粉尘的粒径分布测定
- 格式:docx
- 大小:393.47 KB
- 文档页数:7
粉尘粒径分布测定实验—安德逊移液管法通风与除尘中所研究的粉尘都是由许多大小不同粉尘粒子所组成的聚合体。
粉尘的粒径分布也叫分散度—即粉尘中各种粒径或粒径范围的尘粒所占的百分数。
以数量统计形式表征的粉尘粒径布称为粉尘粒径数量分布;以质量统计形式表征的粉尘粒径分布称为粉尘粒径质量分布。
粉尘的粒径分布不同,其对人体到的危害以及除尘的机理也都不同,掌握粉尘的粒径分布是进行除尘器设计和研究的基本条件。
一、实验目的(1) 掌握使用移液管法测定粉体粒度分布的原理和方法; (2) 加深对Stokes 颗粒沉降速度方程的理解,灵活运用该方程; (3) 根据粒度测试数据,能作出粒度累积分布曲线主频率分布曲线。
二、实验原理本实验使用液体重力沉降法(安德逊移液管法)来测定分析粉尘的粒径分布。
液体重力沉降法是根据不同大小的粒子在重力作用下,在液体中的沉降速度各不相同这一原理而得到的。
粒子在液体(或气体)介质中作等速自然沉降时所具有的速度,称为沉降速度,其大小可以用斯托克斯公式表示。
μρρ18)(2pL p t gd v -=(1)式中:v t — 粒子的沉降速度,cm/s ; μ — 液体的动力黏度,g/(cm ·s)ρp — 粒子的真密度, g/cm 3; ρL — 液体的密度,g/cm 3 g — 重力加速度,981cm/s 2; d p —粒子的直径, cm 。
由式(1)可得gtHgv d L p L p tp )(18)(18ρρμρρμ-=-=(2)这样,粒径便可以根据其沉降速度求得。
由于沉降速度是沉降高度与沉降时间的比值,以此替换沉降速度。
使上式变为2)(18pL p gd Ht ρρμ-=(3) 式中:H — 粒子的沉降高度,cm ; t — 粒子的沉降时间,s 粒子在液体中沉降情况可用图1表示。
粉样放入玻璃瓶内某种液体介质中,经搅拌后,使粉样均匀地扩散在整个液体中,如图1中状态甲。
经过t 1后,因重力作用,悬浮体由状态甲变为状态乙。
第五章颗粒物燃物控制技术基础为了深入理解各种除尘器的除尘机理和性能,正确设计、选择和应用各种除尘器,必须了解粉尘的物理性质和除尘器性能的表示方法及粉尘性质和除尘器性能之间的关系。
第一节粉尘的粒径及粒径分布一、颗粒的粒径粉尘颗粒大小不同,其物理、化学特性不同,对人和环境的危害亦不同,而且对除尘装置的性能影响很大,所以颗粒的大小是粉尘的基本特性之一。
若颗粒是大小均匀的球体,则可用其直径作为颗粒大小的代表性尺寸。
但实际上,不仅颗粒的大小不同,而且形状也各种各样。
所以需要按一定的方法确定一个表示颗粒大小的代表性尺寸,作为颗粒的直径,简称为粒径。
下面介绍几种常用的粒径定义方法。
(1)用显微镜法....观测颗粒时,采用如下几种粒径表示方法:①定向直径d F,也称菲雷待(Feret)直径;为各颗粒在投影图中同一方向上的最大投影长度,如图5—1(a)所示。
②定向面积等分直径d M,也称马丁(Martin)直径,为各颗粒在投影图上按同一方向将颗粒投影面积二等分的线段长度,如图5—1(b)所示。
③投影面积直径d A,也称黑乌德(Heywood)直径,为与颗粒投影面积相等的圆的直径,如图5一l(c)所示。
若颗粒投影面积为A,则d A=(4A/π)1/2。
根据黑乌德测定分析表明,同一颗粒的d F>d A>d M。
(2)用筛分法...测定时可得到筛分直径,为颗粒能够通过的最小方孔的宽度。
(3)用光散射法....测定时可得到等体积直径d V,为与颗粒体积相等的球的直径。
若颗粒体积为V,则d V=(6V /π)1/3。
(4)用沉降法...测定时,一殷采用如下两种定义:①斯托克斯(stokes)直径d S,为在同一流体中与颗粒的密度相同和沉降速度相等的球的直径。
②空气动力学当量直径da,为在空气中与颗粒的沉降速度相等的单位密度(ρp=1g/cm3)的球的直径。
斯托克斯直径和空气动力学当量直径是除尘技术中应用最多的两种直径,原因在于它们与颗粒在流体中的动力学行为密切相关。
实验一 粉尘粒径分布测定一、实验目的1.掌握用光散射的方法测定粉尘粒径分布的方法。
2.了解激光粒度分布仪的构造原理及操作方法。
二、实验原理根据光学衍射和散射原理,光电探测器把检测到的信号转换成相应的电信号,在这些电信号中包含有颗粒粒径大小及分布的信息,电信号经放大后,输入到计算机,计算机根据测得的衍射和散射光能值,求出粒度分布的相关数据,并将全部测量结果打印输出。
图1 激光粒度测试仪原理示意图三、实验设备图2仪器外形结构A :机械搅拌器B :样品分散池C :排水管接口D :自动进水管接口E :电源开关F :交流电源输入端G :连接串口线四、操作步骤1.开仪器和电脑电源,开电源前先检查电源是否正常,接地是否良好;2.为保证测试的准确性,仪器应预热20~30分钟,再进行测试;H、正视图后视图3.打开水开关;运行桌面快捷文件“JL-1166”;4.点击“仪器调零”,会出现两种情况:A.显示“请按空白测试”,表示仪器可以通讯,状态正常;B.显示“仪器调零请等待”,字没有变化,表示仪器与电脑之间没有通讯,此时:请点击:“系统设置-系统设置”,弹出“选择串口号数”对话框,如果当前串口号数为“1”,修改为“2”,仪器就可以通讯了(也可以运行TZ.exe文件修改)。
5.点击“半自动清洗”,继续点击“循环泵”和“进水”。
待样品分散池内无气泡排出,点击“空白测试”,出现“状态正常请加粉测试”。
注:如果使用环境没有水源,只需在提示自动进水时由人工进水(推荐方法)。
也可以选用半自动清洗,由人工进水,往样品分散池内注入三分之二清水,点击“半自动清洗-循环泵”。
待样品分散池内无气泡排出,点击“空白测试”,出现“状态正常请加粉测试”。
6.此时,点击“加粉准备”,在样品池中加入适量粉末(约0.1~0.5g,不同粉体加入量不尽相同,应保证相对加入量显示在50~85之间,另加1~2滴分散剂;7.电脑自动完成第一次测试,显示数据后,可继续点击“测试”,此时:以下表数据进行判断分档测试。
一、实验目的1. 了解粉尘粒径分布的基本概念和测定方法。
2. 掌握使用粉尘粒径分布测定仪进行实验的操作步骤。
3. 通过实验数据,分析粉尘粒径分布的特点及其对环境和健康的影响。
二、实验原理粉尘粒径分布是指不同粒径的粉尘颗粒在粉尘总量中所占的比例。
粉尘粒径分布对环境质量、人类健康以及工业生产都有着重要的影响。
本实验采用粉尘粒径分布测定仪,通过激光散射原理,对粉尘样品进行粒径分布的测定。
三、实验仪器与试剂1. 粉尘粒径分布测定仪2. 粉尘采样器3. 粉尘样品4. 电子天平5. 移液管6. 蒸馏水四、实验步骤1. 准备实验仪器,检查仪器是否正常工作。
2. 使用粉尘采样器采集一定量的粉尘样品,并将其放入称量瓶中。
3. 将称量瓶放入电子天平中,称量粉尘样品的质量。
4. 将称量瓶中的粉尘样品转移到粉尘粒径分布测定仪的样品池中。
5. 打开仪器,按照仪器说明书进行操作,测定粉尘粒径分布。
6. 记录实验数据,分析粉尘粒径分布特点。
五、实验结果与分析1. 实验数据如下:| 粒径(μm) | 粒径占比(%) || :--------: | :----------: || 0.1 | 5.2 || 0.2 | 12.5 || 0.3 | 20.0 || 0.4 | 25.0 || 0.5 | 22.5 || 0.6 | 15.0 || 0.7 | 7.5 || 0.8 | 5.0 |2. 分析:从实验数据可以看出,该粉尘样品的粒径主要集中在0.3μm到0.5μm之间,占比达到67.5%。
这说明该粉尘样品具有较强的悬浮性,可能对环境和人体健康造成一定影响。
此外,实验结果还显示,该粉尘样品的粒径分布呈现出一定的规律性,即粒径越小,占比越大。
这可能与粉尘的来源和产生过程有关。
六、实验结论1. 通过本次实验,我们掌握了粉尘粒径分布的测定方法,了解了粉尘粒径分布对环境和健康的影响。
2. 实验结果表明,该粉尘样品的粒径主要集中在0.3μm到0.5μm之间,具有较强的悬浮性,可能对环境和人体健康造成一定影响。
实验粉尘粒径及分布测定一.实验的目的和意义粉尘粒径的大小与除尘效率有着密切的关系,因此粉尘粒径大小的测定示研究通风除尘技术的重要组成部分。
通过本实验应达到以下目的:1.掌握光学法测定粉尘粒径的基本原理及实验方法。
2.了解偏光显微镜的构造原理以及操作方法。
3.学会与粉尘粒径分布有关的数据处理及分析方法。
4..学习激光粒径分布仪的使用二.实验原理在光学显微镜下观察并测定的粉尘的粒径为投影粒径,包括面积等分径((Feret径)、长径、短径。
为便于操作,本实验使用定向直径。
在显微镜下测定光片中粉尘投影粒径的大小, 十字丝上刻有100个小格(又称刻度尺),每小格所代表的长度因物镜放大倍数的不同而异。
通过观测物台微尺给定长度的刻度,便可以确定目镜刻度尺上每小格所代表的长度。
在本实验中,我们同时采用另一种方法。
其过程为:用摄影镜头取代目镜,通过计算机显示器进行观察。
对给定物镜,取得物台微尺视图(如右上图),用指定软件打印出后,测定每格的纸上长度,最后确定单位纸上长度代表的实际长度。
然后再在该放大倍数下,取得粒子的粒径分布图(如右下图),便可测得粒子的试样的粒径分布。
粉尘是由各种不同粒径的粒子组成的集合体。
因此,测定好各个单一粉尘粒子的投影径以后,可通过多种方法得出粉尘的分散度。
常用的方法有列表法、直方图法、频率曲线法等。
为了更好地了解粉尘粒径分布、比较不同的粒子总体,可以适当地计算粉尘的几个特征数。
粉尘的特征数主要包括:算术平均径(d )、通常使用带有刻度的接目镜来进行,这种接目镜的r*■__・J"! ■Martin径)、定向径中位径(50%)(d50 )、众径(d m)、方差、标准差等。
三.实验设备本实验应用它测定粉尘颗粒的投影粒径。
偏光显微镜的式样很多,我国常用的有江南光学仪器厂制造的XB--01、XPT--06型630倍中级偏光显微镜,上海光学仪器厂制造的XPG型1000倍偏光显微镜及偏光显微镜及蔡司厂生产制造的文柯型偏光显微镜。
粉尘粒径分布测定实验报告
实验报告:粉尘粒径分布测定
一、实验目的
本实验旨在通过粉尘粒径分布测定,了解粉尘颗粒的大小分布情况,为工业生产中的粉尘控制提供参考。
二、实验原理
粉尘粒径分布测定是通过粒径分析仪对粉尘样品进行测试,得出粉尘颗粒的大小分布情况。
粒径分析仪是一种基于激光散射原理的仪器,通过激光束照射样品,测量样品中散射光的强度和角度,从而得出粒径分布曲线。
三、实验步骤
1.准备样品:将待测粉尘样品放入样品瓶中,并加入适量的稀释液。
2.打开粒径分析仪,进行预热和校准。
3.将样品瓶放入粒径分析仪中,启动测试程序。
4.测试完成后,得到粉尘颗粒的大小分布曲线。
四、实验结果与分析通过粒径分析仪测试,得到了粉尘颗粒的大小分布曲线。
从曲线可以看出,粉尘颗粒的大小分布范围较广,主要集中在0.1-10微米之间。
其中,0.5-5微米的颗粒占总颗粒数的比例最高,达到了70%以上。
五、实验结论
通过粉尘粒径分布测定实验,我们了解了粉尘颗粒的大小分布情况。
在工业生产中,应根据粉尘颗粒的大小分布情况,采取相应的粉尘控制措施,以保障工人的健康和生产环境的安全。
六、实验注意事项
1.操作时应佩戴防护眼镜和口罩,避免吸入粉尘。
2.样品瓶和稀释液应保持清洁,避免杂质的干扰。
3.粒径分析仪应定期校准和维护,以保证测试结果的准确性。
4.实验结束后,应及时清洗仪器和样品瓶,避免残留物的影响。
大气污染控制工程实验指导书环境工程实验室第一部分粉尘性质的测定实验一、粉尘真密度测定一、 目的粉尘真密度是指密实粉尘单位体积的重量,即设法将吸附在尘粒表面及间隙中的空气排除后测的的粉尘自身密度P D .测定粉尘真密度一般采用比重瓶法,粉尘试样的质量可用天平称量,而粉尘物体的体积测量则由于粉尘吸附的气体及粒子间的空隙占据大量体积,故用简单的浸润排液的方法不能直接量得粉尘体积,而应对粉尘进行排气处理,使浸液充分充填各空隙及粉尘的空洞。
才能测得粉尘物质的真实体积。
二、 测试仪器和实验粉尘比重瓶、三通开关、分液漏斗、缓冲瓶、真空表、干燥瓶、温度计、抽气泵、被测粉尘、蒸馏水三、 测试步骤1.称量干净烘干的比重瓶mO 。
然后装入约1/3之一体积的粉尘,称得连瓶带尘重量mS 。
2.接好各仪器,组成真空抽气系统,将比重瓶接入抽气系统中,打开三通开关使比重瓶与抽气泵联通,启动抽气泵抽气约30分钟。
3.轻轻转动三通开关使分液漏斗与比重瓶联通。
(注意:不能将分液漏斗与抽气系统联通以免水进入抽气泵中)此时由于比重瓶中真空度很高,分液漏斗中的水会迅速地流入比重瓶中,注意只能让水注入瓶内2/3处,不能注满。
4.转动三通开关,再使比重瓶与抽气泵联通,启动抽气泵,轻轻振动比重瓶,这时可以看见粉尘中有残留气泡冒出,待气泡冒完后,停止抽气。
5.取下比重瓶,加满蒸馏水至刻度线,将瓶外檫干净后称其重量mSe 。
6.洗净比重瓶中粉尘,装满蒸馏水称其重量me 。
Pe mm m m m mP seeOSOSD∙-+--=)(` g/cm3式中:mO 比重瓶自重g ; mS (比重瓶+粉尘)重g;mSe (比重瓶+粉尘+水)重g ; me (比重瓶+水)重g; Pe 测定温度下水的密度; Pp 粉尘的真密度 g/cm3四、 测定记录粉尘名称 电厂锅炉飞灰 粉尘来源 电厂 液体名称 自来水液体密度 1 g/cm3 测定温度 16oC 测定日期 2010/5/21平均真密度 2.241 g/cm3 五、 思考题:1. 此法与先加水后抽气测真密度相比有什么不同,为什么?答:先加水后抽气测定真密度的结果会略小于该法。
检测粉尘粒径的方法有哪些
检测粉尘粒径的方法有很多种,以下是其中几种常用的方法:
1. 激光粒度仪:使用激光光束照射粉尘,通过检测散射光的角度和强度来测量粉尘粒径。
2. 沉降法:将粉尘样品加入到液体中,让其自然沉降,根据粉尘颗粒的不同沉降速度来计算粒径。
3. 遮光法:将粉尘样品通过一定的遮光板,使得粉尘颗粒只能通过特定的区域,根据通过的数量和时间来计算粒径。
4. 电动力学分类器:利用电场对粉尘样品进行分类,根据分类结果来计算粒径。
5. 原子力显微镜:通过原子力显微镜观察粉尘颗粒的形貌和大小来计算粒径。
需要根据具体的实验需求和设备条件选择合适的方法。
第五章 颗粒污染物控制技术基础5.1 根据以往的分析知道,由破碎过程产生的粉尘的粒径分布符合对数正态分布,为此在对该粉尘进行粒径分布测定时只取了四组数据(见下表),试确定:1)几何平均直径和几何标准差;2)绘制频率密度分布曲线。
解:在对数概率坐标纸上作出对数正态分布的质量累积频率分布曲线, 读出d 84.1=61.0m μ、d 50=16.0m μ、d 15。
9=4.2m μ。
81.3501.84==d d g σ。
作图略。
5.2 根据下列四种污染源排放的烟尘的对数正态分布数据,在对数概率坐标纸上绘出它们的筛下累积频率曲线。
污染源 质量中位直径 集合标准差 平炉 0.36 2.14 飞灰6.8 4.54 水泥窑 16.5 2.35 化铁炉 60.0 17.65 解:5.3 已知某粉尘粒径分布数据(见下表),1)判断该粉尘的粒径分布是否符合对数正态分布;2)如果符合,求其几何标准差、质量中位直径、个数中位直径、算数平均直径及表面积-解:在对数概率坐标纸上作出对数正态分布的质量累积频率分布曲线,读出质量中位直径d 50(MMD )=10.3m μ、d 84.1=19.1m μ、d 15。
9=5.6m μ。
85.1501.84==d d g σ。
按《大气污染控制工程》P129(5-24)m NMD NMD MMD g μσ31.3ln 3ln ln 2=⇒+=;P129(5-26)m d NMD d L g L μσ00.4ln 21ln ln 2=⇒+=; P129(5-29)m d NMD d sv g sv μσ53.8ln 25ln ln 2=⇒+=。
5.4 对于题5.3中的粉尘,已知真密度为1900kg/m 3,填充空隙率0.7,试确定其比表面积(分别以质量、净体积和堆积体积表示)。
解:《大气污染控制工程》P135(5-39)按质量表示g cm d S Psv m /107.3623⨯==ρP135(5-38)按净体积表示323/1003.76cm cm d S svV ⨯==P135(5-40)按堆积体积表示323/1011.2)1(6cm cm d S svb ⨯=-=ε。
粉尘粒径分布测定实验一、原理:除尘系统所处理的粉尘均具有一定的粒度分布。
粉尘的分散度不同,对人体健康危害的影响程度和适用的除尘机理就不同。
对粉尘的粒径分布进行测定可以为除尘器的设计、选用及除尘机理的研究提供基本的数据。
粉尘粒径分布的测定方法包括有巴柯离心分级测定法,液体重力沉降法(移液管法)和惯性冲击法等。
本装置系统为液体重力沉降法(移液管法)。
液体重力沉降法(移液管法)是根据不同大小的粒子在重力作用下,在液体中的沉降速度各不相同这一原理进行的。
粒子在液体介质中作等速自然沉降时所具有的速度称为沉降速度,而沉降速度是沉降高度与沉降时间的比值。
通过对混合均匀的颗粒物悬浮液在不同沉降时间、不同沉降高度上取出一定量的液体,称量出其所含有的粉体质量,便可通过斯托克斯公式及沉降速度、时间和高度的关系求出。
二、系统构成:系统主要包括液体重力沉降瓶、称量瓶、采用透明有机玻璃制作恒温水浴等。
(图)三、技术参数:1、环境温度:5℃~40℃、2、可在0~100μm自由选择分为3段(≤40μm、≤30μm、≤20μm)。
3、装置尺寸:1000×500×1200四、实验装置的组成和规:1、沉降瓶3只;2、移液管1只;3、带三通活塞的10mL容器3只;4、称量瓶5只;5、注射器大小各1只;6、乳胶皮管3根。
7、透明有机玻璃制作恒温水浴1套、8、控制温度系统1套、9、防水面板及不锈钢实验台架1套五、辅助设备(由用户自备):烘箱、分析天平、干燥器等。
移液管法测定粉尘粒径分布一、实验目的:掌握液体重力沉降法(移液管法)测定粉尘粒径分布的方法。
二、实验原理:液体重力沉降法是根据不同大小的粒子在重力作用下,在液体中的沉降速度各不相同这一原理而得到的。
粒子在液体(或气体)介质中作等速自然沉降时所具有的速度,称为沉降速度,其大小可以用斯托克斯公式表示:υt=(ρp-ρL)gd2p18μ(2-10-1)式中:υt——粒子的沉降速度,cm/s;μ——液体的动力黏度,g/(cm·s)ρp——粒子的真密度,g/m3;ρL——液体的真密度,g/m3;g——重力加速度,cm/s2;d p——粒子的直径,cm。
第五章 颗粒污染物控制技术基础5.1 根据以往的分析知道,由破碎过程产生的粉尘的粒径分布符合对数正态分布,为此在对该粉尘进行粒径分布测定时只取了四组数据(见下表),试确定:1)几何平均直径和几何标准差;2)绘制频率密度分布曲线。
解:在对数概率坐标纸上作出对数正态分布的质量累积频率分布曲线, 读出d 84.1=61.0m μ、d 50=16.0m μ、d 15。
9=4.2m μ。
81.3501.84==d d g σ。
作图略。
5.2 根据下列四种污染源排放的烟尘的对数正态分布数据,在对数概率坐标纸上绘出它们的筛下累积频率曲线。
污染源 质量中位直径 集合标准差 平炉 0.36 2.14 飞灰6.8 4.54 水泥窑 16.5 2.35 化铁炉 60.0 17.65 解:5.3 已知某粉尘粒径分布数据(见下表),1)判断该粉尘的粒径分布是否符合对数正态分布;2)如果符合,求其几何标准差、质量中位直径、个数中位直径、算数平均直径及表面积-解:在对数概率坐标纸上作出对数正态分布的质量累积频率分布曲线,读出质量中位直径d 50(MMD )=10.3m μ、d 84.1=19.1m μ、d 15。
9=5.6m μ。
85.1501.84==d d g σ。
按《大气污染控制工程》P129(5-24)m NMD NMD MMD g μσ31.3ln 3ln ln 2=⇒+=;P129(5-26)m d NMD d L g L μσ00.4ln 21ln ln 2=⇒+=; P129(5-29)m d NMD d sv g svμσ53.8ln 25ln ln 2=⇒+=。
5.4 对于题5.3中的粉尘,已知真密度为1900kg/m 3,填充空隙率0.7,试确定其比表面积(分别以质量、净体积和堆积体积表示)。
解:《大气污染控制工程》P135(5-39)按质量表示g cm d S Psv m /107.3623⨯==ρP135(5-38)按净体积表示323/1003.76cm cm d S svV ⨯==P135(5-40)按堆积体积表示323/1011.2)1(6cm cm d S svb ⨯=-=ε。
MD-1型粉尘粒度分布测定仪采用斯托克斯原理和比尔定律进行分析检测,能准确测定粉尘粒度分布。
与常规方法相比省去天平称重和显微镜数数等繁杂工作。
读数直观,测定结果自动储存,也可由用户根据需要选择,把结果通过显示屏或打印机输出。
仪器具有掉电保护功能,可储存40 次粒度分布数据,储存的数据可根据用户意图进行清除。
主要用途及使用范围:本仪器主要用于粉尘粒度分布测定。
品种、规格:本仪器粉尘粒度分布测量范围:0∽150µm。
测定粉尘累积质量筛上分布,粉尘粒度分级为150、100、80、60、50、40、30、20、10、8、7、6、5、4、3、2、1µm。
型号的组成及其代表意义:M D - 1第一代粒径使用环境条件:贮存温度:-40℃~60℃;工作温度:15℃~35℃;相对湿度:≤95%;大气压:86kPa~110kPa。
工作条件:本仪器应在温度可控制的室内使用。
对环境及能源的影响:本仪器对环境及能源无任何影响。
安全:本仪器为非防爆仪器,不能用于具有爆炸危险性的环境中。
1.结构特征与工作原理本仪器主要由沉降池组、制动系统、粉尘光学传感器、打印机和单片机数据处理系统等部分组成。
仪器外观见下图。
1 活动罩2 光路对准标志3 圆盘4 锁定旋钮5 光强调节旋钮6 电源开关7 操作面板8 显示窗口9 打印机图1 MD-1型粉尘粒度分析仪结构图粉尘粒度分布测定原理:根据斯托克斯沉降原理和比尔定律测定粉尘粒度分布。
粉尘溶液经过混合后,移入沉降池中,通过旋转圆盘,使沉降池中的粉尘溶液处于均匀状态。
溶液中的粉尘颗粒在自身重力的作用下产生沉降现象。
在沉降初期,光速所处平面溶质颗粒动态平衡,即离开该平面与从上层沉降到此的颗粒数相同。
所以该处的浓度是保持不变的。
当悬浮液中存在的最大颗粒平面穿过光束平面后,该平面上就不再有相同大小的颗粒来替代,这个平面的浓度也开始随之减少。
此时刻t和深度h处的悬浮液浓度中只含有小于d st的颗粒。
粉尘危害因素检测及评价制度一、引言粉尘指的是由固体颗粒悬浮在空气中形成的颗粒物。
粉尘主要来源于工业生产、建筑施工、道路交通、农业作业等过程中产生的粉尘颗粒物。
粉尘危害是一种常见的职业病风险,对人体健康造成严重威胁。
为了控制和预防粉尘危害,建立粉尘危害因素的检测及评价制度是非常重要的。
二、粉尘危害因素检测粉尘危害因素的检测主要包括以下几个方面:1. 粉尘颗粒物浓度检测:通过采样和分析颗粒物样品,确定粉尘颗粒物的浓度水平。
常用的检测方法包括光学显微镜法、电子显微镜法、重量法等。
2. 粉尘颗粒物成分检测:通过化学分析方法,确定粉尘颗粒物的成分。
常用的检测方法包括X射线衍射法、红外光谱法、质谱法等。
3. 粉尘颗粒物形态检测:通过显微观察方法,确定粉尘颗粒物的形态特征。
常用的检测方法包括光学显微镜法、电子显微镜法等。
4. 粉尘颗粒物大小检测:通过颗粒物粒径分析方法,确定粉尘颗粒物的大小分布。
常用的检测方法包括激光粒度仪法、电子显微镜法等。
以上检测方法可以根据需要灵活组合使用,综合评价粉尘危害因素的特征和水平。
三、粉尘危害因素评价粉尘危害因素的评价应综合考虑以下几个方面:1. 粉尘颗粒物浓度评价:通过测定粉尘颗粒物浓度,与国家和行业标准进行对比,评价粉尘危害程度。
一般来说,粉尘浓度超过标准规定值,就属于危害程度较高的情况。
2. 粉尘颗粒物成分评价:通过分析粉尘颗粒物的成分,评价可能存在的有害物质对人体健康的威胁程度。
一般来说,如果粉尘中存在致癌物质、毒性物质等,就属于危害程度较高的情况。
3. 粉尘颗粒物形态评价:通过观察和分析粉尘颗粒物的形态特征,评价其对呼吸道的刺激程度。
一般来说,粉尘颗粒物越细小,对呼吸道的刺激程度越高。
4. 粉尘颗粒物大小评价:通过测定粉尘颗粒物的大小分布,评价其在空气中的悬浮能力和沉积速度。
一般来说,粉尘颗粒物越细小,悬浮能力越强,沉积速度越慢。
以上评价指标可以根据实际情况和需求进行权衡和调整,形成切实可行的评价体系。
粉尘粒径分布测定实验报告(一)
粉尘粒径分布测定实验报告
实验目的
了解粉尘的粒径分布规律,掌握测量粉尘粒径分布的方法。
实验原理
粉尘的粒径分布可通过激光粒度分析仪测出。
在此实验中,选择激光粒度分析仪,该仪器通过可见光激光器照射样品,利用样品中散射的光信号,推算出样品的粒径分布。
实验步骤
1.将样品放入激光粒度分析仪的样品槽中;
2.打开激光粒度分析仪,进行预热,直到稳定;
3.点击“开始测量”按钮,等待数分钟,直到测量结果出现;
4.查看测量结果,了解样品的粒径分布情况。
实验结果
样品的粒径分布如下:
粒径(μm)数量(个)
0.1 120
0.2 180
0.3 200
0.4 150
0.5 100
0.6 80
0.7 50
结论
从上表可知,样品的粒径主要分布在0.2~0.4μm之间,且粒径分布越往两侧越稀疏。
实验注意事项
1.操作仪器时要注意安全,避免损坏仪器和伤害人身安全;
2.样品放入槽中时要均匀分布;
3.测量结果的可靠性取决于样品的品质和仪器的准确性。
实验感想
通过本次实验,我了解了如何使用激光粒度分析仪测量粉尘的粒径分布,并深刻认识到粉尘对人体健康和环境的危害。
同时,实验过程中注意了操作仪器的安全问题,加强了对粉尘测量的认知。
本次实验还帮助我加深了对数据处理和结果分析的理解,以及有效地总结和归纳实验结果的能力。
在今后的科研实践中,我将深入学习粉尘测量技术的原理和方法,并在实验中不断探索与尝试,提高实验技能和数据处理能力,为相关领域的研究和应用贡献自己的力量。
综合性实验项目名称粉尘粒径分布实验实验项目学时:** 实验要求:□必修□选修一、实验目的及要求:1、加深各种粒子群的质量频率分布、质量频率密度分布、质量筛下累计频率分布的表示方法及其基本概念的理解。
2、学会用CJCL Y—Ⅱ多级气相冲击式测粒仪测定粉尘粒径。
二、实验基本原理:CJCL Y—Ⅱ多级气相冲击式测粒仪主要是由几个串联布置的、不同直径的圆形喷嘴和收集杯组成。
粉尘随气流通过圆形喷嘴,获得一定的喷射速度。
在碰到收集杯前,气流产生折流,而对于气流中质量远大于气体分子的粉尘,因惯性冲击作用而逐级被收集杯捕集,以达到粉尘分级的目的。
三、主要仪器设备及实验耗材:CJCL Y—Ⅱ多级气相冲击式测粒仪及其附件,电子天平、真空泵、毕托管、采样管、定性滤纸等。
四、实验内容或步骤:含尘气流通过采样管2按等速取样原则进入测粒仪3,然后由真空泵抽吸测粒仪,用调节阀6控制流量计7读数为q0(见表一),使之进入测粒仪的实际抽气量为q(见表一),补充气体量q2是由调节阀5以控制流量计4达到的。
测试流程如图1。
操作步骤(一)测试准备工作1、将喷嘴由小到大,从上往下排列;2、在编好号的收集盘内均匀地涂上一层真空油脂,然后在上安放测尘滤膜;3、将收集盘称重,即得原始重G;4、按次序组装测粒仪,然后将测粒仪放置在被测烟道的适当位置上,垂直放置;5、固定采样管,并与测粒仪保持一定距离。
(二)操作参数的测定1、由下表查出实际抽气量q及转子流量计7的控制值q0;表一 操作参数表2、根据公式:q 2= q -q 1;求出补充气体流量q 2,其中q 1系与被测烟道等速的采样管内气体流量;用毕托管测出管内某点动压P d (pa )便可计算出该点的流速:ρ/2d p P k v = m/s其中ρ—气体密度 kg/m 3;p k —皮托管校正系数,无量纲,0.81。
则采样管内气体流量:4/100036021⨯⨯=v d q π其中d :采样管内径,单位为:m(三)测试开始启动真空泵,控制调节阀5、6,使之流量计4、7的读数分别为q 2、q 0。
粉尘的粒径分布测定一、实验目的1、 了解LS900激光粒度分析仪的工作原理;2、 了解不同粉尘粒度的分布情况;3、 掌握LS900激光粒度分析仪的基本操作;二、实验原理(1) 基础知识——颗粒对光的散射理论众所周知,光是一种电磁波。
它在传播过程中遇到颗粒时,将与之相互作用,其中的一部分将偏离原来的行进方向,称之为散射,如图1所示:图1 光的散射现象示意图当颗粒是均匀、各向同性的圆球时,可以根据Maxwell 电磁波方程严格地推算出散射光场的强度分布,称为Mie 散射理论,摘录如下:{}21)(cos )(cos )1(12∑∞=+++=l l l l l a b a l l l I θτθπ {}21)(cos )(cos )1(12∑∞=+++=l ll l l b a b l l l I θτθπ其中I a 和I b 分别表示垂直偏振光和水平偏振光的散射光强;θ表示散射角,a l 和b l 的表达式分别如下:)ˆ`()()ˆ()(ˆ)ˆ`()()ˆ()`(ˆ)1()`1(q n q q n q nq n q q n q n a l l l l l l l l l ϕζϕζϕϕϕϕ--=)ˆ`()()ˆ(`)(ˆ)ˆ()`()ˆ(`)(ˆ)`1()1(q n q q n q n q n q q n q n b l l l l l l l l l ϕζϕζϕϕϕϕ--= 此地,ωπσ4(1ˆi n +∈∈=介),0λωc =,r q 介λπ2=;式中,介∈为介质的介电常数,∈为散射粒子的介电常数,σ为电导率,0λ和介λ分别为真空和介质中的光波长,r 为粒子半径,而)(2)(21q J qq l l +=πϕ)()()()1(q i q q l l χϕζ+= 其中)(2)(21q N q q l l +-=πχ 这里)(21q J l +和)(21q N l +分别是第一类Bessel 函数和诺俟曼函数。
l π和l τ的表达式则为:∑=-------=2/012)(cos )2)((2)2)(22()1()(cos l m m l l ml m l m l m m l m l θθπ )(cos sin 1)1(θθl p = )(cos cos )(cos sin )(cos cos )(cos )1(2θθθθπθθθπθτl l l l p d d d d =-= 其)1(l p 为一次缔合勒让德多项式 Mie 理论是描述散射光场的严格理论,适用于经典意义上任意大小的颗粒。
但是对大颗粒(λ〉〉r ),Mie 散射公式的数值计算十分复杂。
通常人们认为这种情况下散射现象可以用较常见而简单的衍射公式描述。
当散射粒子到观察点的距离无限远时,衍射公式可简化为Fraunhoff 衍射公式:21222sin )sin (2)()(⎥⎦⎤⎢⎣⎡=θθλπθkr kr J f A r I ()。
(2) 工作原理激光粒度仪由测量单元、样品池、计算机和打印机组成,如图2所示:图2 LS900型激光粒度仪的结构示意图从He-Ne 激光器发出波长为0.6328μm 的激光束,经扩束镜后会聚在针孔,针孔将滤掉所有的高阶散射光,只让空间低频的激光通过。
然后激光束成为发散的光束。
该光束遇到透镜后被聚焦。
反射棱镜使光学系统的光轴转折90°,即,使之由水平传播变成垂直传播。
当样品池内没有颗粒时,光束将被聚焦在环形光电探测器的中心,并穿过中心的小孔照到中心探测器上。
当样品池内有颗粒样品时,会聚的光束将有一部分被颗粒散射到环形探测器的各探测单元以及大角探测器上。
设样品池内没有颗粒时,中心探测器接收到的光能为E 0,其他各探测单元接收到的光能(由于象差和尘埃散射等)从里到外依次为B 1,B 2,…,B n ;样品内有待测颗粒时,变为E`0,S`1,S`2,…,S`n ;则:00`E E E Blr -=, 称为遮光比。
样品浓度越高,遮光比越大。
,i i i b s s -=I=1,2,…,n ;称为散射光能分布,它包含了待测颗粒的粒度分布信息。
光能信号通过光电探测器转换成了相应的电流信号,送给数据采集卡。
该卡将电信号放大,再进行A/D 转换后送入计算机。
根据光的散射理论和仪器的光学结构,计算机事先已计算出了仪器测量范围内各种直径粒子对应的散射光能分布,其集合组成了光能矩阵M ,即:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n m m m m m m m m m M ,......,,....................,......,,,......,,212222111211 矩阵中每一列代表一个粒径范围一个单位重量的颗粒产生的散射光能分布。
因此:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡•⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡•n nn n n n n n w w w m m m m m m m m m s s s 2121222211121121,......,,..................,......,,,......,, 式中w 1,w 2,…,w n 代表颗粒的重量分布。
根据上式,只要已知散射光能分布s 1,s 2,…,s n ,通过适当的数值计算手段可以计算出与之相应的粒度分布。
三、测试准备1、仪器及用品准备(1)仔细检查粒度仪、电脑、打印机等,看它们是否连接好,放置仪器的工作台是否牢固,并将仪器周围的杂物清理干净。
(2)向超声波分散器分散池中加大约250ml 的水。
(3) 准备好样品池,蒸馏水、取样勺、搅拌器、取样器等实验用品,装好打印纸。
2、取样与悬浮液的配置:BT —9300H 型激光粒度仪是通过对少量样品进行粒度分布测定来表征大量粉体粒度分布的。
因此要求所测的样品具有充分的代表性。
取样一般分三个步骤:大量粉体(10n 千克)→实验室样品(10n 克)→测试样品(10n 毫克)。
(1) 从大堆粉体中取实验室样品应遵循的原则:尽量从粉体包装之前的料流中多点取样;在容器中取样,应使用取样器,选择多点并在每点的不同深度取样。
★ 注意:每次取完样后都应把取样器具清洗干净,禁止用不洁净的取样器具取样。
(2) 实验室样品的缩分勺取法:用小勺多点(至少四点)取样。
每次取样都应将进入小勺中的样品全部倒进烧杯或循环池中,不得抖出一部分,保留一部分。
圆锥四分法:将试样堆成圆锥体,用薄板沿轴线将其垂直切成相等的四份,将对角的两份混合再堆成圆锥体,再用薄板沿轴线将其垂直切成相等的四份,如此循环,直到其中一份的量符合需要(一般在1 克左右)为止。
分样器法:将实验室样全部倒入分样器中,经过分样器均分后取出其中一份,如这一份的量还多,应再倒入分样器中进行缩分,直到其中一份(或几份)的量满足要求为止。
(3) 配制悬浮液介质:用BT-9300H 型激光粒度仪进行粒度测试前要先将样品与某液体混合配制成悬浮液,用于配制悬浮液的液体叫做介质。
介质的作用是使样品呈均匀的、分散的、易于输送的状态。
对介质的一般要求是:(a)不使样品发生溶解、膨胀、絮凝、团聚等物理变化;(b)不与样品发生化学反应;(c)对样品的表面应具有良好的润湿作用;(d)透明纯净无杂质。
可选作介质的液体很多,最常用的有蒸馏水和乙醇。
特殊样品可以选用其它有机溶剂做介质。
分散剂:分散剂是指加入到介质中的少量的、能使介质表面张力显著降低,从而使颗粒表面得到良好润湿作用的物质。
不同的样品需要用不同的分散剂。
常用的分散剂有焦磷酸钠、六偏磷酸钠等。
分散剂的作用有两个方面,其一加快“团粒”分解为单体颗粒的速度;其二延缓和阻止单个颗粒重新团聚成“团粒”。
分散剂的用量为沉降介质重量的千分之二至千分之五。
使用时可将分散剂按上述比例先加到介质中,待充分溶解后即可使用。
★说明:用有机系列介质(如乙醇)时,一般不用加分散剂。
因为多数有机溶剂本身具有分散剂作用。
此外还因为一些有机溶剂不能使分散剂溶解。
四、实验步骤1、测量单元预热:打开激光粒度分析仪电源,预热半小时;2、系统对中:打开计算机,在WINDOWS操作系统桌面上,双击“OMEC激光粒度仪”图标,进入仪器配套软件介面;旋转上下两个对中旋钮,使“背景光能分布”中“零”环最高,而其它环相对低;3、系统参数设置: 在主菜单下,用鼠标左键单击“文件”,屏幕上即弹出“文件”子菜单。
在用鼠标左键单击“重新开始”,屏幕继续弹出“系统参数设置”栏。
在该栏上按提示输入测试内容;4、样品准备在50ml量杯内盛大约25ml的悬浮液(以循环进样器为例);用取样勺有代表性地取适量的待测样品,投入量杯中;在量杯内滴入适量的分散剂,用玻璃棒搅拌悬浮液;样品与液体应混合良好,否则要更换悬浮液或分散剂;将量杯放入超声波清洗机中,让清洗槽内的液面到达量杯总高度的1/2左右,打开电源,让其振动2分钟左右(振动时间可长可短,视具体样品而定;对容易下沉的样品,应一边振动,一边用玻璃棒搅拌杯内液体);关掉电源,取出量杯。
5、背景测量:用鼠标左键单击屏幕上的“背景测量”按钮;待该按钮上的“背景测量”文字变成“样品分析”,背景测量即告完成;6、样品测量:背景测量完成后,将准备好的样品倒入加样槽,用鼠标左键单击屏幕上的“样品分析”按钮,样品分析即自动进行;7、测试报告的打印或存盘;8、清洗循环进样器;9、按步骤关闭计算机。
五、实验结果(见测试报告样板)六、注意事项1、仪器的全套设备不论是否处于工作状态,都应放置在清洁干燥的环境中。
2、粒度仪的全套设备不用时应盖上致密的防尘布。
3、每测完一个样品,样品池(静态样品池或循环进样器)都必须立即清洗干净。
4、粒度仪测量单元连续开机时间不宜超过5小时,超声波清洗机更不宜长时间连续开机,请注意阅读说明书。
5、静态样品池不用时,请用脱脂棉和镜头纸擦干其内外,套上密封胶袋,放入专用工具箱中。
6、循环进样器不用时,其测量窗口也要同静态样品池一样处理。
控制箱要排干里面的水,将进样杯的盖盖好,罩上防尘罩。
7、计算机关机必须按规定的步骤进行,切不可贸然关断电源,否则可能照成难以弥补的损失。
8、运行维护(1)整个系统的保养与维护●开机顺序:(交流稳压电源)→粒度仪→打印机→显示器→电脑。
●关机顺序:显示器→电脑→打印机→粒度仪→(交流稳压电源)。
●搬运或移动前,应标记清楚每条信号线的接插位置,以便正确恢复连接。
●插拔电缆信号线时,一定要先关闭电源开关,再进行操作。
●系统各部分电源不要瞬间开启或关闭。
每次开、关时间间隔应大于10秒。
要经常检查保护地线、确保系统的各个部分都处于良好的接地状态。
(2)采用超声波分散器对中样品进行分散处理时,控制分散时间,尽量分散彻底。
(3)分散剂用量不宜过多,以免影响试验结果。