水体中油类污染物的综述
- 格式:doc
- 大小:71.50 KB
- 文档页数:8
水中油类测定分析方法的综述李海州(浙江海洋学院海洋与技术学院,浙江舟山316004)[摘要]:本文对国内外学者有关水中油类的测定方法做了比较系统的综述。
对几种水中油类的常用方法,重量法、紫外分光光度法、荧光分光光度法、红外分光光度法和非分散红外光度法做了简要介绍,并对其优劣进行了评价。
另外,介绍了测定水中油类含量存在的难点、发展趋势和技术改进等。
关键词:水;油类;测定分析油类是指任何类型的(矿物油、植物油等)及其炼制品(汽油、柴油、机油、煤油等)、油泥和油渣[1]。
油类主要有漂浮油、分散油、乳化油、溶解油和油类附着在固体悬浮物表面而形成油膜---固体物5种形式。
全世界每年至少有500—1000吨油类通过各种途径进入水体,由于漂浮于水体表面的油将会影响空气和水体表面氧的交换,而分散于水体中以及吸附于悬浮颗粒上或以乳化状态存在于水体的油易被微生物氧化分解,并将消耗水中的溶解氧,从而使水质恶化;油膜还能附着于鱼鳃上,使鱼类窒息而死;当鱼类产卵期,在含有油类污染物质废水中孵化的鱼苗,多数为畸形,生命力低下,易于死亡;含有油类污染物的废水进入水体后,造成的危害很为严重,不仅影响水生生物的生长,降低水体的自我净化能力,而且影响水体附近的环境,因此,油类是水体环境中的主要污染物之一,在水质监测中,也是一项重要的监测项目。
要消除油类对环境的污染和危害,首先就必须能够准确的测定水中油类的含量。
然而,水中油类含量测定又是比较复杂的,因为水中的油类成分是相当复杂的,此外不同地区、不同行业水体中油类污染的成分也不同,无法有用单一的油标准进行对照,无法准确测定,所以水体中油类物质含量的测定问题是环境分析化学一个古老、重要而又困难的问题。
目前水体中油类测定常用的方法有重量法、紫外分光光度法、荧光分光光度法、非分散红外光度和国家最新颁布的国家标准方法红外分光光度法等[2],本文简要介绍以上几种方法的原理和优劣,及人们对水体中油类监测分析方法的创新和改进。
石油污染对海洋生态环境的影响综述摘要:海洋环境中的石油污染源包括自然和人为2种类型,人为污染是造成海洋污染的主要原因。
石油由于物质组成、化学结构和分子量的差异对海洋生物造成的毒害也不尽相同。
海洋中的各种生物对石油污染的耐受力也显示出明显差异,研究表明,底栖生物的耐受力最强,一些植物也能在较短的时间内恢复到污染前的水平,鱼类和浮游动物对这种毒害较为敏感,但部分污染区渔场出现反常现象令人迷惑。
同时,石油污染影响了大阻碍了海水中盐颗粒向大气中飞溅和海水对大气中O2和CO2气体的吸收,从而严重影响到海一气相互作用的每一个过程和海洋生物的繁衍生息。
关键词:石油;污染;海洋生物;海洋生态系统石油及其产品的广泛使用,导致大量石油进入环境,就水环境而言,由于海上石油开采和海上漏油事故的频繁发生,因此海洋石油污染对海洋环境的影响也越来越受到广泛关注。
海洋环境中石油可分为2种来源:一是自然源;一是人为源。
自然源主要是由于海洋中含油地层被抬升,导致石油渗出覆盖层造成海洋污染;人为源不仅包括海上石油开采、海上石油运输事故的漏油事故造成的污染还包括城市和工业产生的污水及海洋倾倒造成的污染。
如果排放源离海岸较远,那么海洋泄漏的石油可能存在着很多生物和化学降解或物理去除途径,大多数有毒组分在到达海岸之前可能已经被完全分解,一般不会对海岸附近的生物产生显著的危害 [1]。
近岸发生的石油污染通常会严重破坏海洋生态系统。
在这种情况下,石油通常还未经风蚀去除有毒污染物,就已经被冲刷到海滨了。
潮问带和底栖生物迁移能力较差,摄入毒性物质后会引发大面积死亡现象。
一些迁徙生物如鱼类,能够逃离石油泄漏点,但是仅靠这一点防御机制是远远不够的。
同时还会对近岸水域的娱乐休闲海滩景观造成破坏。
这样的石油污染会给海洋生物造成怎样的影响?首先需要对石油的性质有个大致了解。
石油污染包括原油和提炼后的成品油。
天然原油是由成千上万种不同的有机分子组成的一种复杂的混合物,世界上不同地方的石油其组成可能会不大相同,这主要取决于油龄、油的形成条件等。
环境水中石油类污染物的含量反应说明摘要:环境水中石油类污染物的含量是反映水质的指标之一,本文采用三波长定量测试水中油含量,样品测试方便,数据准确。
环境中水中的石油类来自工业废水和生活污水的污染。
油类物质在水面形成油膜,影响了空气和水的气体交换;分散于水中以及吸附于颗粒上或以乳化状态存在于水中的油,被微生物分解时,将消耗水中溶氧,容易使水质恶化。
矿物油是由烷烃、环烷烃及芳香烃组成的混合物红外碳硫分析仪。
本文参照“GB/T16488-1996《水质石油类和动植物油的测定红外光度法》”选择三波长红外光谱法测定地表水,测定结果准确,避免使用“标准油”。
原理:水中油类物质是由烷烃、环烷烃及芳香烃组成的混合物,可用四氯化碳萃取,测定总萃取物。
然后将萃取液用硅酸镁吸附其中动植物油等极性物质后,测定石油类含量。
石油类和动植物油的红外谱图在2930cm-1、2960cm-1或3030cm-1处有吸收,可根据上述三个波数位置的吸光度值计算其含量。
实验条件:仪器及附件:FTIR-650傅里叶变换红外光谱仪1cm 石英比色皿试剂:四氯化碳(CCl4):环保用,天津基准试剂有限公司;正十六烷[CH3(CH2)14CH3] 分析纯:成都市科龙化工试剂厂;姥鲛烷(2,6,10,14-四甲基十五烷)分析纯:北京百灵威科技有限公司;甲苯(C6H5CH3)分析纯:天津市江天化工技术有限公司;无水硫酸钠(Na2SO4)分析纯:北京化工厂;氯化钠(NaCl)分析纯:天津化学试剂有限公司;盐酸(HCl)分析纯:天津化学试剂一厂。
样品前处理:将水样全部转移至分液漏斗中,用20ml四氯化碳洗涤采样瓶,洗涤液并入分液漏斗中,调PH≤2,加入20g氯化钠,充分震荡2min充分静置,将萃取液流经铺有10mm无水硫酸钠的玻璃砂芯漏斗,用容量瓶收集滤液。
取20ml四氯化碳再次萃取、用适量四氯化碳洗涤玻璃砂芯漏斗,将萃取液、洗涤液一并放入容量瓶中。
用四氯化碳标至刻线、摇匀。
关于海洋石油污染的综述摘要:渤海湾漏油事件让人们再一次认识到海洋石油污染的危害。
那么,面对如此脆弱的海洋生态环境,我们应采取什么措施来保护防治海洋石油污染呢?根据海洋石油污染的现状,以溢油污染中石油烃对海洋生态平衡的破坏为重点,介绍了海洋石油污染的来源、危害以及防治对策,提出在预防―检测―应急处理环节防治海洋石油污染的具体措施,由此得出保护海洋生态环境已成为当务之急。
关键词:海洋石油污染;石油烃;溢油污染国土资源部最新数据显示,中国近五年发生海洋石油溢油污染事故41起。
据统计,全世界因油轮事故溢入海洋的石油每年约为39万吨;1973年至2006年,中国沿海共发生大小船舶溢油事故2635起,其中溢油50吨以上的重大船舶溢油事故69起,总溢油量达37077吨。
近年来中国每年排入大海的石油约12×104t,中国近海海域石油的平均质量浓度已达到0.055㎎/L,而且污染正日趋加剧[1,2]。
除营养盐之外,石油烃已成为世界海洋(尤其是浅海)的主要污染物[3]。
石油污染物与常规污染物有所不同,一旦污染水域或食物链,进入人体后不易遭到破坏,并且仍保持它的持久性、累积性、迁移性和高毒性时,必然危及机体,表现出致癌性、致变性和致畸性,严重威胁人类健康。
对溢油污染进行治理,改善、恢复污染区域的生态环境,保护海洋环境和海洋资源,促进可持续发展是世界各国义不容辞的责任。
1 海洋石油污染的来源海洋水体油污染主要来源于海底溢油、海上石油生产、海洋运输、大气输送、城市污染水排放等,而对环境影响最严重的是人类活动造成的突发性溢油事故。
石油污染是与石油的发现和使用伴随而生的。
石油及其产品在开采、炼制、贮运和使用过程中进入海洋环境会造成严重污染;其中溢油污染危害最大,石油泄漏被称为海洋污染的超级杀手。
2 海洋石油污染的危害石油污染危害海洋资源,影响生态平衡,石油中含有数百种化合物,主要由烷烃、芳香烃及环烷烃组成,约占石油含量的50%~98%,简称为石油烃,其余为非烃类含氧、含硫及含氮化合物[4]。
水中油类测定分析方法的综述李海州(浙江海洋学院海洋与技术学院,浙江舟山316004)[摘要]:本文对国内外学者有关水中油类的测定方法做了比较系统的综述。
对几种水中油类的常用方法,重量法、紫外分光光度法、荧光分光光度法、红外分光光度法和非分散红外光度法做了简要介绍,并对其优劣进行了评价。
另外,介绍了测定水中油类含量存在的难点、发展趋势和技术改进等。
关键词:水;油类;测定分析油类是指任何类型的(矿物油、植物油等)及其炼制品(汽油、柴油、机油、煤油等)、油泥和油渣[1]。
油类主要有漂浮油、分散油、乳化油、溶解油和油类附着在固体悬浮物表面而形成油膜---固体物5种形式。
全世界每年至少有500—1000吨油类通过各种途径进入水体,由于漂浮于水体表面的油将会影响空气和水体表面氧的交换,而分散于水体中以及吸附于悬浮颗粒上或以乳化状态存在于水体的油易被微生物氧化分解,并将消耗水中的溶解氧,从而使水质恶化;油膜还能附着于鱼鳃上,使鱼类窒息而死;当鱼类产卵期,在含有油类污染物质废水中孵化的鱼苗,多数为畸形,生命力低下,易于死亡;含有油类污染物的废水进入水体后,造成的危害很为严重,不仅影响水生生物的生长,降低水体的自我净化能力,而且影响水体附近的环境,因此,油类是水体环境中的主要污染物之一,在水质监测中,也是一项重要的监测项目。
要消除油类对环境的污染和危害,首先就必须能够准确的测定水中油类的含量。
然而,水中油类含量测定又是比较复杂的,因为水中的油类成分是相当复杂的,此外不同地区、不同行业水体中油类污染的成分也不同,无法有用单一的油标准进行对照,无法准确测定,所以水体中油类物质含量的测定问题是环境分析化学一个古老、重要而又困难的问题。
目前水体中油类测定常用的方法有重量法、紫外分光光度法、荧光分光光度法、非分散红外光度和国家最新颁布的国家标准方法红外分光光度法等[2],本文简要介绍以上几种方法的原理和优劣,及人们对水体中油类监测分析方法的创新和改进。
废水中石油类分析报告1. 简介废水中石油类分析报告旨在对废水样品中的石油类物质进行分析和评估。
石油类物质是指石油及其衍生物在废水中的存在形式,包括原油、石油产品和石油加工过程中的废水。
2. 样品采集与处理2.1 样品采集在进行废水中石油类分析之前,首先需要采集废水样品。
样品采集时要注意使用无机物污染的容器,避免有机污染物污染样品。
采集样品时要遵循标准采样方法,确保采集到的样品能够真实反映废水中石油类物质的含量。
2.2 样品处理采集到的废水样品需要进行预处理,以去除干扰物质并浓缩待测物质。
样品处理方法通常包括提取、浓缩和净化等步骤。
常用的样品处理方法有液-液萃取、固相萃取和薄层色谱等。
3. 石油类物质的分析方法废水中石油类物质的分析方法多种多样,根据待测物质的性质和含量不同,选择不同的分析方法进行分析。
3.1 总石油烃的测定总石油烃是指石油类物质的总量。
常用的测定方法有紫外可见光谱法、气相色谱法和质谱法等。
其中,气相色谱法结合质谱法是目前应用较广泛的方法,可以对各种石油类物质进行定性和定量分析。
3.2 不同石油类物质的分析除了总石油烃的测定外,还可以对具体的石油类物质进行分析。
例如,苯、甲苯、二甲苯等芳香烃的分析可以使用气相色谱法;饱和烃和多环芳烃的分析可以使用高效液相色谱法等。
4. 结果分析与评估完成废水中石油类物质的分析后,需要对分析结果进行分析和评估。
根据分析结果,可以评估废水样品是否符合相关法规和标准的要求,以及对环境和人体健康的影响。
4.1 法规和标准依据根据不同国家和地区的法规和标准,对废水中石油类物质的含量有一定的限制。
通过比较分析结果与法规和标准的要求,可以评估废水样品是否符合规定。
4.2 环境和健康风险评估废水中石油类物质的存在可能对环境和人体健康造成潜在风险。
通过对分析结果的评估,可以确定废水样品对环境和健康的潜在风险程度,并提出相应的控制和治理建议。
5. 结论与建议根据对废水中石油类物质的分析和评估,得出结论并提出相应的建议。
油类污染物性质说明污水中油类污染物的种类按成分可分为由动物和植物的脂肪形成的脂类和石油类。
脂类不是一种特定的化合物。
而是一类半液体物质的总称,其中包括脂肪酸、皂类、脂肪、蜡及其他类似的物质。
石油类通常指原油和矿物油的液体部分,包括汽油、煤油、机油、苯、石蜡等,这些物质都不能成为高级植物和动物的养料。
反而在许多情况下是有毒的,但他们可以被很多微生物所分解利用。
石油开采、炼制、储存、运输或使用石油制品的过程中均会产生含有石油类污染物的污水。
肉类加工、牛奶加工、洗衣房、汽车修理等过程排放的污水中都含有油或油脂。
一般的生活污水中,油脂占总有机质的10%左右,每人每天产生的油脂约15g左右。
就产生的污水量和对水体环境产生的污染程度来看,油类污染物主要是石油类物质。
污水中油类污染物的种类按存在形式可划分为五种物理形态;①游离态油:静止时能迅速上升到液面形成油膜或油层的浮油,这种油珠的粒径较大,一般大于10Oumn,约占污水中油类总量的60% ~80%;②机械分散态油∶油珠粒径一般为10~100μm的细微油滴,在污水中的稳定性不高,静置一段时间后往往可以相互结合形成浮油;③乳化态油∶油珠粒径小于10μmn,一般为0.1~2μm,这种油滴具有高度的化学稳定性,往往会因水中含有表面活性剂而成为稳定的乳化液;④溶解态油:极细徽分散的油珠,油珠粒径比乳化油还小,有的可小到几个nm,也就是化学概念上真正溶解于污水中的油;⑤固体附着油:吸附于污水中固体颗粒表而的油珠。
含有石油类物质的污水进入污水处理厂后,如果石油类物质得不到有效去除。
会影响充氧效果、导致活性污泥中的微生物活性降低。
出水水质难以保证。
尤其是在污水处理采用封闭运行的纯氧曝气工艺时,还可能引起纯氧曝气池内可燃气浓度的增加,使污水处理无法正常运转。
因此,进入到生物处理构筑物混合污水的含油浓度通常不能大于30~50mg/L,否则将影响活性污泥和生物膜中微生物的正常代谢过程。
水体污染的主要污染物详细分类与介绍水是人类赖以生存的重要资源,但由于人类活动和工业化程度的增加,水体污染问题变得日益严重。
水体污染是指水中存在的各种污染物质超过了环境容纳能力,导致水质下降,对人类健康和生态环境产生负面影响。
本文将详细分类和介绍水体污染的主要污染物。
一、有机物污染物有机物污染物是指含有碳元素的化学物质,包括工业废水、农药、化肥、油类、垃圾等。
这些有机物污染物对水体有毒,会破坏水生生物的生态平衡。
以工业废水为例,工业生产过程中排放的有机溶剂、酸碱废水、有机储存垃圾等都会对水体造成严重污染。
二、无机物污染物无机物污染物是指不含有碳元素的化学物质,包括重金属、酸碱物质、盐类等。
其中,重金属是水体污染中较为严重的一类污染物。
铅、汞、镉、铬等重金属对人体有害,会导致慢性中毒和各种疾病。
三、营养物污染物营养物污染物主要是指富营养化的水体,也就是含有过多的氮、磷等营养物质。
造成富营养化的主要原因是农业排放的农药和化肥,以及城市生活污水中的有机废物。
富营养化会导致水华现象,水体中的藻类滋生过多,消耗大量氧气,破坏水体生态平衡。
四、放射性物质放射性物质是指含有放射性元素的化学物质,包括铀、钍、钾等。
放射性物质来自于核电站的废水排放、医疗放射性物质的废弃物等。
这些物质会引起水体中放射性污染,对人体健康产生潜在威胁,也会对水生生物造成伤害。
五、微生物污染物微生物污染物主要是指细菌、病毒、寄生虫等微生物。
这些微生物主要来自于生活污水和工业废水。
若饮用受微生物污染的水会引发肠道传染病,对人类健康造成严重危害。
微生物污染物是水体污染中比较普遍和常见的一种。
六、油类污染物油类污染物是指石油和石油制品在水体中的存在。
石油的泄漏和排放都会导致水体中油类的污染。
油类会降低水体的溶氧量,破坏水体生态环境,对水生生物造成伤害。
总结起来,水体污染主要有机物污染物、无机物污染物、营养物污染物、放射性物质、微生物污染物以及油类污染物等。
论文目录1 水体油类污染物来源、分类和危害 (3)1.1 水体油类污染物来源 (3)1.2 水体油类污染物的分类 (3)1.3 水体油类污染物的危害 (4)1.3.1 油类污染物对水体性质的影响 (4)1.3.2 油类污染物对渔业的影响 (4)1.3.3 油类污染物对水生动物的影响 (5)1.3.4 油类污染物对人体的影响 (5)2 水体中含油污水的处理技术 (5)2.1 物理法 (5)2.2 化学法 (6)2.3 物理化学法 (6)2.4 生物化学法 (7)3 对油类废水治理的展望 (7)参考文献 (7)水体中油类污染物的综述摘要:综述了水环境中石油类污染物的来源,分类以及对水体性质、水生动植物以及人体的危害情况。
概述了含石油类污染物废水处理中几种常用技术,并对各类方法的应用进行了分析和评价, 并分析了水中油类污染物物处理技术方法的研究趋势和应用前景。
关键词:水体、油类污染物、危害、处理技术石油具有“黑色黄金”、“经济血液”之美称,广泛应用于国民经济的各个领域。
伴随着我国经济的快速发展和对能源需求的增加,其应用范围还在继续拓展,消耗量也日趋增大。
在原油的开采、加工、运输以及各种炼制油的大量使用过程中,由于工艺水平和处理技术的限制,大量含油类物质的废水、废渣不可避免地排入水体,随之产生的环境污染问题也越来越严重。
油在水体环境中的大量存在会对水体生态系统造成严重的危害,而水体油污染问题处理的好坏直接关系到自然生态环境及经济的持续发展[1]。
社会各界对这一问题的处理极为关注。
可见,全面了解石油环境安全性及其废水的处理技术对推动石油工业的持续发展具有重大意义。
1 水体油类污染物来源、分类和危害1.1 水体油类污染物来源油类通过不同途径进入水体环境形成含油污水.含油污水是一种量大、面广且危害严重的污水.全世界每年有500 ~ 1 000 万T[1]石油通过各种途径进入水体。
按其来源可分为: 自然来源( 约占8%) 和人类活动来源( 约92%) 。
自然来源主要海底、大陆架渗漏,含油沉积岩缺损等。
人类活动来源主要有油轮事故和海上石油开采的泄漏与井喷事故,港口和船舶的作业含油污水排放、石油工业的废水及餐饮业、食品加工业、洗车业排放的含油废水等[2]。
1.2 水体油类污染物的分类油类污染物进入水环境后经过迁移、转化和氧化降解等过程而使得水体中油含量普遍降低。
油类产品中一般有30% ~ 40%的可挥发物; 在阳光的照射下,油类污染物会发生不同程度的光氧化分解,特别在低温时,光照对油类污染物的氧化影响更大,分解程度可高达50%; 油类污染物在水体中迁移和转化主要决定于油层的厚度、油水的混合情况、水温和光辐射强度,在强烈的光辐射下可以有小于10% 的油被氧化成可溶性物质溶入水中。
此外,微生物的作用也是十分重要的,特别是在沉积层中的通气降解更为重要。
留在水面上的油类污染物,因光照条件( 光催化、自动氧化) 、温度、氧化微生物的含量和水文气象条件的不同,在水体中的残留时间可变动到几周至几十年之间。
经过上述风化过程,油类污染物在水体中通常以四种状态存在: 即浮油、乳化油、溶解油和凝聚态的残余物( 包括海面漂浮的焦油球以及在沉积物中的残余物)。
油品在水中分散颗粒较大,粒径大于100μm 称为浮油,这种油占水中总含油量的60% - 80%,是水中油类污染物的主要部分,易于从水中分离出来.油品在水中分散的粒径很小,呈乳化状态,称为乳化油,乳化油比较稳定,不易从水中分离出来。
小部分油品在水中呈溶解状态,称为溶解油,溶解度为5 - 15mg /L。
石油产品不同于其它溶解性物质,它粘滞性大于水,比重小于水,在水中的溶解度较小。
因此工业废水中的矿物油基本上是由两大部分组成,一部分以油膜状态浮于水面,油膜厚度与水中油的含量有关; 另一部分呈乳化状态溶于水中或吸附于悬浮微粒上[3]。
1.3 水体油类污染物的危害1.3.1 油类污染物对水体性质的影响水体石油污染指石油进入河流、湖泊或地下水后,其含量超过了水体的自净能力,使水质和底质的物理、化学性质或生物群落组成发生变化,从而降低水体的使用价值和使用功能。
石油类污染物在进入水体后,会在水面上形成厚度不一的油膜。
据测定,每滴石油在水面上能形成0.25m2的油膜,每吨石油能覆盖5×106m2的水面[ 4 ]。
油膜使水面与大气隔绝,使水中溶解氧减少,从而影响水体的自净作用,致使水底质变黑发臭。
油膜、油滴还可贴在水体中的微粒上或水生生物上,不断扩散和下沉,会向水体表面和深处扩展,污染范围愈扩愈大,破坏水体正常生态环境。
另外,水面浮油还可萃取分散于水体中的氯烃,如狄氏剂、毒杀芬等农药和聚氯联苯等,并把这些毒物浓集到水体表层毒害水生生物。
1.3.2 油类污染物对渔业的影响石油污染破坏水体环境给渔业带来的损害是多方面的。
首先是石油污染能破坏渔场,沾污鱼网、养殖器材和渔获物,水体污染可直接引起鱼类死亡,造成渔获量的直接减产。
其次表现为产值损失,油污染能使鱼虾类生物产生特殊的气味和味道,而且这些气味和味道无论采取怎样的加工方法都无法消除,因此可降低水产品的食用价值,严重影响其经济利用价值。
当海水中的石油含量为0.01 mg/L 时,在24 h内即可使鱼、虾、贝类产生异味。
人们在食用受石油烃衍生出的致癌物质特别是多环芳烃污染的水产品时,这些致癌物质可通过食物链的传递危及人体的健康和安全。
另外,水体石油污染还会造成相当大的社会和经济损失,如影响到旅游和娱乐。
1.3.3 油类污染物对水生动物的影响水体中的石油类污染物主要通过动物呼吸、取食、体表渗透和食物链传输等方式富集于动物体内。
水体中石油类污染物含量为0.01~0.10mg/L 时,会对水生动物产生有害影响,导致其中毒。
水体中石油类污染物对水生动物的毒性按鱼、贻贝、棘皮类动物、甲壳纲动物依次递增。
海洋生物的幼体,对石油污染都十分敏感,这是因为它们的神经中枢和呼吸器都很接近其表皮且表皮都很薄,有毒物质很容易侵入体内,而且幼体运动能力较差,不能及时逃离污染区域。
另外,石油中有些烃类与一些海洋动物的化学信息(外激素)相同,或是化学结构类似,从而影响这些海洋动物的行为。
1.3.4 油类污染物对人体的影响石油一般可以通过呼吸、皮肤接触、食用含污染物的食物等途径进入人体,能影响人体多种器官的正常功能,引发多种疾病。
经常受到石油类污染的孩子患急性白血病的风险要高出平均水平4倍,患急性非淋巴细胞白血病的几率是普通孩子的7 倍。
石油类污染物污染的附近区域, 儿童皮肤碱抗力明显减弱、白细胞下降、贫血率上升、肺功能受到影响,一般人的肝肿概率显著高于对照区居民,恶性肿瘤尤其是消化系统恶性肿瘤标化死亡率明显高于对照区。
石油的浓度是考察其毒性的关键因子,不同组分的石油其毒性效果也不一样,随着石油浓度的升高和暴露时间的延长,其毒性增强。
2 水体中含油污水的处理技术石油污染物进入水体后,在环境条件等因素的作用下,其组成性质和存在形式都会有所变化。
一般来讲,石油类污染物主要以漂浮油、分散油、乳化油、溶解油、油- 固体物等5 种状态存在于水中。
水体石油污染的处理既要去除废水中的大量石油类物质,同时也要考虑降低废水的化学需氧量(COD)和生物需氧量(BOD)等,其有效性和经济性应以石油等污染物的去除率或转化率、残留量为比较基准。
不同类型的含油污水要采用不同的处理方法,目前国内外含油污水的处理技术按处理原理可分为4 种:物理法、化学法、物理化学法和生物化学法。
2.1 物理法物理处理法的重点是去除含油污水中的矿物质和大部分固体悬浮物、油等。
包括重力分离、离心分离、粗粒化、过滤、膜分离等方法。
重力分离法是初级处理方法,它利用油和水的密度差及油和水的不相溶性,在静止或流动状态下实现油珠、悬浮物与水的分离。
离心分离法是使装有采油污水的容器高速旋转,形成离心力场,因油粒和污水的性质不同,受到的离心力也不同,相对密度大的水受到较大的离心作用被甩到外侧,相对密度小的油珠则被留在内侧,并聚结成大的油珠而上浮达到分离目的。
粗粒化法是利用油- 水两相相对于聚结材料亲和力的不同来进行分离,当含油污水流经过一些疏水亲油物质时,油珠在其润湿、聚结、碰撞聚结、截流、附着等联合作用下聚集成较大的油滴。
过滤法是将含油污水通过设有孔眼的装置或通过由某种介质组成的滤层,使污水中的悬浮物得以去除,主要是利用颗粒介质的截流、惯性碰撞、筛分、表面黏附、聚并等作用,将水中油分除去。
膜分离法是利用膜的选择透过性对采油污水进行分离和提纯的方法,其机理是用1张(或1对)多孔滤膜,利用液- 液分散体系中两相与固体膜表面亲和力不同而达到分离的目的[6]。
2.2 化学法化学处理法主要用于处理含油污水中不能单独用物理方法或生物方法去除的一部分胶体和溶解性物质,常用的方法有化学破乳法、化学氧化法等。
化学破乳法包括盐析法、酸化法、凝聚法。
由于乳化油呈稳定状态,要达到油水分离首先要破乳,即向水中投入化学药剂,药剂在水中水解后形成带正电荷的胶团,与带负电荷的乳化油发生电中和作用,以降低其表面电位,再经过处理使油粒聚集,粒径变大,使浮力随之增大,从而达到油水分离的目的。
化学氧化法能将污水中呈溶解态的无机物和有机物转化为微毒、无毒物质或转化成容易与水分离的形态。
氧化法又可分为氧化剂氧化法、电解氧化法和光化学催化氧化法。
氧化剂氧化法是指利用强氧化剂氧化分解污水中的油和COD 等污染物质以达到净化含油污水的一种方法。
电解氧化法是指在污水中插入电极并通过直流电,使污水中的油和COD等污染物质在阳极发生电氧化作用或与电解所产生的氧化性物质发生作用以达到净化含油污水的一种方法。
光化学催化氧化法是采用半导体材料利用太阳光能或人造光能以达到净化含油污水的一种方法[7]。
2.3 物理化学法物理化学法主要包括气浮法、吸附法、电化学法、超声波分离法等,这些方法一般都具有适应性较强、选择性广的优点。
气浮法是依靠气泡表面吸附油粒或悬浮物以达到分离的目的,在含油污水中通入空气或其他气体产生微细气泡,使水中的一些细小悬浮油珠及固体颗粒附着在气泡上,形成水- 气- 油粒三相混合体系,随气泡一起上浮到水面形成浮渣,然后使用适当的撇油器将油撇去。
吸附法是利用吸附剂的多孔性和大的比表面积,将含油污水中的溶解油和其他溶解性有机物吸附在表面从而实现分离。
超声波分离法是当超声波通过含油污水时,会使微小油滴与水一起振动,而由于大小不同的粒子具有不同的相对振动速度,油滴将会相互碰撞、黏合,使其体积增大,随后变大的粒子不能随声波振动,只作无规则运动,最后水中的油滴凝聚并上浮,再用其他设备分离。
电化学法包括电凝聚、电气浮和电火花法。
电凝聚是利用溶解性电极电解含油污水,从溶解性阳极溶解出金属离子,金属离子水解生成氢氧化物,它能吸附和凝聚乳化油与溶解油,沉淀后除去油。