧化物,主要品种有:金属氧化物气敏电阻、复合氧化物气敏电阻、陶瓷气敏电阻等。
7.5、力敏电阻力敏电阻是一种阻值随压力变化而变化的电阻,国外称为压电电阻器。
所谓压力电阻效应即半导体材料的电阻率随机械应力的变化而变化的效应。
可制成各种力矩计,半导体话筒,压力传感器等。
主要品种有硅力敏电阻器,硒碲合金力敏电阻器,相对而言, 合金电阻器具有更高灵敏度。
电路设计基础知识(2)——电容电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合, 旁路,滤波,调谐回路, 能量转换,控制电路等方面。
用C表示电容,电容单位有法拉(F)、微法拉(uF)、皮法拉(pF),1F=10^6uF=10^12pF一、电容器的型号命名方法国产电容器的型号一般由四部分组成(不适用于压敏、可变、真空电容器)。
依次分别代表名称、材料、分类和序号。
第一部分:名称,用字母表示,电容器用C。
第二部分:材料,用字母表示。
第三部分:分类,一般用数字表示,个别用字母表示。
第四部分:序号,用数字表示。
用字母表示产品的材料:A-钽电解、B-聚苯乙烯等非极性薄膜、C-高频陶瓷、D-铝电解、E-其它材料电解、G-合金电解、H-复合介质、I- 玻璃釉、J-金属化纸、L-涤纶等极性有机薄膜、N-铌电解、O-玻璃膜、Q-漆膜、T-低频陶瓷、V-云母纸、Y-云母、Z-纸介二、电容器的分类按照结构分三大类:固定电容器、可变电容器和微调电容器。