带钢的板形自动控制
- 格式:ppt
- 大小:707.00 KB
- 文档页数:41
热轧带钢生产中的板形控制是指通过有效的生产工艺和控制措施,使得热轧带钢的板形达到设计要求,保证其质量和使用性能。
板形是指热轧带钢在轧制过程中产生的纵横向偏差,包括厚度不均匀、横向偏斜、波浪形状等。
合理的板形控制不仅能提高产品的表面质量、平坦度和尺寸精度,还能减少废品率和提高生产效率。
本文将从板形控制的重要性、主要影响因素和改善措施等方面进行分析和探讨。
一、板形控制的重要性热轧带钢的板形控制对产品质量和性能至关重要,具有以下重要性:1. 保证产品的平整度和尺寸精度。
合理的板形控制可以减少热轧带钢在轧制过程中产生的纵横向偏差,从而提高产品的平整度和尺寸精度,确保产品符合设计要求。
2. 改善产品的表面质量。
板形不均匀会导致带钢表面产生波浪、皱纹等缺陷,降低产品的表面质量。
通过有效的板形控制,可以减少这些缺陷的发生,提高产品的表面光洁度和平坦度。
3. 减少废品率和提高生产效率。
不合格的板形会导致产品剪切不良、卷取不良等问题,增加废品率。
通过优化板形控制,可以减少废品率,提高产品的一次成型合格率,提高生产效率。
二、主要影响因素热轧带钢的板形受到多个因素的影响,主要包括以下几个方面:1. 轧制工艺参数。
轧制工艺参数对板形的影响是最直接和关键的。
包括轧制温度、轧制速度、带材的展宽比、轧辊的形状等。
合理的调整和控制这些参数,可以有效地改善板形。
2. 带钢的翘曲性能。
带钢的翘曲性能取决于材料的力学性能和内应力状态。
当带钢的翘曲性能较差时,易出现板形不佳的现象。
3. 轧机设备的状态。
轧机设备的磨损程度、轧辊的偏差和挠度等都会对板形产生影响。
定期检查和维护轧机设备,保持其正常状态,对于控制板形至关重要。
4. 轧机辊系布置。
轧机辊系布置的合理性会对板形产生直接影响。
轧机辊系的过柱、过程和反曲等布置方式,可以通过对带材的实际形变过程进行控制,达到改善板形的效果。
三、改善措施为了控制热轧带钢的板形,可以采取以下措施:1. 合理调整和控制轧制工艺参数。
热轧带钢生产中的板形控制是保证产品质量的关键环节之一。
板形控制主要包括轧制工艺参数的调整和辊系结构的优化两方面。
本文将从这两个方面进行详细的介绍。
一、轧制工艺参数的调整1. 温度控制:热轧带钢的温度对板形控制有着重要影响。
过高的温度会导致带钢热膨胀,从而产生较大的板凸度;过低的温度则会导致带钢冷却过快,使得带钢变形不均匀。
因此,必须对热轧带钢的温度进行精确控制,确保其在适宜的温度范围内进行轧制。
在实际生产中,可以通过控制热轧带钢的加热温度、热轧温度和冷却方式等来实现温度控制。
可以采用先控制热轧带钢的加热温度,确保钢坯达到适宜的温度范围,然后通过控制热轧带钢的入口温度和轧制温度来进一步调整温度进行控制。
同时,还可以优化冷却方式,如采用水冷、风冷等方法进行冷却,以达到更好的板形控制效果。
2. 速度控制:热轧带钢的速度对板形控制同样具有重要影响。
速度过快会导致拉伸应力过大,从而使板形产生波状或弓形变形;速度过慢则会导致带钢在轧制过程中受到过多的应力作用,导致板形不稳定。
因此,在热轧带钢的生产过程中,需要对轧制速度进行合理的控制。
可以通过调整轧机的传动装置、辊道的排列方式、模块的配比等来实现速度控制。
同时,还可以通过控制轧机的压下量、变形度等工艺参数来进一步调整速度进行控制。
3. 张力控制:热轧带钢的张力对板形控制同样具有重要影响。
张力过大会导致带钢产生不均匀的塑性变形,从而使板形产生波状或弓形变形;张力过小则会导致带钢发生塑性回弹,导致板形不稳定。
因此,在热轧带钢的生产过程中,需要对张力进行精确的控制。
可以通过调整轧机的辊道间隙、调整轧机的压下量、调整轧机的传动装置等来实现张力控制。
同时,还可以采用张力控制系统进行实时的张力监测和调整,以确保带钢在轧制过程中保持适宜的张力。
二、辊系结构的优化1. 辊系选择:辊系的选择对板形控制具有重要影响。
辊系的结构参数、辊型和辊材质等都会对板形产生影响。
合适的辊系选择可以实现板形的稳定控制,提高产品的表面质量和机械性能。
板形自动控制系统1板形1.1板形板形是板带的重要质量指标,主要包括板带的平直度,横截面凸度(板凸度)、和边部减薄量三项内容。
1.1.1板形平直度是指板带纵向形状平直度,即板带纵向有无波浪形。
其实质是板带内部产生了不均匀的残余应力。
例如:我们在生产过程中常见的边波,主要是由于在轧制过程中板带纵向延伸量的不均匀造成的。
当板带两边压下量大于中部时,板带两边延伸量较大,就产生了边波,如图1.1。
我们在生产过程中当边波出现,通常采用用加大张力的方法来消除边波。
冷轧带钢平直设备设计指标如表1.1。
图1.1表1.1冷轧带钢平直度设备设计指标。
带钢厚度范围(mm)带钢宽度(mm)1000~15000.2~0.6 9Unit0.5~1.0 8Unit1.0~1.5 6Unit1.1.2板凸度板凸度分为绝对板凸度和相对板凸度。
绝对板凸度是带板沿厚度方向中心处厚度与边部厚度的厚度差。
我们生产中的来料钢卷中高在五丝以内。
相对板凸度是将绝对板凸度除以板带的平均厚度。
带板在轧制过程中能够均匀延伸时,轧后板带绝对板凸度较轧前板带绝对凸度缩小一个延伸率,就能够获得良好的平直度。
1.1.3边部减薄量边部减薄是在板带轧制时发生在轧件边部的一种特殊现象。
考虑这一现象后的板带横断面在接近板带边部处,其厚度突然减小,这种现象称为边部减薄。
故严格来说,实际的板凸度是针对除去边部减薄区以外的部分来说的。
边部减薄量也是板形的一个重要指标。
边部减薄量直接影响板带边部切损的大小,与成材率有密切关系。
我们生产的钢卷边部10~30公分为板型做松区,也就是边部减薄区。
发生边部减薄现象的主要原因有两个:1)轧件与轧辊的压扁量,在轧件边部明显减小。
2)轧件边部金属的横向流动要比内部金属容易,这进一步降低了轧件边部的轧制力与其轧辊的压扁量,使轧件边部减薄量增加。
2板形控制2.1板形控制目的板形调控的目的是要轧制出横向厚差均匀和外形平直的板带材。
2.2板形控制分类板形控制系统分为闭环板形控制系统、开环板形控制系统和复合板形控制系统。
热轧带钢线板形控制研究[摘要]:在热轧带钢的生产中,板形问题是经常出现和必须加以控制的问题。
随着客户对热轧带钢要求的不断提升,以及热轧带钢产品薄规格化。
如何提高板形质量,成为了热轧带钢产品质量提升的重要影响因素。
也是各轧钢厂需长久研究的课题。
[关键词]:热轧带钢板形分类控制研究中图分类号:tg333.7+1 文献标识码:tg 文章编号:1009-914x(2012)20- 0010-01热轧卷板【hot rolled coils 】是以板坯(主要为连铸坯)为原料,经加热后由粗轧机组及精轧机组制成带钢。
从精轧最后一架轧机出来的热钢带通过层流冷却至设定温度,由卷取机卷成钢带卷,冷却后的钢带卷,根据用户的不同需求,经过不同的精整作业线(平整、矫直、横切或纵切、检验、称重、包装及标志等)加工而成为钢板、平整卷及纵切钢带产品。
由于热连轧钢板产品具有强度高,韧性好,易于加工成型及良好的可焊接性等优良性能,因而被广泛应用于船舶、汽车、桥梁、建筑、机械、压力容器等制造行业。
板形是热轧板带产品的一项重要的质量指标。
板形包括带钢整体形状(横向、纵向)以及局部缺陷。
带钢的截面形状(profile)和平直度(flatness)是描述板形的两个重要方面。
截面形状反映的是带钢沿板带宽方向的几何外形,平直度反映的是带钢沿长度方向的平坦形状。
截面形状和平直度是相互影响,相互转化的,共同决定了带钢的板形质量。
1.热轧带钢的板形分类板形直观来说是指板带材的翘曲度,其实质是板带材内部残余应力的分布。
只要板带材内部存在残余应力,即为板形不良。
如残余应力不足以引起板带翘曲,称为“潜在”的板形不良;如残余应力引起板带失稳,产生翘曲,则称为“表观”的板形不良。
(1)理想板形。
理想板形应该是平坦的,内应力沿带钢宽度方向上均匀分布。
当去除带钢所受外应力和纵切带钢时,热轧带钢板形仍然保持平直。
(2)潜在板形。
潜在板形产生的条件是内部应力沿带钢宽度方向上不均匀分布,但是带钢的内部应力足以抵制带钢平直度的改变。
《UCM冷连轧机薄带钢轧制板形控制的研究及有限元仿真》篇一一、引言随着现代工业的快速发展,冷连轧机在钢铁生产中扮演着越来越重要的角色。
特别是对于薄带钢的生产,轧制板形控制成为了决定产品质量的关键因素之一。
UCM冷连轧机作为一种先进的轧制设备,其轧制板形控制技术的研究对于提高产品质量、优化生产流程具有重要意义。
本文旨在研究UCM冷连轧机薄带钢轧制板形控制技术,并利用有限元仿真进行验证和分析。
二、UCM冷连轧机薄带钢轧制板形控制技术研究1. 轧制板形控制原理UCM冷连轧机薄带钢轧制板形控制主要是通过调整轧机的辊缝、轧制速度、轧制力等参数,以实现对带钢板形的有效控制。
其原理主要基于塑性变形理论、弹塑性力学以及金属材料的流动特性。
在轧制过程中,通过合理调整这些参数,可以控制带钢的横向流动和纵向延伸,从而达到控制板形的目的。
2. 影响因素分析影响UCM冷连轧机薄带钢轧制板形控制的因素较多,主要包括原料厚度、原料宽度、轧辊转速、轧制力、温度等。
这些因素对带钢的轧制过程、金属流动以及板形产生重要影响。
因此,在控制板形时,需要综合考虑这些因素的影响。
三、有限元仿真分析为了更好地研究UCM冷连轧机薄带钢轧制板形控制技术,本文采用有限元仿真方法进行验证和分析。
有限元法是一种有效的数值模拟方法,可以模拟复杂的金属轧制过程,并对轧制过程中的应力、应变、温度等参数进行精确计算。
1. 模型建立根据UCM冷连轧机的实际结构和工艺参数,建立相应的有限元模型。
模型包括轧机、轧辊、带钢等部分,并考虑了材料属性、接触条件、摩擦条件等因素。
2. 仿真过程及结果分析在有限元模型的基础上,对UCM冷连轧机的轧制过程进行仿真。
通过调整辊缝、轧制速度、轧制力等参数,观察带钢的轧制过程和板形变化。
通过对仿真结果的分析,可以得出不同参数对板形的影响规律,为实际生产提供指导。
四、实验验证及结果分析为了进一步验证有限元仿真的准确性,本文进行了实际生产实验。
热轧带钢板形控制一、 板形基本概念板形是指成品带钢的断面形状和平直度两项指标,二者都是标志带钢质量的重要指标,并且在生产中有着密不可分的联系。
1、断面形状断面形状是带钢厚度沿板宽方向的分布情况,如图1所示。
在实际生产中,以凸度来简单表示,如下式:e c h h -=δ式中:δ——带钢凸度。
h c ——带钢中部厚度。
h e ——带钢两边厚度平均值(由于存在“边部减薄”现象,一般取距带钢边部25~50mm 处的厚度作为边部厚度)。
2、平直度平直度指标表示带钢是否存在翘曲及翘曲的程度,即浪形,见图2。
可用以下几种方法表示:(1) 相对波峰值表示法%1000⨯=L hλ式中:h 、L 0——分别表示浪高和浪距。
(2) 相对长度差表示法相对长度差表示波浪部分的曲线长度对于平直部分标准长度的相对增长量。
可用下式表示:I L L x L x 5010)()(⨯-=ε 式中:L(x)——宽度方向任一点x 上的波浪弧长I ——表示平直度的单位,1I 单位相当于1m 长的带材中有10μm 的相对长度差。
图1 带钢横断面形状图2 带钢浪形示意图另外,还有张力差表示法、向量表示法和带钢断面的多项式表示法等。
二、 板形控制原理 1、凸度控制在带钢轧制过程中,其断面形状最终将取决于两工作辊间的辊缝形状。
因为辊缝形状由工作辊辊型曲线决定,所以,凡是影响工作辊辊型曲线形状的因素都会改变带钢的断面形状。
影响带钢凸度的因素有:(1) 工作辊原始凸度; (2) 工作辊热凸度; (3) 工作辊磨损凸度;(4) 工作辊在轧制力及弯辊力作用下产生的弯曲挠度;(5) 工作辊在不均匀分布的轧制力作用下沿板宽方向产生的弹性压扁。
控制带钢凸度(即控制工作辊辊缝形状)的方法因轧机的技术装备水平不同而不同。
(1) 以原始辊型设计为基础,合理地编制轧制规程。
通过合理分配各架轧机的负荷,来补偿因轧辊热凸度、磨损凸度和弹性变形而带来的辊缝形状的改变。
鞍山师范学院学报J ou rna l of A nshan N or m a l U n iversity2005204,7(2):41-43冷轧板带机运行中的板形控制史 华(鞍钢职工大学机械系,辽宁鞍山114002)摘 要:分析了热轧过程、冷轧、轧机压下量均匀程度、轧辊变形、压扁量与金属恒流动等影响板材板型的主要因素;介绍了采用液压AGC系统控制板厚及板形、通过轧辊有载辊缝的控制进行板形控制、采用板形控制新技术和采用新型轧机等板形控制的途径和方法.关键词:板形控制;冷轧板带机;轧制中图分类号:TG333.7+2 文献标识码:A 文章篇号:100822441(2005)022*******The Shape Con trol of Runn i n g Cold2rolli n g Str i p M illSH I Hua(D epart m ent of M echanical,A ngang College forW orkers and S taff,A nshan L iaoning114002,China)Abstract:Analyze the main fact ors that affect shape of stri p by hardness homogeneity of r ollbody,r oller out of shape,flattering a mount,metal’s fl owing side ways during the hot r olling p r ocessand cold r olling p r ocess;I ntr oduce t o app ly hydraulic p ressure syste m AGC t o contr ol shape ofstri p and thickness of stri p,contr olling shape thr ough contr olling r oller sea m;app ly ne w technol ogyof shape contr ol and app ly ways and methods of ne w2type r olling m ill’s shape contr ol.Key words:Shape contr ol;Cold2r olling stri p m ill;Rolling 板材轧制过程就是轧机的弹性变形和轧件的塑性变形以取得预期的合格型材的过程.板形是板带的重要指标,包括板带的平直度、横截面凸度(板凸度)、边部减薄三项内容.随着仪表、电器、装备制造业、汽车及轻工业的发展,对板带的板形要求日趋严格.自上世纪60年代开始研究板形以来,为提高产品的精度和成材率,在技术上,研制了各种新型轧机,开发了新工艺、新的检测手段和控制系统;在基础理论上,对板形控制的数学模型进行了深入细致的研究,用计算机模拟轧钢过程,对轧后板形和横向厚差进行精确的设定、预测和控制.本文讨论冷轧带钢机轧制过程中的板形控制问题.1 轧机运行中对板形的影响因素1.1 热轧过程在热轧过程中,金属的晶粒被破碎,同时发生再结晶,再结晶晶粒大小取决于轧制温度、时间和变形程度.通常带钢边沿比中部冷却快,这一区域易生成一种高硬度的不完全再结晶铁素体组织而形成硬度沟,冷轧时延伸困难.两个区域延伸反差很大,导致了带钢内应力的上升,一旦内应力超过带钢的屈服极限,硬沟处便呈现封闭形状的小边浪.1.2 冷轧由于轧制力的作用,轧钢机轧制时工作机座产生一定的弹性变形.机座变形与轧制力有关,在轧制过程中的轧制力有波动,则在一定原始辊缝下,机座的弹性变形也有一定波动.使得轧件沿长度方向的收稿日期:2004-05-21作者简介:史华(1971-),女,辽宁鞍山人,鞍钢职工大学讲师.24鞍山师范学院学报第7卷厚度发生变化,产生了纵向厚度偏差;如果波动沿宽度方向不均匀变化,将使轧件产生横向偏差,并导致板形的变化.1.3 轧机压下量均匀程度如果热轧板带坯料板形良好,在冷轧过程中产生的板带波浪形或瓢曲形,主要决定于板带轧制时纵向延伸的不均匀程度.当板带两边压下量大于中部时,板带两边的延伸量较大,就产生了边浪,如果中部压下量大于边部,使中部的延伸量较大时,则产生中部浪形.1.4 轧辊变形在轧件塑性变形的同时,轧辊也发生弹性变形.轧件的变形热和磨擦热,导致轧辊也发生热变形.此外,由于轧制过程中产生轧辊磨损、轧辊辊缝形状不匀,造成带钢沿宽度方向上延伸分布不匀.轧辊本身有可能质量不高,形成辊面软点、辊面压痕,都会对板形产生影响,尤其是在板面凸度上的影响[1].1.5 压扁量与金属横流动对板形的影响有些板带横断面在接近板边部厚度突然减小,这一现象称为边部减薄,边部减薄量直接影响板边部切损的大小,与成才率有密切关系.发生边部减薄现象主要原因有:(1)轧件与轧辊的压扁量在轧件边部明量减小;(2)轧件边部金属的横向流动要比内部金属容易得多,这也进一步降低了轧件边部的轧制力及其与轧辊的压扁量,使轧件边部减薄量增加.2 控制板形的基本途径以往对冷轧板形的研究,只注重冷轧的过程,主要集中在轧制过程中轧辊系统的弹性变形、轧辊的磨损、热凸度以及变形区中金属塑性变形等.事实上,冷轧带钢的生产要经过冶炼—连铸—热轧—酸洗—冷轧—退火—平整—涂层—剪切包装等诸多工序.其中热轧、酸洗、冷轧、退火及平整等工序对带钢的板形有直接影响.热轧过程中带钢的板形及带钢性能在宽度方向上和轧制方向上的控制、酸洗的拉矫过程、冷轧过程的板形控制、连续退火时温度和张力的控制、平整机的板形控制及涂层前的拉矫等构成了一个全过程的复杂的冷轧板形控制系统.在这个系统中,前一个工序的出口板形影响后一个工序的板形.所以,带钢的最终板形不可能单独由系统中的某一个工序或某一设备所决定,而由整个系统决定.(1)热轧过程中,根据钢种不同,设定热轧目标终轧温度.必要时还要提高钢坯的出炉温度,确保热轧带钢的边部终轧温度控制晶粒均匀成长,尽量消除硬度沟的影响,为冷轧提供较为合适的板形.尤其是热轧后部设立平整机,通过在热状态下,平整机的拉伸矫平,消化板形缺陷.(2)在选择机型方面从根本上改善冷轧板形.如目前国际上HC系列冷轧机,CVC轧机、PC轧机和VC轧机等,均为采用了板形控制新技术的装备.(3)当轧机的机型及设置已经确定,控制策略和控制系统的结构将对板形好坏起着决定性的作用.现代化的冷连轧机,大多由4~6个机架组成.在末机架设置板形测量辊,实现在线闭环控制,关键是有效控制前道机架的出口板形,确保进入末机架带钢板形缺陷不超出末机架的控制能力.(4)冷轧机下游工序设备的板形控制.通过卷取机张力辊的拉力作用改善带钢的不平直度,平整机在平整过程中改善原先冷轧过程中发生延伸不均匀的纤维条.3 冷轧过程对板形控制的主要方法3.1 采用液压AGC系统控制板厚及板形为了实现轧件的自动测厚控制(简称AGC),使得纵向板形得以实现平直度,在现代板带轧机上,一般装有液压压下装置.采用液压压下的自动厚度控制系统,通常称为液压AGC.AGC系统包括:(1)测厚部分,检测轧件的实际厚度;(2)厚度比较和调节部分,将检测得到的轧件实际厚度与轧件的给定厚度比较,得出厚度差;(3)是辊缝调节部分,根据辊缝调节量讯号,通过压下装置对辊缝进行相应的调整,以减少或消除轧件的厚差,保持板形的恒定.3.2 通过轧辊有载辊缝的控制,进行板形控制如果轧制时各影响因素稳定,则通过合理的轧辊原始辊型设计,可获得良好的板形.但在轧制过程中,各因素在不断变化,需要随时补偿这些变化因素对轧辊有载辊缝形状的影响.因此,按照轧制过程中实际情况,必须随时改变辊缝凸度,这就产生了辊温控制法和液压弯辊控制法.温控制法是人为地沿轧辊辊身长度方向进行冷却或加热,使辊温发生变化改变轧辊凸度,来适应板形控制需要.液压弯滚辊法是将液压缸压力作用在轧辊辊颈处,使轧辊产生附加弯曲,以补偿由于轧制力和轧辊温度等同步变化而产生的轧辊有载辊缝的变化,以获得良好的板形.液压弯辊法能迅速改变辊缝形状,具有较强的板形控制能力,是板形控制的最有效方法.3.3 采用板形控制新技术板形控制新技术的基本原理有:(1)增加有载辊缝的刚度.轧制过程中,轧制力发生波动而仍然能保持有载辊缝形状的稳定性,有利于减小轧后板带板形波动.有载辊缝在轧制时的稳定性可用辊缝刚度系数来表示:Ks =Δq /ΔCR 式中Δq 为单位板宽轧制力的波动量,ΔCR 为辊缝凸度CR 对应于q 的波动量采用提高辊缝系数Ks 来增加板形控制能力的辊缝,视为刚性辊缝型,如:采用工作辊或中间辊(六辊轧机)游动来调节轧制力分布,从而提高了辊缝刚度.(2)加大轧辊辊缝(或有载辊缝)的调节范围.一般四辊轧机,工作辊原始辊型确定后是一定的,显然不能适应各种轧制情况.为了使其(或有载辊型)能适应轧制情况的变化而作相应的变化,应采用加大轧辊原始辊缝调节范围来控制板型,这就是柔性辊缝型.当前,从工艺技术方面改善板形控制已臻于成熟.现有的轧制设备和轧制工艺上的不断改进,使冷轧板带板形控制得到了一定程度上的解决.但板型控制新技术和从控制板型的新型轧机上取得预期的板形控制结果,已成为一种发展趋势.3.4 采用新型轧机,从根本上改善轧机运行中的板形控制(1)目前国际上流行CVC 轧机、PC 轧机和VC 轧机,它们的共同特点是:通过轧辊轴向抽动或摆角位置来改变原始辊缝状态,以实现无极辊缝调整,从而实现板形控制,为柔性辊缝型[2].我国自行研制开发的XGK 型轧机,对传统轧机提出了挑战.它采用了辊系准刚性、消差性、可宽性、不需弯辊和抽辊等新技术,在控制上不需AGC 、APC 等大小闭环等复杂的控制系统,能够生产出横厚差小于±1μm ,纵向厚差小于±2μm 的高精度产品[3].4 结 语轧钢设备运行中的板形控制是一个极其复杂的系统工程.冷轧带钢板形受各工序的影响,必须从整个系统进行全面控制,单一采用何种新型轧机不能代替.在已有的传统轧机运行中,以液压AGC 、弯辊装置等工艺方法改善板形控制是必要的,在一定时期内仍将做为板形控制的主要方法.但在冷轧机组新建或更新技术改造中,采用新机型,从设备改进上入手,使轧制过程中的板形控制登上一个新的台阶,亦是冶金行业发展的趋势.参考文献:[1]陈贻宏.350冷轧机钢度测量研究[J ].武汉钢铁学院学报,1996,(增刊):40-47.[2]傅作宝.冷轧薄钢板生产[M ].鞍山:冶金工业出版社,1996.[3]张凤泉.HC W 轧机辊系变形的有限元计算[J ].钢铁,1992,27(11):28-32.(责任编辑:陈 欣)34第2期史 华:冷轧板带机运行中的板形控制。
1板形调节1.1功能介绍精轧板形调整是精轧生产过程的重要内容,操作工需要观察精轧出口和机架间板形情况,对带钢板形做出迅速的判断并及时加以干预,保证获得良好的带钢平坦度。
1.2监控画面板形调节监控画面如下:1.2.1监控内容板形调节画面中的监控内容有:1.2.2操控内容板形调整操作台如下所示:操作步骤:1.根据需要,点击模式选择按钮,选择【自动】或【手动】控制方式2.分别点击【弯辊调节】、【窜辊调节】、【辊缝调节】和【分段冷却】按钮,开启所有控制模块;3.自动模式下,系统会自动完成板形调整;4.手动模式下,按以下步骤操作;a)根据板形曲线和板形反馈参数,判断当前板形缺陷类型(中浪、单边浪或者双边浪);b)中浪时,点击【工作辊弯辊】-【减小】、【中间辊弯辊】-【减小】以及【中间辊窜辊】-【增大】进行调整;c)双边浪时,点击【工作辊弯辊】-【增大】、【中间辊弯辊】-【增大】以及【中间辊窜辊】-【减小】进行调整;d)单边浪或楔形时,通过点击辊缝倾斜按钮进行调节;5.当板形反馈参数A和B的绝对值,分别小于或等于板形目标参数A和B时,调整完成。
2换辊2.1功能介绍轧制过程中,轧辊会持续产生磨损,磨损量达到一定的程度会影响带钢的板形和表面质量,因此冷连轧生产过程中要定期更换轧辊。
2.2监控画面换辊监控画面如下:2.2.1监控内容换辊画面中的监控内容有:2.2.2操控内容换辊操作台如下所示:换辊操作:1、选择换辊模式【自动】或【手动】,将轧机状态调至【换辊】状态,选择需要换的辊型【工作辊】、【中间辊】或【支承辊】;2、将轧辊冷却【关闭】,稀油润滑【关闭】,待换辊允许指示灯亮起之后,便可以开始换辊;3、自动模式,操作模式切换到【自动】,便可以进行自动更换【工作辊】、【中间辊】或【支承辊】;4、手动模式,换【工作辊辊】步骤如下:a)换辊大车由原位【前进】至等待位;b)卷帘门【打开】,防缠导板打至【高位】;c)上下接轴进行【定位】,接轴定位(进度条)完成后定位按钮自动关闭,上下接轴【锁紧】,主电机【关闭】;d)下工作辊弯辊【缩回】,下中间辊弯辊【缩回】,主液压缸【泄压】,使下支撑辊、中间辊、工作辊分别下降到各自辊道上;e)上工作辊弯辊【缩回】,上中间辊弯辊【缩回】,上支撑辊平衡缸【缩回】;f)阶梯板【退出】,楔形块【退出】;g)上支撑辊平衡缸【平衡】,上中间辊弯辊【平衡】,抽辊准备完成;h)换辊大车由等待位【前进】至抽辊位,并锁定位置;i)换辊小车工作滚挂钩和中间辊挂钩【抬起】,换辊小车【前进】至抽辊位;j)换辊小车工作辊挂钩【落下】,上下工作辊档板【打开】;k)换辊小车【后退】,将上下工作辊抽出后,工作辊挂钩【抬起】,完成抽辊步骤;l)横移小车侧移至【新辊位】(进度条),等待安装新辊;m)换辊小车工作辊拉钩【落下】,换辊小车【前进】,将新工作辊装入轧机后,工作辊拉钩【抬起】,上下工作辊挡板【锁紧】;n)上中间辊弯辊【缩回】,上支撑辊弯辊【缩回】;o)阶梯板【进入】,楔形块【进入】;p)上支撑辊平衡缸【平衡】,上中间辊弯辊【平衡】,主液压缸【压紧】;q)换辊大车和换辊小车【后退】至原位;r)防缠导板打至【低位】,接轴【锁紧】关闭,卷帘门【关闭】;s)上下工作辊和中间辊弯辊打至【弯辊】状态,工作辊换辊完成;t)工作状态切换到【轧制】,轧辊冷却切换到【使能】,稀油润滑切换到【使能】,完成轧制准备。