模拟测评2022年山东省济宁市中考数学三年真题模拟 卷(Ⅱ)(含答案解析)
- 格式:docx
- 大小:565.76 KB
- 文档页数:25
山东省济宁市中考数学模拟试卷(含答案)(时间:120分钟满分:100分)一、精心选一选(每小题2分,共20分)1.在下列y关于x的函数中,一定是二次函数的是()A.y=x2 B.y=1x2C.y=kx2 D.y=k2x2.要调查下面的问题,适合做普查的是()A.某班同学“立定跳远”的成绩 B.某水库中鱼的种类C.某鞋厂生产的鞋底承受的弯折次数 D.某型号节能灯的使用寿命3.如图,AB为圆O的直径,BC为圆O的一弦,过O点作BC的垂线,且交BC于点D.若AB=16,BC=12,则△OBD的面积为何?() A.67 B.127 C.15 D.30,第3题图),第4题图),第5题图) 4.(河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )A.△ABE B.△ACF C.△ABD D.△ADE5.如图,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x 轴的负半轴交于点A,则一元二次方程ax2+bx+c=0的正数解的范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.某商场今年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①,图②,下列说法不正确的是()A.4月份商场的商品销售总额是75万元B.1月份商场服装部的销售额是22万元C.5月份商场服装部的销售额比4月份减少了D.3月份商场服装部的销售额比2月份减少了7.如图,六个完全相同的等腰直角三角形环绕一周,直角顶点在同一个圆上,斜边顺次连结,则图中角α的度数为()A.40° B.35° C.30° D.25°,第7题图),第8题图),第9题图),第10题图)8.一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A .5∶4B .5∶2 C.5∶2 D.5∶ 2 9.(包头)如图,已知二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于点A(-1,0),对称轴为直线x =1.与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x >3时,y <0;②3a+b <0;③-1≤a≤-23;④4ac-b 2>8a.其中正确的结论是( ) A .①③④ B .①②③ C .①②④ D .①②③④10.某种电缆在空中架设时,两端挂起的电缆下垂都近似抛物线y =1100x 2的形状.今在一个坡度为1∶5的斜坡上,沿水平距离间隔50米架设两固定电缆的位置离地面高度为20米的塔柱(如图),这种情况下在竖直方向上,下垂的电缆与地面的最近距离为( )A .12.75米B .13.75米C .14.75米D .17.75米二、细心填一填(每小题2分,共16分)11.为了解某小区236户家庭对创建卫生城工作是否满意,小明利用周末调查了其中的50户家庭,有32户表示满意,在这一抽样调查中,样本容量为___.12.(黄石)如图,圆O 的直径AB =8,AC =3CB ,过C 作AB 的垂线交圆O 于M ,N 两点,连结MB ,则∠MBA 的余弦值为__.,第12题图),第15题图),第16题图),第18题图)13.一个盒子中只装有白色小球,为了估计盒中白色小球的数量,小健将形状、大小、材质都相同的红色小球1000个放入盒中,摇匀后任意取出100个,发现红色小球有4个,那么可以估计出白色小球的个数为___.14.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则其侧面积为_ __.(结果用含π的式子表示)15.如图,线段AB=6,点C是AB上一点,点D是AC的中点,分别以AD,DC,CB为边作正方形,则AC=____时,三个正方形的面积之和最小.16.(绥化)如图,将一块含30°角的直角三角板和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2,则图中阴影部分的面积为___.(结果保留π)17.设二次函数y=ax2+bx+c(a≠0)的图象经过点(3,0),(7,-8),当3≤x≤7时,y随x的增大而减小,则实数a的取值范围是__ .18.(淄博)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A,B,C,D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2-2x-3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为____.三、耐心做一做(共64分)19.(6分)报纸上刊登了一则新闻,标题为“保健食品合格率75%”,请据此回答下列问题.(1)这则新闻是否说明市面上所有保健食品中恰好有25%的为不合格产品?(2)你认为这则消息来源于普查,还是抽样调查?为什么?(3)如果已知在这次质量监督检查中各项指标均合格的商品有45种,你能算出共有多少种保健食品接受检查了吗?(4)此次商品质量检查的结果显示如下表,有人由此认为“进口商品的不合格率较低,更让人放心.”你同意这种说法吗?为什么?20.(8分)如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm2,高为6 m,外围高为2 m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)21.(9分)(珠海)已知抛物线y =ax 2+bx +3的对称轴是直线x =1.(1)求证:2a +b =0;(2)若关于x 的方程ax 2+bx -8=0的一个根为4,求方程的另一个根.22.(9分)(烟台)如图,以△ABC 的一边AB 为直径的半圆与其他两边AC ,BC 的交点分别为D ,E ,且DE ︵=BE ︵.(1)试判断△ABC 的形状,并说明理由.(2)已知半圆的半径为5,BC =12,求sin ∠ABD 的值.23.(10分)(常州)某调查小组采用简单随机抽样的方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.24.(10分)(义乌)如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.25.(12分)(济宁)如图,⊙E 的圆心E(3,0),半径为5,⊙E 与y 轴相交于A ,B 两点(点A 在点B 的上方),与x 轴的正半轴交于点C ,直线l 的解析式为y =34x +4,与x 轴相交于点D ,以点C 为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l 与⊙E 的位置关系,并说明理由;(3)动点P 在抛物线上,当点P 到直线l 的距离最小时,求出点P 的坐标及最小距离.答 案一、选择题:1-5AAABC 6-10CCACB二、细心填一填11.50 12、_12,第15题图),第16题图),第18题图) 13.一个盒子中只装有白色小球,为了估计盒中白色小球的数量,小健将形状、大小、材质都相同的红色小球1000个放入盒中,摇匀后任意取出100个,发现红色小球有4个,那么可以估计出白色小球的个数为__24000__.14.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则其侧面积为__300π__.(结果用含π的式子表示)15.如图,线段AB =6,点C 是AB 上一点,点D 是AC 的中点,分别以AD ,DC ,CB 为边作正方形,则AC =__4__时,三个正方形的面积之和最小.16.如图,将一块含30°角的直角三角板和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA =2,则图中阴影部分的面积为__4π3+32__.(结果保留π) 17.设二次函数y =ax 2+bx +c(a≠0)的图象经过点(3,0),(7,-8),当3≤x≤7时,y 随x 的增大而减小,则实数a 的取值范围是__-12≤a <0或0<a≤12__. 18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A ,B ,C ,D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y =x 2-2x -3,AB 为半圆的直径,则这个“果圆”被y 轴截得的弦CD 的长为__3+3__.三、耐心做一做(共66分)19.解:(1)不能说明.可从样本是否具有代表性和样本容量是否足够大两方面来分析 (2)抽样调查.因为总体数目太大,且实验具有破坏性,不适合普查 (3)45÷75%=60(种) (4)不同意这种说法.因为进口商品被检数太少,即样本容量太小,不能反映总体水平 20.解:∵蒙古包的底面积为9π m 2,高为6 m ,外围(圆柱)高2 m ,∴圆锥的底面半径为3 m ,圆锥高为:6-2=4 m ,∴圆锥的母线长为32+42=5 m ,∴圆锥的侧面积为π×3×5=15π m 2,圆锥的底面周长为2π×3=6π m ,圆柱的侧面积为6π×2=12π m 2.故需要毛毡(15π+12π)=27π m 221.解:(1)∵对称轴是直线x =1=-b2a,∴2a +b =0 (2)∵方程ax 2+bx -8=0的一个根为4,∴16a +4b -8=0.∵2a +b =0,∴b =-2a ,∴16a -8a -8=0,解得a =1,则b =-2,∴ax 2+bx -8=0为x 2-2x -8=0,则(x -4)(x +2)=0,解得x 1=4,x 2=-2,故方程的另一个根为-2 22.解:(1)△ABC 为等腰三角形.理由如下:连结AE ,∵DE ︵=BE ︵,∴∠DAE =∠BAE ,即AE 平分∠BAC.∵AB 为直径,∴∠AEB =90°,∴AE⊥BC ,∴△ABC 为等腰三角形(2)∵△ABC 为等腰三角形,AE ⊥BC ,∴BE =CE =12BC =12×12=6.在Rt △ABE 中,∵AB =10,BE =6,∴AE =102-62=8.∵AB 为直径,∴∠ADB =90°,∴12AE·BC =12BD·AC ,∴BD =8×1210=485.在Rt △ABD中,∵AB =10,BD =485,∴AD =AB 2-BD 2=145,∴sin ∠ABD =AD AB =14510=72523.解:(1)由题意,可得0.5小时的人数为100人,所占比例为20%,∴本次调查共抽取了500名学生(2)1.5小时的人数为500×0.24=120(人),补全条形图略(3)根据题意,得100×0.5+200×1+120×1.5+80×2=1.18,即该市中小学生一天100+200+120+80中阳光体育运动的平均时间约1小时24.解:(1)依题意,选择点(1,1)作为抛物线的顶点,二次项系数是1,根据顶点式得y=x2-2x+2(答案不唯一) (2)∵定点抛物线的顶点坐标为(b,c+b2+1),且-1+2b+c+1=1,∴c=1-2b.∵顶点纵坐标c+b2+1=2-2b+b2=(b-1)2+1,∴当b=1时,c+b2+1最小,即抛物线顶点纵坐标的值最小,此时c=-1,∴抛物线的解析式为y=-x2+2x25.解:(1)连结AE,由已知,得AE=CE=5,OE=3.在Rt△AOE中,由勾股定理,得OA=AE2-OE2=52-32=4.∵OC⊥AB,∴由垂径定理,得OB=OA=4,OC=OE+CE=3+5=8,∴A(0,4),B(0,-4),C(8,0).∵抛物线的顶点为C ,∴设抛物线的解析式为y =a (x -8)2,将点B 的坐标代入上述解析式,得64a =-4,故a =-116,∴y =-116(x-8)2,∴y =-116x 2+x -4为所求抛物线的解析式 (2)在直线l 的解析式y =34x +4中,令y =0,得34x +4=0,解得x =-163,∴点D的坐标为(-163,0).当x =0时,y =4,∴点A 在直线l 上.在Rt△AOE 和Rt △DOA 中,∵OE OA =34,OA OD =34,∴OE OA =OAOD.又∵∠AOE =∠DOA=90°,∴△AOE ∽△DOA ,∴∠AEO =∠DAO.∵∠AEO +∠EAO =90°,∴∠DAO +∠EAO =90°,即∠DAE =90°,因此直线l 与⊙E 相切于点A (3)过点P 作直线l 的垂线段PQ ,垂足为点Q ,过点P 作直线PM 垂直于x 轴,交直线l 于点M.设M (m ,34m +4),P (m ,-116m 2+m-4),则PM =34m +4-(-116m 2+m -4)=116m 2-14m +8=116(m -2)2+314.当m =2时,PM 取得最小值314,此时P (2,-94).对于△PQM ,∵PM⊥x 轴,∴∠QMP =∠DAO =∠AEO.又∠PQM =90°,∴△PQM 的三个内角固定不变,∴在动点P 运动的过程中,△PQM 的三边的比例关系不变,∴当PM 取得最小值时,PQ 也取得最小值,PQ 最小=PM 最小·sin∠QMP =PM 最小·sin ∠AEO =314×45=315,∴当抛物线上的动点P 的坐标为(2,-94)时,点P 到直线l 的距离最小,其最小距离为315。
2022年山东省济宁市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有理数a ,b 在数轴上对应的位置如图所示,则下列结论正确的是( ).A .0a >B .1b >C .0a b ->D .a b > 2、下列几何体中,截面不可能是长方形的是( ) A .长方体 B .圆柱体C .球体D .三棱柱 3、如图,点()1,1A ,()2,3B -,若点P 为x 轴上一点,当PA PB -最大时,点P 的坐标为( ) ·线○封○密○外A .1,02⎛⎫ ⎪⎝⎭B .5,04⎛⎫ ⎪⎝⎭C .1,02⎛⎫- ⎪⎝⎭D .()1,04、用符号()f x 表示关于自然数x 的代数式,我们规定:当x 为偶数时,()2f x x =;当x 为奇数时,()31f x x =+.例如:()3114f x =⨯+=,()8842f ==.设18x =,()21x f x =,()32x f x =,…,()1n n x f x -=.以此规律,得到一列数1x ,2x ,3x ,…,2022x ,则这2022个数之和12320212022x x x x x +++⋅⋅⋅++等于( )A .3631B .4719C .4723D .47255、如图,PA 、PB 是O 的切线,A 、B 是切点,点C 在O 上,且58ACB ∠=︒,则APB ∠等于( )A .54°B .58°C .64°D .68°6、如图,在ABC 中,D 是BC 延长线上一点,50B ∠=︒,80A ∠=︒,则ACD ∠的度数为( )A .140︒B .130︒C .120︒D .110︒ 7、如图,菱形OABC 的边OA 在平面直角坐标系中的x 轴上,60AOC ∠=︒,4OA =,则点C 的坐标为( )A.(2, B.()2 C.( D .()2,2 8、如图,等腰三角形ABC 的底边BC 长为4,面积是20,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .8B .10C .12D .14 9、二次函数 ()2`0y a x bx c a =++≠ 的图像如图所示, 现有以下结论: (1) 0b > : (2) 0abc <; (3)0a b c -+>, (4) 0a b c ++>; (5) 240b ac -> ; 其中正确的结论有( ) ·线○封○密○外A.2 个B.3 个C.4 个D.5 个.10、如图,在平面直角坐标系xOy中,DEF可以看作是ABC经过若干次图形的变化(平移、轴对称)得到的,下列由ABC得到DEF的变化过程错误..的是()A.将ABC沿x轴翻折得到DEFy=翻折,再向下平移2个单位得到DEFB.将ABC沿直线1y=翻折得到DEFC.将ABC向下平移2个单位,再沿直线1y=-翻折得到DEFD.将ABC向下平移4个单位,再沿直线2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.2、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:C ︒),那么最大温差是________C ︒.3、若x 2﹣3kx +9是一个完全平方式,则常数k =_____.4、如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是_________.5、为庆祝建党100周年,某邮政局推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.如下图,现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的可能性大小是____________. 三、解答题(5小题,每小题10分,共计50分)1、(1)探究:如图1,AB ∥CD ∥EF ,试说明BCF B F ∠=∠+∠.(2)应用:如图2,AB ∥CD ,点F 在AB 、CD 之间,FE 与AB 交于点M ,FG 与CD 交于点N .若115EFG ∠=︒,55EMB ∠=︒,则DNG ∠的大小是多少? (3)拓展:如图3,直线CD 在直线AB 、EF 之间,且AB ∥CD ∥EF ,点G 、H 分别在直线AB 、EF 上,点Q 是直线CD 上的一个动点,且不在直线GH 上,连接QG 、QH .若70GQH ∠=︒,则AGQ EHQ ∠+∠= 度(请直接写出答案).·线○封○密·○外2、完成下面推理填空:如图,已知:AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠.求证:AD 平分BAC ∠.解:∵AD BC ⊥于D ,EG BC ⊥(已知),∴90ADC EGC ∠=∠=︒(____①_____),∴EG AD ∥(同位角相等,两直线平行),∴_____②___(两直线平行,同位角相等)∠1=∠2(____③_____),又∵1E ∠=∠(已知),∴∠2=∠3(_____④______),∴AD 平分BAC ∠(角平分线的定义).3、如图,直线3y x =-+与反比例函数()20=>y x x的图象交于A ,B 两点. (1)求点A ,B 的坐标;(2)如图1,点E 是线段AC 上一点,连接OE ,OA ,若45AOE ∠=︒,求AE EC 的值;(3)如图2,将直线AB 沿x 轴向右平移m 个单位长度后,交反比例函数()20=>y x x的图象于点P ,Q ,连接AP ,BQ ,若四边形ABQP 的面积恰好等于2m ,求m 的值.4、已知:如图,锐角∠AOB .求作:射线OP ,使OP 平分∠AOB . 作法: ①在射线OB 上任取一点M ;·线○封○密·○外②以点M 为圆心,MO 的长为半径画圆,分别交射线OA ,OB 于C ,D 两点;③分别以点C ,D 为圆心,大于12CD 的长为半径画弧,在∠AOB 内部两弧交于点H ; ④作射线MH ,交⊙M 于点P ;⑤作射线OP .射线OP 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接CD .由作法可知MH 垂直平分弦CD .∴CP DP =( )(填推理依据).∴∠COP = .即射线OP 平分∠AOB .5、已知二元一次方程3x y +=,通过列举将方程的解写成下列表格的形式,如果将二元一次方程的解所包含的未知数x 的值对应直角坐标系中一个点的横坐标,未知数y 的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解21x y =⎧⎨=⎩的对应点是)(2,1.(1)①表格中的m =______,n =______; ②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点; (2)若点)(,3P b a -,)(,3G a b -+恰好都落在3x y +=的解对应的点组成的图象上,求a ,b 的值.-参考答案- 一、单选题1、D【解析】 【分析】 先根据数轴可得101a b <-<<<,再根据有理数的减法法则、绝对值性质逐项判断即可得. 【详解】 解:由数轴的性质得:101a b <-<<<. A 、0a <,则此项错误; B 、1b <,则此项错误; ·线○封○密○外C 、0a b -<,则此项错误;D 、1a b >>,则此项正确;故选:D .【点睛】本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.2、C【解析】【分析】根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.【详解】解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,故选:C .【点睛】此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.3、A【解析】【分析】作点A 关于x 轴的对称点A ',连接BA '并延长交x 轴于P ,根据三角形任意两边之差小于第三边可知,此时的PA PB -最大,利用待定系数法求出直线BA '的函数表达式并求出与x 轴的交点坐标即可.【详解】解:如图,作点A 关于x 轴的对称点A ',则PA =PA ',∴PA PB -≤BA '(当P 、A '、B 共线时取等号), 连接BA '并延长交x 轴于P ,此时的PA PB -最大,且点A '的坐标为(1,-1), 设直线BA '的函数表达式为y=kx+b , 将A '(1,-1)、B (2,-3)代入,得: 132k b k b -=+⎧⎨-=+⎩,解得:21k b =-⎧⎨=⎩, ∴y =-2x +1, 当y =0时,由0=-2x +1得:x =12, ∴点P 坐标为(12,0), 故选:A 【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x 轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键. 4、D 【解析】 【分析】 ·线○封○密·○外根据题意分别求出x 2=4,x 3=2,x 4=1,x 5=4,…,由此可得从x 2开始,每三个数循环一次,进而继续求解即可.【详解】解:∵x 1=8,∴x 2=f (8)=4,x 3=f (4)=2,x 4=f (2)=1,x 5=f (1)=4,…,从x 2开始,每三个数循环一次,∴(2022-1)÷3=6732,∵x 2+x 3+x 4=7,∴12320212022x x x x x +++⋅⋅⋅++=8+673×7+4+2=4725.故选:D .【点睛】本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.5、C【解析】【分析】连接OB ,OA ,根据圆周角定理可得2116AOB ACB ∠=∠=︒,根据切线性质以及四边形内角和性质,求解即可.【详解】解:连接OB ,OA ,如下图:∴2112AOB ACB ∠=∠=︒ ∵PA 、PB 是O 的切线,A 、B 是切点 ∴90OBP OAP ∠=∠=︒ ∴由四边形的内角和可得:36064APB OBP OAP AOB ∠=︒-∠-∠-∠=︒ 故选C . 【点睛】 此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质. 6、B 【解析】 【分析】 根据三角形外角的性质可直接进行求解. 【详解】 解:∵50B ∠=︒,80A ∠=︒, ∴130ACD A B ∠=∠+∠=︒; 故选B . 【点睛】·线○封○密○外本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.7、A【解析】【分析】如图:过C 作CE ⊥OA ,垂足为E ,然后求得∠OCE =30°,再根据含30°角直角三角形的性质求得OE ,最后运用勾股定理求得CE 即可解答.【详解】解:如图:过C 作CE ⊥OA ,垂足为E ,∵菱形OABC ,4OA =∴OC =OA =4∵60AOC ∠=︒,∴∠OCE =30°∵OC =4∴OE =2∴CE==∴点C 的坐标为(2,.故选A .【点睛】本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.8、C【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴11•42022ABCS BC AD AD==⨯⨯=,解得AD=10,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=CM+MD+CD=AD+11041022 2211 BC=+⨯=+=.·线○封○密○外故选:C .【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.9、C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:(1)∵函数开口向下,∴a <0,∵对称轴在y 轴的右边,∴02b a->,∴b >0,故命题正确; (2)∵a <0,b >0,c >0,∴abc <0,故命题正确;(3)∵当x =-1时,y <0,∴a -b +c <0,故命题错误;(4)∵当x =1时,y >0,∴a +b +c >0,故命题正确;(5)∵抛物线与x 轴于两个交点,∴b 2-4ac >0,故命题正确;故选C .【点睛】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.10、C【解析】【分析】根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.【详解】解:A 、根据图象可得:将ABC 沿x 轴翻折得到DEF ,作图正确;B 、作图过程如图所示,作图正确;C 、如下图所示为作图过程,作图错误;D 、如图所示为作图过程,作图正确;·线○封○密·○外故选:C.【点睛】题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.二、填空题1、 2 两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,故答案为:2,两点确定一条直线.【点睛】此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.2、15【解析】【分析】通过表格即可求得最高和最低气温,12月3日的温差最大,最大温差为10-(-5)=15℃;【详解】 解:12月1日的温差:()7512C --=︒ 12月2日的温差:()10414C --=︒ 12月3日的温差:()10515C --=︒ 12月4日的温差:()6410C --=︒ 12月5日的温差:()5510C --=︒ 15141210∴>>>, ∴最大温差是15C ︒, 故答案为:15. 【点睛】 此题考查了正数与负数以及有理数的减法,熟练掌握运算法则是解本题的关键. 3、±2 【解析】 【分析】 根据完全平方式的结构特征解决此题. 【详解】 ·线○封○密○外解:x 2﹣3kx +9=x 2﹣3kx +32.∵x 2﹣3kx +9是一个完全平方式,∴﹣3kx =±6x .∴﹣3k =±6.∴k =±2.故答案为:±2.【点睛】本题考查完全平方式,熟知完全平方式的结构是解答的关键.4、512π-【解析】【分析】根据直角三角形30度角的性质及勾股定理求出AC 、BC ,∠A =60°,利用扇形面积公式求出阴影面积.【详解】解:在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,∴AC =1,BC ==A =60°,∴图中阴影部分的面积=ABC CAD CBE S S S+-扇形扇形=2601113602π⨯⨯=512π故答案为:512π【点睛】此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键. 5、13 【解析】 【分析】 根据简单概率公式求出任意抽取一张纪念封的所有情况6种从中找出改革的纪念封的情况,代入公式计算即可. 【详解】 解:任意抽取一张,等可能的情况一共有6种,其中印有改革纪念封的情况有2种, ∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的可能性大小=2163=. 故答案为13. 【点睛】 本题考查简单事件的概率,掌握概率公式,找出满足改革纪念封条件的情况是解题关键. 三、解答题1、(1)见解析;(2)60°;(3)70或290【解析】【分析】(1)由////AB CD EF 可得,B BCD ∠=∠,F DCF ∠=∠,则BCF BCD DCF B F ∠=∠+∠=∠+∠;(2)利用(1)中的结论可知,MFN AMF CNF ∠=∠+∠,则可得CNF ∠的度数为60︒,由对顶角相等可得60DNG ∠=︒; (3)结合(1)中的结论可得,注意需要讨论AGQ ∠是钝角或AGQ ∠是锐角时两种情况. ·线○封○密○外【详解】解:(1)如图1,////AB CD EF ,B BCD ∴∠=∠,F DCF ∠=∠,BCF BCD DCF ∠=∠+∠,BCF B F ∴∠=∠+∠.(2)由(1)中探究可知,MFN AMF CNF ∠=∠+∠,55AMF MFN ∠=∠=︒,且115MFN ∠=︒,1155560CNF ∴∠=︒-︒=︒,60DNG CNF ∴∠=∠=︒;(3)如图,当AGQ ∠为钝角时,由(1)中结论可知,70GQH BGQ FHQ ∠=∠+∠=︒,()360290AGQ EHQ BGQ FHQ ∴∠+∠=︒-∠+∠=︒;当AGQ ∠为锐角时,如图,由(1)中结论可知,GQH AGQ EHQ ∠=∠+∠,即70AGQ EHQ ∠+∠=︒,综上,70AGQ EHQ ∠+∠=︒或290︒.故答案为:70或290.【点睛】本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.2、垂直的定义;∠E =∠3;两直线平行,内错角相等;等量代换【解析】 【分析】 根据平行线的判定与性质进行解答即可. 【详解】 解:∵AD ⊥BC 于D ,EG ⊥BC (已知), ∴∠ADC =∠EGC =90°(垂直的定义), ∴EG ∥AD (同位角相等,两直线平行), ∴∠E =∠3(两直线平行,同位角相等) ∠1=∠2(两直线平行,内错角相等), 又∵∠E =∠1(已知), ∴∠2=∠3(等量代换), ∴AD 平分∠BAC (角平分线的定义). 故答案为:垂直的定义;∠E =∠3;两直线平行,内错角相等;等量代换. 【点睛】 本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等. 3、 (1)A (1,2),A (2,1) ·线○封○密○外(2)53(3)103【解析】【分析】 (1)联立得{A =−A +3A =2A ,再解方程组即可;(2)先求出A (3,0),再证△AAA ∽△AAA ,求出AA =√22+22=√8=2√2,再得出AA =AA 2AA =5√24,AA =3√24,即可得到答案;(3)设平移后A AA =−A +3+A ,由四边形ABQP 的面积恰好等于m 2,得到PQ=2√2A {A =−A +3+A A =A 2,得到AA =√2√A 2+6A +1,列方程A 2+6A +1=4A 2−4A +1求解即可.(1)解:有题意得,{A =−A +3A =2A∴−A +3=2A解得A 1=1,A 2=2 A 1=2,A 2=1,∴A (1,2),A (2,1)(2)解:∵3y x =-+交x 轴于点C∴A (3,0),∵∠AAA =∠AAA =45°, ∠AAA =∠AAA∴△AAA ∽△AAA ,∴AA AA =AA AA ∴AA 2=AA ⋅AA ∵A (1,2),A (3,0), ∴AA =√22+12=√5,AA =√22+22=√8=2√2,∴AA =AA 2AA =5√24,AA =3√24,∴AA AA =53(3)解:设平移后A AA =−A +3+A ,如图,过点D 作DF ⊥PQ 于点F ,·线○封○密○外则ED=m,DF=√2A2A AAAA=(AA+AA)⋅√2A22=√2A(√2+AA)4=A2∴√2+AA=2√2A,∴PQ=2√2A有题意得,{A=−A+3+AA=A2解得,A1=A+3+√A2+6A+12,A2=A+3−√A2+6A+12,∴QH=x1-x2=√A2+6A+1,∴AA=√2√A2+6A+1,∴√2√A2+6A+1=2√2A∴A2+6A+1=4A2−4A+1,∴解得A1=0(舍),A2=103,即A=103【点睛】本题主要考查了反比例函数,一次函数,三角形的相似,列方程组求解等知识,解题的关键是证明三角形相似和列出方程组求解.4、 (1)见解析(2)垂径定理及推论;∠DOP【解析】【分析】(1)根据题干在作图方法依次完成作图即可;(2)由垂径定理先证明,CP DP 再利用圆周角定理证明COP DOP ∠=∠即可. (1) 解:如图, 射线OP 即为所求. (2) 证明:连接CD . 由作法可知MH 垂直平分弦CD .∴CP DP =( 垂径定理 )(填推理依据). ∴∠COP =DOP ∠. 即射线OP 平分∠AOB . 【点睛】 本题考查的是平分线的作图,垂径定理的应用,圆周角定理的应用,熟练的运用垂径定理证明·线○封○密·○外CP DP =是解本题的关键.5、 (1)①4,5;②图见解析(2)A =3,A =3【解析】【分析】(1)①将1x =-代入方程可得m 的值,将A =−2代入方程可得A 的值;②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;(2)将点)(,3P b a -,)(,3G a b -+代入方程可得一个关于A ,A 二元一次方程组,解方程组即可得.(1)解:①将1x =-代入方程3x y +=得:−1+A =3,解得A =4,即A =4,将A =−2代入方程3x y +=得:A −2=3,解得A =5,即A =5,故答案为:4,5;②由题意,三个解的对应点的坐标分别为(−3,6),(−1,4),(5,−2), 在所给的平面直角坐标系中画出如图所示:(2) 解:由题意,将A (A ,A −3),A (−A ,A +3)代入3x y +=得:{A +A −3=3−A +A +3=3, 整理得:{A +A =6−A +A =0, 解得{A =3A =3. 【点睛】 本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键. ·线○封○密○外。
【中考数学】2022-2023学年山东省济宁市专项提升仿真模拟试卷(一模)一、选一选(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只要一项是符合标题要求的)1.几种气体的液化温度(标准大气压)如下表:气体氧气氢气氮气氦气液化温度℃﹣183﹣253﹣195.8﹣268其中液化温度的气体是( )A.氦气B.氮气C.氢气D.氧气2.如图,在△ABC中,∠B=50°,∠C=70°,直线DE点A,∠DAB=50°,则∠EAC的度数是( )3.如图所示的几何体,其俯视图是( )4.下列计算正确的是( )A.3a2+4a2=7a4B.•=1C.﹣18+12÷(﹣)=4D.﹣a﹣1=5.已知关于x的不等式组无实数解,则a的取值范围是( )A.a≥﹣B.a≥﹣2C.a>﹣D.a>﹣26.某学校初一年级先生来自农村,牧区,城镇三类地区,上面是根据其人数比例绘制的扇形统计图,由图中的信息,得出以下3个判断,错误的有( )①该校初一先生在这三类不同地区的分布情况为3:2:7.②若已知该校来自牧区的初一先生为140人,则初一先生总人数为1080人.③若从该校初一先生中抽取120人作为样本,调查初一先生父母的文明程度,则从农村、牧区、城镇先生中分别随机抽取30、20、70人,样本更具有代表性.A.3个B.2个C.1个D.0个7.在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在象限作正方形ABCD,则对角线BD所在直线的解析式为( )A.y=﹣x+4B.y=﹣x+4C.y=﹣x+4D.y=48.如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘徽的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计π的值,上面d及π的值都正确的是( )A.d=,π≈8sin22.5°B.d=,π≈4sin22.5°C.d=,π≈8sin22.5°D.d=,π≈4sin22.5°9.以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5,4,3,2,1场,则由此可知,还没有与B队比赛的球队可能是D队;③两个正六边形一似;④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多,比其他的都少.其中真命题的个数有( )A.1个B.2个C.3个D.4个10.已知二次项系数等于1的一个二次函数,其图象与x轴交于两点(m,0),(n,0),且过A(0,b),B(3,a)两点(b,a是实数),若0<m<n<2,则ab的取值范围是( )A.0<ab<B.0<ab<C.0<ab<D.0<ab<二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题卡规定的横线上,不需求解答过程)11.因式分解:x3y﹣4xy= .12.反比例函数y=k1x与反比例函数y=的图象交于A,B两点,若A点坐标为(,﹣2),则k1+k2= .13.已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为 .(用含π的代数式表示),圆心角为 度.14.动物学家经过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有 只,现年20岁的这种动物活到25岁的概率是 .15.已知菱形ABCD的面积为2,点E是一边BC上的中点,点P是对角线BD上的动点.连接AE,若AE平分∠BAC,则线段PE与PC的和的最小值为 ,值为 .16.若把第n个地位上的数记为x n,则称x1,x2,x3,…,x n有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:y1,y2,y3,…,y n,其中y n是这个数列中第n个地位上的数,n=1,2,…,k且y n=并规定x0=x n,x n+1=x1.如果数列A只要四个数,且x1,x2,x3,x4依次为3,1,2,1,则其“伴生数列”B是 .三、解答题(本大题共8小题,满分72分.解答应写出文字阐明,证明过程或演算步骤)17.(10分)计算求解:(1)计算()﹣1﹣(﹣)÷+tan30°;(2)解方程组.18.(8分)如图,四边形ABCD是平行四边形,BE∥DF且分别交对角线AC于点E,F.(1)求证:△ABE≌△CDF;(2)当四边形ABCD分别是矩形和菱形时,请分别说出四边形BEDF的外形.(无需阐明理由)19.(10分)某大学为了解大先生对中国党史知识的学习情况,在大学一年级和二年级举行有关党史知识测试.现从一、二两个年级中各随机抽取20名先生的测试成绩(满分50分,30分及30分以上为合格;40分及40分以上为)进行整理、描述和分析,给出了上面的部分信息.大学一年级20名先生的测试成绩为:39,50,39,50,49,30,30,49,49,49,43,43,43,37,37,37,43,43,37,25.大学二年级20名先生的测试成绩条形统计图如图所示;两个年级抽取的先生的测试成绩的平均数、众数、中位数、率如下表所示:年级平均数众数中位数率大一a b43m大二39.544c n请你根据上面提供的一切信息,解答下列成绩:(1)上表中a= ,b= ,c= ,m= ,n ;根据样本统计数据,你认为该大学一、二年级中哪个年级先生掌握党史知识较好?并阐明理由(写出一条理由即可);(2)已知该大学一、二年级共1240名先生参加了此次测试,经过计算,估计参加此次测试成绩合格的先生人数能否超过1000人;(3)从样本中测试成绩为满分的一、二年级的先生中随机抽取两名先生,用列举法求两人在同一年级的概率.20.(8分)如图,线段EF与MN表示某一段河的两岸,EF∥MN.综合理论课上,同窗们需求在河岸MN上测量这段河的宽度(EF与MN之间的距离),已知河对岸EF上有建筑物C、D,且CD=60米,同窗们首先在河岸MN上选取点A处,用测角仪测得C建筑物位于A北偏东45°方向,再沿河岸走20米到达B处,测得D建筑物位于B北偏东55°方向,请你根据所测数据求出该段河的宽度,(用非角的三角函数或根式表示即可)21.(7分)上面图片是七年级教科书中“实践成绩与一元方程”的探求3.探求3电话计费成绩下表中有两种挪动电话计费方式.月运用费/元主叫限定工夫/min主叫超时费/(元/min)被叫方式一581500.25方式二883500.19考虑下列成绩:月运用费固定收:主叫不超限定工夫不再免费,主叫超时部分加收超时费,被叫.(1)设一个月内用挪动电话主叫为tmin(t是正整数).根据上表,列表阐明:当t在不同工夫范围内取值时,按方式一和方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫工夫选择的计费方式吗?经过计算验证你的看法.小明升入初三再看这个成绩,发现两种计费方式,每一种都是因主叫工夫的变化而惹起计费的变化,他把主叫工夫视为在正实数范围内变化,决定用函数来处理这个成绩.(1)根据函数的概念,小明首先将成绩中的两个变量分别设为自变量x和自变量的函数y,请你帮小明写出:x表示成绩中的 ,y表示成绩中的 .并写出计费方式一和二分别对应的函数解析式;(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并根据图象直接写出如何根据主叫工夫选择的计费方式.(注:坐标轴单位长度可根据需求本人确定)22.(7分)为了促进先生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”.去年学校经过采购平台在某体育用品店购买A品牌足球共花费2880元,B品牌足球共花费2400元,且购买A品牌足球数量是B品牌数量的1.5倍,每个足球的售价,A品牌比B品牌便宜12元.今年由于参加俱乐部人数添加,需求从该店再购买A、B两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年进步了5%,B品牌比去年降低了10%,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?23.(10分)已知AB是⊙O的任意一条直径.(1)用图1,求证:⊙O是以直径AB所在直线为对称轴的轴对称图形;(2)已知⊙O的面积为4π,直线CD与⊙O相切于点C,过点B作BD⊥CD,垂足为D,如图2.求证:①BC2=2BD;②改变图2中切点C的地位,使得线段OD⊥BC时,OD=2.24.(12分)已知抛物线y=ax2+kx+h(a>0).(1)经过配方可以将其化成顶点式为 ,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在x轴 (填上方或下方),即4ah﹣k2 0(填大于或小于)时,该抛物线与x轴必有两个交点;(2)若抛物线上存在两点A(x1,y1),B(x2,y2),分布在x轴的两侧,则抛物线顶点必在x轴下方,请你A、B两点在抛物线上的可能地位,根据二次函数的性质,对这个结论的正确性给以阐明;(为了便于阐明,不妨设x1<x2且都不等于顶点的横坐标;另如果需求借助图象辅助阐明,可本人画出简单表示图)(3)利用二次函数(1)(2)结论,求证:当a>0,(a+c)(a+b+c)<0时,(b﹣c)2>4a(a+b+c).【中考数学】2022-2023学年山东省济宁市专项提升仿真模拟试卷(一模)一、选一选(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只要一项是符合标题要求的)1.几种气体的液化温度(标准大气压)如下表:气体氧气氢气氮气氦气液化温度℃﹣183﹣253﹣195.8﹣268其中液化温度的气体是( )A.氦气B.氮气C.氢气D.氧气【分析】根据有理数大小比较的方法进行比较即可求解.解:∵﹣268<﹣253<﹣195.8<﹣183,∴其中液化温度的气体是氦气.故选:A.2.如图,在△ABC中,∠B=50°,∠C=70°,直线DE点A,∠DAB=50°,则∠EAC的度数是( )A.40°B.50°C.60°D.70°【分析】根据三角新内角和可以先求出∠BAC的度数,再根据平角的定义,可知∠DAB+∠BAC+∠EAC=180°,从而可以求得∠EAC的度数.解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵∠DAB=50°,∠DAB+∠BAC+∠EAC=180°,∴∠EAC=180°﹣∠DAB﹣∠BAC=180°﹣50°﹣60°=70°,故选:D.3.如图所示的几何体,其俯视图是( )A.B.C.D.【分析】根据视图的意义,从上面看该几何体,所得到的图形进行判断即可.解:从上面看该几何体,所看到的图形如下:故选:B.4.下列计算正确的是( )A.3a2+4a2=7a4B.•=1C.﹣18+12÷(﹣)=4D.﹣a﹣1=【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.解:3a2+4a2=7a2,故选项A错误;当a>0时,=a=1,当a<0时,=﹣a=﹣1,故选项B错误;﹣18+12÷(﹣)=﹣18﹣18=﹣36,故选项C错误;﹣a﹣1=﹣(a+1)===,故选项D正确;故选:D.5.已知关于x的不等式组无实数解,则a的取值范围是( )A.a≥﹣B.a≥﹣2C.a>﹣D.a>﹣2【分析】分别解两个不等式,根据不等式组无实数解,得到关于a的不等式,解之即可.解:解不等式﹣2x﹣3≥1得:x≤﹣2,解不等式﹣1≥得:x≥2a+2,∵关于x的不等式组无实数解,∴不等式的解集为2a+2>﹣2,解得:a>﹣2,故选:D.6.某学校初一年级先生来自农村,牧区,城镇三类地区,上面是根据其人数比例绘制的扇形统计图,由图中的信息,得出以下3个判断,错误的有( )①该校初一先生在这三类不同地区的分布情况为3:2:7.②若已知该校来自牧区的初一先生为140人,则初一先生总人数为1080人.③若从该校初一先生中抽取120人作为样本,调查初一先生父母的文明程度,则从农村、牧区、城镇先生中分别随机抽取30、20、70人,样本更具有代表性.A.3个B.2个C.1个D.0个【分析】根据扇形统计图分别求出各组人数所占比例,进而得出答案.解:该校来自城镇的初一先生的扇形的圆心角为:360°﹣90°﹣60°=210°,∴该校初一先生在这三类不同地区的分布情况为90:60:210=3:2:7,故①正确,不符合题意;若已知该校来自牧区的初一先生为140人,则初一先生总人数为140÷=840(人),故②错误,符合题意;120×=30(人),120×=20(人),120×=70(人),故③正确,不符合题意;故选:C.7.在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在象限作正方形ABCD,则对角线BD所在直线的解析式为( )A.y=﹣x+4B.y=﹣x+4C.y=﹣x+4D.y=4【分析】过D点作DH⊥x轴于H,如图,证明△ABO≌△DAH得到AH=OB=4,DH=OA=3,则D(7,3),然后利用待定系数法求直线BD的解析式.解:过D点作DH⊥x轴于H,如图,∵点A(3,0),B(0,4).∴OA=3,OB=4,∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵∠OBA+∠OAB=90°,∠ABO+∠DAH=90°,∴∠ABO=∠DAH,在△ABO和△DAH中,,∴△ABO≌△DAH(AAS),∴AH=OB=4,DH=OA=3,∴D(7,3),设直线BD的解析式为y=kx+b,把D(7,3),B(0,4)代入得,解得,∴直线BD的解析式为y=﹣x+4.故选:A.8.如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘徽的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计π的值,上面d及π的值都正确的是( )A.d=,π≈8sin22.5°B.d=,π≈4sin22.5°C.d=,π≈8sin22.5°D.d=,π≈4sin22.5°【分析】根据外接圆的性质可知,圆心各个顶点的距离相等,过圆心向边作垂线,解直角三角形,再根据圆周长公式可求得.解:如图,连接AD,BC交于点O,过点O作OP⊥BC于点P,则CP=PD,且∠COP=22.5°,设正八边形的边长为a,则a+2×a=4,解得a=4(﹣1),在Rt△OCP中,OC==,∴d=2OC=,由πd≈8CD,则π≈32(﹣1),∴π≈8sin22.5°.故选:C.9.以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5,4,3,2,1场,则由此可知,还没有与B队比赛的球队可能是D队;③两个正六边形一似;④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多,比其他的都少.其中真命题的个数有( )A.1个B.2个C.3个D.4个【分析】利用三角形的中位线的性质、类似多边形的定义及平均数的知识分别判断后即可确定正确的选项.解:①任意三角形的一条中位线与第三边上的中线互相平分,正确,是真命题,符合题意;②由每个队分别与其它队比赛一场,最多赛5场,A队曾经赛完5场,则每个队均与A队赛过,E队仅赛一场(即与A队赛过),所以E队还没有与B队赛过,故原命题错误,是假命题,不符合题意.③两个正六边形一定类似但不一似,故原命题错误,是假命题,不符合题意;④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多,比其他的都少,正确,是真命题,符合题意,正确的有2个,故选:B.10.已知二次项系数等于1的一个二次函数,其图象与x轴交于两点(m,0),(n,0),且过A(0,b),B(3,a)两点(b,a是实数),若0<m<n<2,则ab的取值范围是( )A.0<ab<B.0<ab<C.0<ab<D.0<ab<【分析】方法1、由二次项系数为1的抛物线判断出抛物线的开口向上,开口大小一定,进而判断出ab>0,再根据完全平方公式判断出a=b,且抛物线与x轴只要一个交点时,是ab的值的分界点,进而求出m=n=,进而求出a=b=,即可得出结论.方法2、先表示出b=mn,a=(3﹣m)(3﹣n),进而得出ab=[﹣(m﹣)2+][﹣(n﹣)2+],再判断出0<﹣(m﹣)2+≤,0<﹣(n﹣)2+≤,即可得出结论.解法1、∵函数是一个二次项系数为1的二次函数,∴此函数的开口向上,开口大小一定,∵抛物线与x轴交于两点(m,0),(n,0),且0<m<n<2,∴a>0,b>0,∴ab>0,∵(a﹣b)2=a2+b2﹣2ab≥0(a=b时取等号),即a2+b2≥2ab(当a=b时取等号),∴当a=b时,ab才有可能,∵二次函数过A(0,b),B(3,a)两点,∴点A,B关于抛物线的对称轴对称,即抛物线的对称轴为直线x=1.5,∵抛物线与x轴交于两点(m,0),(n,0),且0<m<n<2,∴抛物线的顶点越接近x轴,ab的值越大,即当抛物线与x轴只要一个交点时,是ab值的分界点,当抛物线与x轴只要一个交点时,此时m=n=,∴抛物线的解析式为y=(x﹣)2=x2﹣3x+,∴a=b=,∴ab<()2=,∴0<ab<,故选:C.解法2、∵二次函数的图象(0,b)和(3,a)两点,∴b=mn,a=(3﹣m)(3﹣n),∴ab=mn(3﹣m)(3﹣n)=(3m﹣m2)(3n﹣n2)=[﹣(m﹣)2+][﹣(n﹣)2+]∵0<m<n<3,∴0<﹣(m﹣)2+≤,0<﹣(n﹣)2+≤,∵m<n,∴ab不能取,∴0<mn<,故选:C.二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题卡规定的横线上,不需求解答过程)11.因式分解:x3y﹣4xy= xy(x+2)(x﹣2) .【分析】先提取公因式xy,再利用平方差公式对因式x2﹣4进行分解.解:x3y﹣4xy,=xy(x2﹣4),=xy(x+2)(x﹣2).12.反比例函数y=k1x与反比例函数y=的图象交于A,B两点,若A点坐标为(,﹣2),则k1+k2= ﹣8 .【分析】根据待定系数法求得k1、k2,即可求得k1+k2的值.解:∵反比例函数y=k1x与反比例函数y=的图象交于A,B两点,若A点坐标为(,﹣2),∴﹣2=k1,﹣2=,∴k1=﹣2,k2=﹣6,∴k1+k2=﹣8,故答案为﹣8.13.已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为 12π .(用含π的代数式表示),圆心角为 216 度.【分析】根据圆锥的展开图为扇形,圆周长公式的求解.解:设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,根据题意得2π×6=,解得n=216,即这个圆锥的侧面展开图的圆心角为216°.故12π,216.14.动物学家经过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有 0.8a 只,现年20岁的这种动物活到25岁的概率是 .【分析】用概率乘以动物的总只数即可得出20年后存活的数量;先设出一切动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.解:若设刚出生的这种动物共有a只,则20年后存活的有0.8a只,设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.5x,故现年20岁到这种动物活到25岁的概率为=,故0.8a,.15.已知菱形ABCD的面积为2,点E是一边BC上的中点,点P是对角线BD上的动点.连接AE,若AE平分∠BAC,则线段PE与PC的和的最小值为 ,值为 2+ .【分析】由点E是一边BC上的中点及AE平分∠BAC,可得△ABC是等边三角形,根据菱形ABCD的面积为2,可得菱形的边长为2;求PE+PC的最小值,点E和点C是定点,点P是线段BD上动点,由轴对称最值成绩,可求出最小值;求和的值,观察图形可知,当PE和PC的长度时,和,即点P和点D重合时,PE+PC的值.解:根据图形可画出图形,如图所示,过点B作BF∥AC交AE的延伸线于点F,∴∠F=∠CAE,∠EBF=∠ACE,∵点E是BC的中点,∴△ACE≌△FBE(AAS),∴BF=AC,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠BAE=∠F,∴AB=BF=AC,在菱形ABCD中,AB=BC,∴AB=BC=AC,即△ABC是等边三角形;∴∠ABC=60°,设AB=a,则BD=,∴菱形ABCD的面积=AC•BD=2,即=2,∴a=2,即AB=BC=CD=2;∵四边形ABCD是菱形,∴点A和点C关于BD对称,∴PE+PC=AP+EP,当点A,P,E三点共线时,AP+EP的和最小,此时AE=;点P和点D重合时,PE+PC的值,此时PC=DC=2,过点D作DG⊥BC交BC的延伸线于点G,连接DE,∵AB∥CD,∠ABC=60°,∴∠DCG=60°,∴CG=1,DG=,∴EG=2,∴DE==,此时PE+PC=2+;即线段PE与PC的和的最小值为;值为2+.故;2+.16.若把第n个地位上的数记为x n,则称x1,x2,x3,…,x n有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:y1,y2,y3,…,y n,其中y n是这个数列中第n个地位上的数,n=1,2,…,k且y n=并规定x0=x n,x n+1=x1.如果数列A只要四个数,且x1,x2,x3,x4依次为3,1,2,1,则其“伴生数列”B是 0,1,0,1 .【分析】根据“伴生数列”的定义依次取n=1,2,3,4,求出对应的y n即可.解:当n=1时,x0=x4=1=x2,∴y1=0,当n=2时,x1≠x3,∴y2=1,当n=3时,x2=x4,∴y3=0,当n=4时,x3≠x5=x1,∴y4=1,∴“伴生数列”B是:0,1,0,1,故答案为0,1,0,1.三、解答题(本大题共8小题,满分72分.解答应写出文字阐明,证明过程或演算步骤)17.(10分)计算求解:(1)计算()﹣1﹣(﹣)÷+tan30°;(2)解方程组.【分析】(1)根据负整数指数幂、二次根式的除法法则和角的三角函数值计算;(2)先把原方程组化简,然后利用加减消元法解方程组.解:(1)原式=3﹣(﹣)+×=3﹣(4﹣2)+1=3﹣2+1=2;(2)原方程整理为,①×12﹣②得:13x=3900,解得x=300,把x=300代入①得:y=400,∴方程组的解为.18.(8分)如图,四边形ABCD是平行四边形,BE∥DF且分别交对角线AC于点E,F.(1)求证:△ABE≌△CDF;(2)当四边形ABCD分别是矩形和菱形时,请分别说出四边形BEDF的外形.(无需阐明理由)【分析】(1)由平行四边形的性质可得AB=CD,∠BAE=∠DCF,再由BE∥DF,可得∠AEB=∠CFD,进而判断△ABE≌△CDF;(2)解:(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∵BE∥DF,∴∠BEC=∠DFA,∴180°﹣∠BEC=180°﹣∠DFA,∴∠AEB=∠CFD,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),(2)连接ED,BF,BD,由(1)知△ABE≌△CDF,∴BE=DF,∵BE∥DF,∴四边形BEDF是平行四边形,1°当四边形ABCD是矩形时,四边形BEDF是平行四边形,2°当四边形ABCD是菱形时,∵四边形ABCD是菱形,∴AC⊥BD,∴EF⊥BD,∴四边形BEDF是菱形.19.(10分)某大学为了解大先生对中国党史知识的学习情况,在大学一年级和二年级举行有关党史知识测试.现从一、二两个年级中各随机抽取20名先生的测试成绩(满分50分,30分及30分以上为合格;40分及40分以上为)进行整理、描述和分析,给出了上面的部分信息.大学一年级20名先生的测试成绩为:39,50,39,50,49,30,30,49,49,49,43,43,43,37,37,37,43,43,37,25.大学二年级20名先生的测试成绩条形统计图如图所示;两个年级抽取的先生的测试成绩的平均数、众数、中位数、率如下表所示:年级平均数众数中位数率大一a b43m大二39.544c n请你根据上面提供的一切信息,解答下列成绩:(1)上表中a= 41.1 ,b= 43 ,c= 42.5 ,m= 55% ,n =65% ;根据样本统计数据,你认为该大学一、二年级中哪个年级先生掌握党史知识较好?并阐明理由(写出一条理由即可);(2)已知该大学一、二年级共1240名先生参加了此次测试,经过计算,估计参加此次测试成绩合格的先生人数能否超过1000人;(3)从样本中测试成绩为满分的一、二年级的先生中随机抽取两名先生,用列举法求两人在同一年级的概率.【分析】(1)由平均数、众数、中位数的定义求解即可,再由两个年级的率进行阐明即可;(2)先求出样本合格率,再由参加此次测试的总人数乘以合格率即可;(3)画树状图,共有20种等可能的结果,两人在同一年级的结果有8种,再由概率公式求解即可.解:(1)将一年级20名同窗成绩整理如下表:成绩25303739434950人数1242542'∴a=(25×1+30×2+37×4+39×2+43×5+49×4+50×2)=41.1,b=43,c==42.5,m=(5+4+2)÷20×=55%,n=(3+5+2+3)÷20×=65%,故41.1,43,42.5,55%,=65%;从表中率看,二年级样本率达到65%高于一年级的55%,因此估计二年级先生的率高,所以用率评价,估计二年级先生掌握党史知识较好.(2)∵样本合格率为:=92.5%,∴估计总体的合格率大约为92.5%,∴估计参加测试的两个年级合格先生约为:1240×92.5=1147(人),∴估计参加此次测试成绩合格的先生人数能超过1000人;(3)一年级满分有2人,记为A,B,二年级满分有3人,记为C,D,E,画树状图如图:共有20种等可能的结果,两人在同一年级的结果有8种,∴两人在同一年级的概率为=.20.(8分)如图,线段EF与MN表示某一段河的两岸,EF∥MN.综合理论课上,同窗们需求在河岸MN上测量这段河的宽度(EF与MN之间的距离),已知河对岸EF上有建筑物C、D,且CD=60米,同窗们首先在河岸MN上选取点A处,用测角仪测得C建筑物位于A北偏东45°方向,再沿河岸走20米到达B处,测得D建筑物位于B北偏东55°方向,请你根据所测数据求出该段河的宽度,(用非角的三角函数或根式表示即可)【分析】过C、D分别作CP⊥MN、DQ⊥MN垂足为P、Q,设河宽为x米,根据直角三角形的三角函数得出x,进而解答即可.解:如图,过C、D分别作CP⊥MN、DQ⊥MN垂足为P、Q,设河宽为x米.由题意知,△ACP为等腰直角三角形,∴AP=CP=x(米),BP=x﹣20(米),在Rt△BDQ中,∠BDQ=55°,∴,∴tan55°⋅x=x+40,∴(tan55°﹣1)⋅x=40,∴,所以河宽为米.答:河宽为米.21.(7分)上面图片是七年级教科书中“实践成绩与一元方程”的探求3.探求3电话计费成绩下表中有两种挪动电话计费方式.被叫月运用费/元主叫限定工夫/min主叫超时费/(元/min)方式一581500.25方式二883500.19考虑下列成绩:月运用费固定收:主叫不超限定工夫不再免费,主叫超时部分加收超时费,被叫.(1)设一个月内用挪动电话主叫为tmin(t是正整数).根据上表,列表阐明:当t在不同工夫范围内取值时,按方式一和方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫工夫选择的计费方式吗?经过计算验证你的看法.小明升入初三再看这个成绩,发现两种计费方式,每一种都是因主叫工夫的变化而惹起计费的变化,他把主叫工夫视为在正实数范围内变化,决定用函数来处理这个成绩.(1)根据函数的概念,小明首先将成绩中的两个变量分别设为自变量x和自变量的函数y,请你帮小明写出:x表示成绩中的 主叫工夫 ,y表示成绩中的 计费 .并写出计费方式一和二分别对应的函数解析式;(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并根据图象直接写出如何根据主叫工夫选择的计费方式.(注:坐标轴单位长度可根据需求本人确定)【分析】(1)由题意可知,x表示成绩中的主叫工夫,y表示成绩中的计费;再根据分段计费的费用就可以得出各个时段各种不同的方法就可以得出结论;(2)画出图象,再根据图象解答即可.解:(1)由题意,可得x表示成绩中的主叫工夫,y表示成绩中的计费;方式一:y=;方式二:y=;故主叫工夫,计费;(2)大致图象如下:由图可知:当主叫工夫在270分钟以内选方式一,270分钟时两种方式相反,超过270分钟选方式二.22.(7分)为了促进先生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”.去年学校经过采购平台在某体育用品店购买A品牌足球共花费2880元,B品牌足球共花费2400元,且购买A品牌足球数量是B品牌数量的1.5倍,每个足球的售价,A品牌比B品牌便宜12元.今年由于参加俱乐部人数添加,需求从该店再购买A、B两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年进步了5%,B品牌比去年降低了10%,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?【分析】设去年A足球售价为x元/个,则B足球售价为(x+12)元/个,根据“购买A品牌足球数量是B品牌数量的1.5倍”列出分式方程,经过解方程求得A足球售价为48元/个,B足球售价为60元/个;然后设今年购进B足球的个数为a个,再根据“今年购买A、B两种足球的总费用不超过去年总费用的一半”列出不等式并解答即可.解:设去年A足球售价为x元/个,则B足球售价为(x+12)元/个.由题意得:,即,∴96(x+12)=120x,∴x=48.经检验,x=48是原分式方程的解且符合题意.。
2022年山东省济宁市中考数学模拟试卷1. −2的倒数是( )A. 2B. 12C. −12D. −22. 新型冠状病毒(2019−nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为( )A. 2.03×10−8B. 2.03×10−7C. 2.03×10−6D. 0.203×10−63. 下列关于“健康防疫“标志的图中是轴对称图形的是( )A. B.C. D.4. 反比例函数y=kx(k≠0)的图象经过点(−4,3),这个反比例函数的图象一定经过( )A. (−4,−3)B. (3,−4)C. (3,4)D. (−3,−4)5. 下列计算正确的是( )A. a2+a2=a4B. (a2)3=a5C. (−a2b)3=a4b3D. (b+2a)(2a−b)=4a2−b26. 如图,在△ABC中,∠B=30°,∠C=40°,点D在边AB上,过点D作DE//AC交BC于点E,则∠ADE的度数为( )A. 50°B. 60°C. 70°D. 80°7. 肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程( )A. 1+x=225B. 1+x2=225C. (1+x)2=225D. 1+(1+x2)=2258. 如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为( )A. 1B. √2C. √3D. 29. 如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为( )A. 3√3B. 2√7C. 4√3D. 2+2√310. 如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点⏜上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC B.点P为AM于点F,则下列结论正确的个数有( )π;③∠DBE=45°;④△BCF∽△PCB;⑤CF⋅CP为定值.①PB=PD;②BC⏜的长为43A. 2个B. 3个C. 4个D. 5个11. 若3x a y3和−x2y b是同类项,则这两个同类项之和为______.12. 若a、b为实数,且满足|a+2|+√3−b=0,则b−a的值为______.13. 如图,在正方形ABCD中,点P在AC上,PE⊥AB,PF⊥BC,垂足分别为E,F,EF=3,则DP的长为______.14. 如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是______.15. 如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的32倍,得到矩形A1OC 1B1,再将矩形A1OC1B1以原点O为位似中心放大32倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为______.16. (1)计算:(−12)−1+4sin60°−|−2√3|+(2022−π)0;(2)解方程:4x2−1=xx+1−1.17. 为了解“停课不停学”期间,学生对线上学习方式的喜好情况,某校随机抽取40名学生进行问卷调查,其统计结果如表:最喜欢的线上学习方式(每人最多选一种)人数直播10录播a资源包5线上答疑8(1)求出a的值;(2)根据调查结果估计该校1000名学生中,最喜欢“线上答疑”的学生人数;(3)在最喜欢“资源包”的学生中,有2名男生,3名女生,现从这5名学生中随机抽取2名学生介绍学习经验,求恰好抽到1名男生和1名女生的概率.18. 如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2√3.【实践与操作】(1)利用尺规作图作线段AC的垂直平分线DE,垂足为点E,交AB与点D;(保留作图痕迹,不写作法)【化简与求值】(2)若△ADE的周长为a,T=a−√3,求T的值.19. 复课返校后,为了拉大学生锻炼的间距,学校决定增购适合独立训练的两种体育器材:跳绳和毽子.如果购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个键子共需120元.(1)求一根跳绳和一个毽子的售价分别是多少元;(2)学校计划购买跳绳和毽子两种器材共400个,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.20. 如图,已知⊙O的直径AB=12,弦AC=10,D是BC⏜的中点,过点D作DE⊥AC,交AC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.21. 阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形______.A.平行四边形B.矩形C.菱形D.等腰梯形(2)命题:“和谐四边形一定是轴对称图形”是______ 命题(填“真”或“假”).(3)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD的和谐线,且AB=BC,请求出∠ABC的度数.22. 如图,已知抛物线y=ax2+bx+c与x轴相交于A(−3,0),B两点,与y轴相交于点C(0,2),对称轴是直线x=−1,连接AC.(1)求该抛物线的表达式;(2)若过点B的直线l与抛物线相交于另一点D,当∠ABD=∠BAC时,求直线l的表达式;(3)在(2)的条件下,当点D在x轴下方时,连接AD,此时在y轴左侧的抛物线上存在点P,使S△ABD.请直接出所有符合条件的点P的坐标.S△BDP=32答案和解析1.【答案】C【解析】【分析】本题主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根.据倒数定义可知,−2的倒数是−12【解答】)=1,解:因为−2×(−12.所以−2的倒数是−12故选:C.2.【答案】B【解析】解:0.000000203米,该数据用科学记数法表示为2.03×10−7.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A.不是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项符合题意;D.不是轴对称图形,故本选项不符合题意.故选:C.根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.【答案】B(k≠0)的图象经过点(−4,3),【解析】解:∵反比例函数y=kx∴k=−4×3=−12,∴反比例函数的关系式为y=−12,x当x=−4时,y=3,因此选项A不符合题意;当x=3时,y=−4,因此选项B符合题意;当x=3时,y=−4,因此选项C不符合题意;当x=−3时,y=4,因此选项D不符合题意;故选:B.根据反比例函数图象上点的坐标关系,分别代入计算即可.本题考查反比例函数图象上点的坐标特征,求出函数关系式是解决问题的关键.5.【答案】D【解析】解:A、原式=2a2,原计算错误,故此选项不符合题意;B、原式=a6,原计算错误,故此选项不符合题意;C、原式=−a6b3,原计算错误,故此选项不符合题意;D、原式=4a2−b2,原计算正确,故此选项符合题意.故选:D.根据合并同类项法则,幂的乘方的运算法则,积的乘方的运算法则,平方差公式计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.6.【答案】C【解析】解:∵∠BAC=180°−∠B−∠C,∠B=30°,∠C=40°,∴∠BAC=110°,∵DE//AC,∴∠ADE+∠BAC=180°,∴∠ADE=180°−∠BAC=70°,故选:C.由DE//AC,推出∠ADE+∠BAC=180°,只要求出∠DAC的度数即可解决问题.本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】C【解析】解:设1人平均感染x人,依题意可列方程:(1+x)2=225.故选:C.此题可设1人平均感染x人,则第一轮共感染(x+1)人,第二轮共感染x(x+1)+x+1=(x+ 1)(x+1)人,根据题意列方程即可.此题考查了由实际问题抽象出一元二次方程的解,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.8.【答案】D【解析】【分析】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.由正方形的性质和平行线的性质得出∠A=90°,∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,从而得出∠AB′E=30°,得出B′E=2AE,设BE=x,得出B′E=x,AE=3−x,从而得出2(3−x)=x,解方程求出x,即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴∠AB′E=30°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2,∴BE=2.故选D.9.【答案】B【解析】解:如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H.∵四边形ABCD是菱形,∴AD=AB,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,EA=EN,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°−60°−60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,DE=1,EH=√3,∴DH=12在Rt△ECH中,EC=√EH2+CH2=2√7,∴GB+GC≥2√7,∴GB+GC的最小值为2√7.故选:B.如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H.利用全等三角形的性质证明∠GNB=60°,点G的运动轨迹是射线NG,易知B,E关于射线NG对称,推出GB=GE,推出GB+ GC=GE+GC≥EC,求出EC即可解决问题.本题考查旋转变换,轨迹,菱形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于常考题型.10.【答案】B【解析】解:①连接AC,并延长AC,与BD的延长线交于点H,如图,∵M,C是半圆上的三等分点,∴∠BAH=30°,∵BD与半圆O相切于点B.∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP,∠ACP=∠DCH,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD =90°−∠ABP ,若∠PDB =∠PBD ,则∠ABP +60°=90°−∠ABP , ∴∠ABP =15°,∴P 点为AM⏜的中点,但点P 为AM ⏜上的一动点, ∴∠PDB 不一定等于∠PBD , ∴PB 不一定等于PD ,故①错误; ②∵M ,C 是半圆上的三等分点, ∴∠BOC =13×180°=60°, ∵直径AB =8, ∴OB =OC =4,∴BC ⏜的长度=60π×4180=43π,故②正确; ③∵∠BOC =60°,OB =OC , ∴∠ABC =60°,OB =OC =BC , ∵BE ⊥OC ,∴∠OBE =∠CBE =30°, ∵∠ABD =90°,∴∠DBE =60°,故③错误; ④∵M 、C 是AB ⏜的三等分点, ∴∠BPC =30°, ∵∠CBF =30°, ∴∠CBF =∠BPC , ∵∠BCF =∠PCB ,∴△BCF∽△PCB ,故④正确; ⑤∵△BCF ∽△PCB , ∴CBCP =CFCB , ∴CF ⋅CP =CB 2,∵CB =OB =OC =12AB =4, ∴CF ⋅CP =16,故⑤正确.综上所述:正确结论有②④⑤,共3个.故选:B.⏜的中点,与题意不符,①连接AC,并延长AC,与BD的延长线交于点H,若PD=PB,得出P为AM即可判定正误;②先求出∠BOC,再由弧长公式求得BC⏜的长度,进而判断正误;③由∠BOC=60°,得△OBC为等边三角形,再根据三线合一性质得∠OBE,再由角的和差关系得∠DBE,便可判断正误;④证明∠CPB=∠CBF=30°,再利用公共角,可得△BCF∽△PCB,便可判断正误;⑤由等边△OBC得BC=OB=4,再由相似三角形得CF⋅CP=BC2,便可判断正误.本题属于圆综合题,主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,弧长公式,相似三角形的性质与判定,关键是熟练掌握切线的性质得到∠ABD=90°,并能灵活应用.11.【答案】2x2y3【解析】解:由题意得:a=2,b=3,∴两个单项式为3x2y3和−x2y3,∴3x2y3−x2y3=2x2y3,故答案为:2x2y3.根据同类项定义可得a=2,b=3,然后求和即可.此题主要考查同类项,以及合并同类项,关键是掌握同类项定义.12.【答案】5【解析】解:∵|a+2|≥0,√3−b≥0,|a+2|+√3−b=0,∴a+2=0,a=−2,3−b=0,b=3,∴b−a=5.故答案为5.通过|a+2|≥0,√3−b≥0,|a+2|+√3−b=0,求出a,b的值再进行计算.本题考查二次根式与绝对值的非负性,解题关键是熟练掌握二次根式与绝对值的运算.13.【答案】3【解析】解:如图,连接PB,在正方形ABCD中,AB=AD,∠BAC=∠DAC=45°,∵AP=AP,AB=AD,∠BAC=∠DAC=45°,在△ABP和△ADP中,{AB=AD∠BAC=∠DAC AP=AP,∴△ABP≌△ADP(SAS),∴BP=DP;∵PE⊥AB,PF⊥BC,∠ABC=90°,∴四边形BFPE是矩形,∴EF=PB,∴EF=DP=3,故答案为:3.根据正方形的四条边都相等可得AB=AD,正方形的对角线平分一组对角可得∠BAC=∠DAC= 45°,然后利用“边角边”证明△ABP和△ADP全等,根据全等三角形对应边相等证明即可;求出四边形BFPE是矩形,根据矩形的对角线相等可EF=PB.即可求解.本题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟记正方形的性质得到三角形全等的条件是解题的关键.14.【答案】76°或142°【解析】解:①设CD′交AB于E,设AB的中点为O,连接OD′,当EB=EC,此时∠ECB=∠ABC=38°,则∠BOD′=2∠BCD′=76°,∴点D′在量角器上对应的度数是76°;②设CD″交AB 于F ,连接OD″,当BF =BC 时,∠BCD″=12(180°−∠ABC)=12×(180°−38°)=71°,∴∠BOD″=2∠BCD″=142°, ∴点D″在量角器上对应的度数是142°; 故答案为:76°或142°.分两种情形,由圆周角定理计算即可解决问题.本题考查圆周角定理、等腰三角形的性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.15.【答案】(−3n 2n ,3n2n+1)【解析】解:∵在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍, ∴矩形A 1OC 1B 1与矩形AOCB 是位似图形,点B 与点B 1是对应点, ∵OA =2,OC =1. ∵点B 的坐标为(−2,1), ∴点B 1的坐标为(−2×32,1×32),∵将矩形A 1OC 1B 1以原点O 为位似中心放大32倍,得到矩形A 2OC 2B 2…, ∴B 2(−2×32×32,1×32×32), ∴B n (−2×3n 2n ,1×3n2n ),∵矩形A n OC n B n 的对角线交点(−2×3n2n×12,1×3n2n×12),即(−3n 2n ,3n 2n+1),故答案为:(−3n 2n ,3n2n+1). 根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k ,即可求得B n 的坐标,然后根据矩形的性质即可求得对角线交点的坐标. 本题考查的是矩形的性质、位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .16.【答案】解:(1)原式=−2+4×√32−2√3+1=−2+2√3−2√3+1=−1;(2)去分母得:4=x(x−1)−x2+1,解得:x=−3,检验:把x=−3代入得:(x+1)(x−1)≠0,∴分式方程的解为x=−3.【解析】(1)原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则及分式方程的解法是解本题的关键.17.【答案】解:(1)a=40−(10+5+8)=17;(2)最喜欢“线上答疑”的学生人数为1000×840=200(人);(3)设3个女生分别为女 1,女 2,女 3,2个男生分别为男 1,男 2,所有可能出现的结果如下表:从中随机抽取两个同学担任两角色,所有可能的结果有20种,每种结果的可能性都相同,其中,抽到1名男生和1名女生的结果有12种,所以抽到1名男生和1名女生的概率为1220=35.【解析】(1)根据四种学习方式的人数之和等于40可求出a的值;(2)用总人数乘以样本中最喜欢“线上答疑”的学生人数所占比例可得答案;(3)画树状图展示所有20种等可能的结果数,再找出恰好抽到1名男生和1名女生的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图.18.【答案】解:(1)如图,DE 为所作;(2)∵DE 垂直平分AC ,∴∠AED =90°,AE =12AC =√3, 在Rt △ADE 中,∵∠A =30°, ∴DE =√33AE =√33×√3=1, ∴AD =2DE =2,∴a =1+2+√3=3+√3, ∴T +3+√3−√3=3.【解析】(1)利用基本作图,作AC 的垂直平分线即可;(2)先DE 垂直平分AC 得到∠AED =90°,AE =√3,再利用含30度的直角三角形三边的关系得到DE =1,AD =2,则可求出a 的值,然后计算T 的值.本题考查了作图−基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了线段垂直平分线的性质和含30度角的直角三角形三边的关系.19.【答案】解:(1)设一根跳绳的售价为x 元,一个毽子的售价为y 元,依题意得:{5x +6y =1962x +5y =120,解得:{x =20y =16.答:一根跳绳的售价为20元,一个毽子的售价是16元. (2)设学校计划购进跳绳m 根,则购进毽子(400−m)个, 依题意得:{m ≥3(400−m)m ≤310,解得:300≤m ≤310.设学校购进跳绳和毽子一共需要花w 元,则w =20m +16(400−m)=4m +6400, ∵4>0,∴w 随m 的增大而增大,∴当m =300时,w 取得最小值.此时400−m =400−300=100. 答:学校花钱最少的购买方案为:购进跳绳300根,购进毽子100个.【解析】(1)设一根跳绳的售价为x 元,一个毽子的售价为y 元,根据“购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个键子共需120元”,即可得出关于x ,y 的二元一次方程组,解之即可得出跳绳及毽子的售价;(2)设学校计划购进跳绳m 根,则购进毽子(400−m)个,根据“跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,设学校购进跳绳和毽子一共需要花w 元,利用总价=单价×数量即可得出w 关于m 的函数关系式,再利用一次函数的性质,即可得出学校花钱最少的购买方案为:购进跳绳300根,购进毽子100个. 本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.20.【答案】(1)证明:连接OD ,∵D 为BC ⏜的中点, ∴BD⏜=CD ⏜, ∴∠BOD =∠BAE , ∴OD//AE , ∵DE ⊥AC , ∴∠AED =90°, ∴∠ODE =90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,AC=5,∴AF=CF=12∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=1AB,2∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.【解析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD 与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED为矩形,求出FE的长,由AF+EF求出AE的长即可.此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.21.【答案】C;假【解析】解:(1)∵菱形的四条边相等,∴连接对角线能得到两个等腰三角形,∴菱形是和谐四边形;故选C;(2)和谐四边形不一定是轴对称图形,如图所示:∠C=45°,直角梯形ABCD是和谐四边形,但不是轴对称图形,故答案为:假;(3)∵AC是四边形ABCD的和谐线,且AB=BC,∴△ACD是等腰三角形,∵在等腰Rt△ABD中,AB=AD,∴AB=AD=BC,①如图1,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠ABC=60°;②如图2,当DA=DC时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠ABC=90°;③如图3,当CA=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD,CE⊥AD,∴AE=ED,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形,∴BF=AE.∵AB=AD=BC,∴BF=1BC,2∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB//CE,∴∠BAC=∠ACE,∴∠ACB=∠BAC=12∠BCF=15°,∴∠ABC=150°.(1)由和谐四边形的定义,即可得到菱形是和谐四边形;(2)和谐四边形不一定是轴对称图形,举出反例即可;(3)首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质,即可求出∠ABC的度数.此题主要考查了等腰直角三角形的性质,等腰三角形的性质、矩形的性质、正方形的性质以及菱形的性质,此题难度较大,解题的关键是掌握数形结合思想与分类讨论思想的应用.22.【答案】解:(1)∵抛物线的对称轴为x=−1,∴−b2a=−1,∴b=2a,∵点C的坐标为(0,2),∴c=2,∴抛物线的解析式为y=ax2+2ax+2,∵点A(−3,0)在抛物线上,∴9a−6a+2=0,∴a=−23,∴b=2a=−43,∴抛物线的解析式为y=−23x2−43x+2;(2)Ⅰ、当点D在x轴上方时,如图1,记BD与AC的交点为点E,∵∠ABD=∠BAC,∴AE=BE,∵直线x=−1垂直平分AB,∴点E在直线x=−1上,∵点A(−3,0),C(0,2),∴易得直线AC的解析式为y=23x+2,当x=−1时,y=43,∴点E(−1,43),∵点A(−3,0)点B关于x=−1对称,∴B(1,0),∴易得直线BD的解析式为y=−23x+23,即直线l的解析式为y=−23x+23;Ⅱ、当点D在x轴下方时,如图2,∵∠ABD=∠BAC,∴BD//AC,由Ⅰ知,直线AC的解析式为y=23x+2,∵B(1,0),∴易得直线BD的解析式为y=23x−23,即直线l的解析式为y=23x−23;综上,直线l的解析式为y=−23x+23或y=23x−23;(3)P(−5,−8)或(−1,83)或(−2,2).【解析】(1)先根据对称轴得出b=2a,再由点C的坐标求出c=2,最后将点A的坐标代入抛物线解析式求解,即可得出结论;(2)分两种情况,Ⅰ、当点D在x轴上方时,先判断出AE=BE,进而得出点E在直线x=−1上,再求出点E的坐标,最后用待定系数法求出直线l的解析式;Ⅱ、当点D在x轴下方时,判断出BD//AC,即可得出结论;(3)由(2)知,直线BD的解析式为y=23x−23①,∵抛物线的解析式为y =−23x 2−43x +2②, ∴{x =1y =0或{x =−4y =−103, ∴D(−4,−103),∴S △ABD =12AB ⋅|y D |=12×4×103=203, ∵S △BDP =32S △ABD ,∴S △BDP =32×203=10,∵点P 在y 轴左侧的抛物线上,∴设P(m,−23m 2−43m +2)(m <0),过P 作y 轴的平行线交直线BD 于F ,∴F(m,23m −23),∴PF =|−23m 2−43m +2−(23m −23)|=|23m 2+2m −83|,∴S △BDP =12PF ⋅(x B −x D )=12×|23m 2+2m −83|×5=10,∴m =−5或m =2(舍)或m =−1或m =−2,∴P(−5,−8)或(−1,83)或(−2,2). 此题是二次函数综合题,主要考查了待定系数法,垂直平分线的性质,坐标系中求三角形面积的方法,求出点D 的坐标是解本题的关键.。
2022年中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、比较23-与()32-的大小,正确的是( ) A .大小不定 B .()3232->- C .()3232-=- D .()3232-<- 2、如果54a b =,那么下列各式错误的是( ) A .54b a = B .:22:153a b = C .:5:4a b = D .528b a = 3、正整数中,最小的偶数乘最小的合数,积为( ) A .4 B .6 C .8 D .10 4、如图,如果BAD CAE ∠=∠,那么添加下列一个条件后,仍不能确定ABC ADE 的是( )·线○封○密○外A .B D ∠=∠ B .AB DE AD BC = C .C AED ∠=∠ D .AB AC AD AE= 5、如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=6C .p=5,q=-6D .p=1,q=-66、关于x 的方程5264x a a x -=+-的解是非负数,则a 的取值范围是( )A .1a ≥B .1a ≤-C .1a ≥-D .0a ≥7、以下各数中,不能与133,57,9115组成比例的是( ) A .2549 B .1699 C .1 D .82812258、如图,l 1∥l 2∥l 3,直线a ,b 与l 1、l 2、l 3分别相交于A 、B 、C 和点D 、E 、F .若23=AB BC ,DE =4,则EF 的长是( )A .83 B .203 C .6 D .109、扇形的半径扩大为原来的2倍,圆心角缩小为原来的12,那么扇形的面积( )A .不变B .扩大为原来的2倍C .缩小为原来的12D .扩大为原来的4倍10、有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( )A .100x 100B .﹣100x 100C .101x 100D .﹣101x 100第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在括号内填上适当的数,使等式成立:5159()()24124B A +==+,A=_____,B=____2、若23a b =,则a a b =+________.3、能同时被2和7整除的最大两位数是____________.4、挪一枚骰子,点数是素数的可能性大小是_______.5、计算: 1122+=_______; 113-=_______; 2334⨯=_____; 315÷=_______ ; 1223+=_______; 10.53-=_______; 144⨯=_______; 2043÷=_______. 三、解答题(5小题,每小题10分,共计50分) 1、现有甲种盐水500克其浓度为10%;另有乙种盐水300克将这样的甲乙两种盐水混合后,浓度变为15%.求: (1)原来甲种盐水含盐量多少克? (2)原来乙种盐水的浓度是多少?(精确一位小数)2、计算:1121.25(2)2843÷-+÷.3、计算:3331657575⨯-⨯. 4、某商店购进某种品牌的电脑若干台,它们的进货价为每台2500元,5月份的销售价定为每台4000元.经市场调查后,6月份的销售价降低20%,10月份由于市场等因素,因此在5月份的基础上,销售价上涨10%.求: (1)6月份销售价是多少元? (2)10月份销售该品牌的电脑每台可获利多少元?·线○封○密○外5、已知::2:3a b =,(5):()2:3a b x ++=,求x 的值-参考答案-一、单选题1、D【分析】根据有理数的大小比较及有理数的乘方直接排除选项即可.【详解】 解:()32=8,329---=-∴89-->即()3223-->. 故选D .【点睛】本题主要考查有理数的乘方及有理数的大小比较,熟练掌握负数的大小比较及乘方运算是解题的关键.2、C【分析】根据比例的基本性质判断选项的正确性.【详解】∵54a b =,∴:4:5a b =,C 选项错误.故选:C .【点睛】本题考查比例的基本性质,解题的关键是熟练运用比例的性质进行判断.3、C【分析】根据偶数和合数的意义,可以得到正整数中最小的偶数和最小的合数分别 是多少,然后可以求得它们的积. 【详解】 解:由偶数和合数的意义可以得到:正整数中最小的偶数是2,正整数中最小的合数是4,所以它们的积为8. 故选C . 【点睛】 本题考查偶数和合数的意义,找出正整数中最小的偶数值和最小的合数值是解题关键. 4、B 【分析】 根据题意可得EAD CAB ∠=∠,然后根据相似三角形的判定定理逐项判断,即可求解. 【详解】 解:∵BAD CAE ∠=∠, ∴EAD CAB ∠=∠, A 、若添加B D ∠=∠,可用两角对应相等的两个三角形相似,证明△AAA ∼△AAA ,故本选项不符合题意; B 、若添加AB DE AD BC =,不能证明ABC ADE ,故本选项符合题意;C 、若添加C AED ∠=∠,可用两角对应相等的两个三角形相似,证明ABC ADE ,故本选项不符合题意; D 、若添加AB AC AD AE =,可用两边对应成比例,且夹角相等的两个三角形相似,证明△AAA ∼△AAA ,故本选项不符合题意;·线○封○密·○外故选:B【点睛】本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.5、∴p=1,q=-故选:B.【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.6.D【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【详解】解:∵(x-2)(x+3)=x2+x-6,又∵(x-2)(x+3)=x2+px+q,∴x2+px+q=x2+x-6,∴p=1,q=-6.故选:D.【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.6、C【分析】先求出方程的解,然后根据题意得到含参数的不等式求解即可.【详解】解:由5264x a a x -=+-,方程的解为1x a =+,∴10a +≥,即1a ≥-.故选C . 【点睛】 本题主要考查一元一次方程的解及一元一次不等式的解,熟练掌握运算方法是解题的关键. 7、B 【分析】 逆用比例的基本性质:两内项的积等于两外项的积;据此逐项分析后找出不能与133,57,9115组成比例的一项即可. 【详解】 A 、因为1359125371549⨯=⨯,所以2549能与133,57,9115组成比例; B 、因为1699不能与133,57,9115写成乘积相等式,所以1699不能与133,57,9115组成比例; C 、因为5911317153⨯=⨯,所以1能与133,57,9115组成比例; D 、因为13915828113157225⨯=⨯,所以8281225能与133,57,9115组成比例; 故选:B . 【点睛】 本题考查了比例的基本性质,关键是熟悉并灵活运用比例的基本性质:两内项的积等于两外项的积. 8、C·线○封○密○外【分析】 根据平行线分线段成比例可得AB DE BC EF =,代入计算即可解答. 【详解】解:∵l 1∥l 2∥l 3, ∴AB DE BC EF=, 即243EF =, 解得:EF =6.故选:C .【点睛】本题主要考查平行线分线段成比例定理,熟悉定理是解题的关键.9、B【分析】 扇形的面积=2360r π⨯圆心角度数,由此设原来扇形的半径为1,圆心角为2°,则变化后的扇形的半径为2,圆心角为1°,由此利用扇形的面积公式即可计算得出它们的面积,从而进行比较选择.【详解】设原来扇形的半径为1,圆心角为2°,则变化后的扇形的半径为2,圆心角为1°,根据扇形的面积公式可得: 原来扇形的面积为:2211360180ππ⨯⨯=; 变化后扇形面积为:211236090ππ⨯⨯=; 原来扇形面积:变化后扇形面积=11:18090ππ=1:2;故选:B .【点睛】此题考查了扇形面积公式,解题的关键是熟知公式的灵活应用.10、C【分析】 由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100. 【详解】 由﹣2x ,3x 2,﹣4x 3,5x 4……得, 单项式的系数的绝对值为序数加1, 系数的正负为(﹣1)n ,字母的指数为n , ∴第100个单项式为(﹣1)100(100+1)x 100=101x 100, 故选C . 【点睛】 本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系. 二、填空题 1、8 1 【分析】 根据分数的基本性质即可得出答案. 【详解】 根据分数的基本性质有1551024816==, ∴8,1091A B ==-=, ·线○封○密○外故答案为:8,1.【点睛】本题主要考查分数的基本性质,掌握分数的基本性质是解题的关键.2、2 5【分析】根据23ab=,得到23a b=,代入式子计算即可.【详解】解:∵23ab=,∴23a b =,∴2233232553aa b b bb bb+===+,故答案为:25.【点睛】此题考查分式的求值以及比例式恒等变形能力,掌握等式的性质变形得到23a b=是解题的关键.3、98【分析】本题可先求出2、7的最小公倍数是多少,然后再求出能同时被2、7整除的最大两位数是多少.【详解】解:2、5、7最小公倍数为:2×7=14所以能同时被2、7整除的最大两位数是:98.故答案为:98.【点睛】本题考查了最小公倍数的定义,解题的关键是先求2、7的最小公倍数.4、12 【分析】 根据可能性公式即可求出结论. 【详解】 解:一枚骰子,有1、2、3、4、5、6共6个点数,其中点数为素数的有2、3、5 所以点数是素数的可能性大小是3÷6=12 故答案为:12. 【点睛】 此题考查的是求可能性,掌握可能性公式和素数的定义是解题关键. 5、1 23 12 53 143 16 1 0 【分析】 分别根据分数的加减乘除运算法则计算即可. 【详解】 1122+=1; 113-=23; 2334⨯=12; 35511533÷=⨯=; 1122433+=; ·线○封○密○外1113 0.532321 666-=-=-=;1414⨯=;20403÷=.【点睛】本题考查了分数的四则运算,熟练掌握分数的运算法则是解题的关键.三、解答题1、(1)50克;(2)23.3%【分析】(1)甲种盐水含盐量=甲种盐水的质量×其浓度;(2)乙种盐水的浓度=乙种盐水含盐的质量÷乙种盐水的质量.【详解】解:(1)500×10%=50(克),答:原来甲种盐水含盐量50克;(2)甲、乙两种盐水混合后含盐的质量:(500+300)×15%=120(克),乙种盐水的浓度:(120-50)÷300×100%=23.3%,答:原来乙种盐水的浓度是23.3%.【点睛】不管是哪类的浓度问题,最关键的思维是要抓住题中没有变化的量,不管怎么混合,盐都是来自最初的某种浓度的盐水中,运用倒推的思维来解答.2、1【分析】根据题意把小数化为分数,先算括号内的,然后把除法改为乘法,先算乘法,再算加法.【详解】 解:1121.25(2)2843÷-+÷ 515214832=÷+⨯ 5814153=⨯+ 2133=+ 1= 【点睛】 本题考查分数的四则混合运算,注意掌握运算顺序和运算法则以及数字转化. 3、35 【分析】 根据分数的混合运算结合乘法分配律直接进行求解即可. 【详解】 解:3331657575⨯-⨯ =33165755⎛⎫⨯- ⎪⎝⎭=3775⨯ =35 【点睛】 本题主要考查分数的混合运算,熟练掌握分数的运算是解题的关键. ·线○封○密○外4、(1)3200元;(2)1900元【分析】(1)根据题意列式()4000120%⨯-并计算即可;(2)根据题意可得10月份的售价为4000400010%4400+⨯=,与进价作差即可.【详解】(1)()4000120%3200⨯-=(元),答:6月份销售价是3200元;(2)4000400010%4400+⨯=(元),440025001900-=(元),答:10月份销售该品牌的电脑每台可获利1900元.【点睛】本题考查百分数的实际应用,根据题意列出算式是解题的关键.5、152【分析】根据:2:3a b =可用a 表示b 并代入(5):()2:3a b x ++=中化简即可抵消a ,解出x .【详解】解:因为:2:3a b =, 所以32b a =, 所以3(5):()2:32a a x ++=, 即33(5)2()2a a x +=⋅+31532a a x +=+ 解得152x =. 【点睛】 本题考查比的性质.化简过程中注意内项之积等于外项之积.·线○封○密○外。
山东省济宁市2022-2023学年中考数学专项突破仿真模拟卷(三模)一、选一选(本大题共10小题,共30.0分)1.2018的相反数是()A.12018B.2018C.-2018D.12018-2.将一副三角板按如图方式摆放,∠1与∠2没有一定互补的是()A. B. C. D.3.已知某班有40名学生,将他们的身高分成4组,在160165cm ~区间的有8名学生,那么这个小组的人数占全体的()A.10%B.15%C.20%D.25%4.下列变形中没有正确的是()A.若a b >,则22ac bc (c >为有理数)B.由a b ->-得b a >C.由a b >得b a< D.由1x y 2-<得x 2y >-5.二次函数y =2x 2﹣8x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当6<x <7时,它的图象位于x 轴的上方,则m 的值为()A.8B.﹣10C.﹣42D.﹣246.当A 为锐角,且12<cos ∠A <2时,∠A 的范围是()A.0°<∠A <30°B.30°<∠A <60°C.60°<∠A <90°D.30°<∠A<45°7.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数没有到8棵若设同学人数为x 人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.()7x 99x 10+--> B.()7x 99x 18+--<C.()()7x 99x 107x 99x 18⎧+--≥⎪⎨+--<⎪⎩ D.()()7x 99x 107x 99x 18⎧+--≥⎪⎨+--≤⎪⎩8.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是()A.﹣4<P <0B.﹣4<P <﹣2C.﹣2<P <0D.﹣1<P <09.如图,直线y =12x 与双曲线y =k x(k>0,x>0)交于点A ,将直线y =12x 向上平移4个单位长度后,与y 轴交于点C ,与双曲线y =kx(k>0,x>0)交于点B ,若OA =3BC ,则k 的值为()A.3B.6C.94D.9210.如图,直线l1∥l2∥l3,直线AC 分别交l1,l2,l3于点A ,B ,C ;直线DF 分别交l1,l2,l3于点D 、E 、F ,AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF=()A.35B.2C.25D.12二、填空题(本大题共6小题,共18.0分)11.17-的倒数是_____________.12.当x=2的值是_________.13.某学生7门学科考试成绩的平均分是80分,其中=门学科都考了78分,则另外4门学科成绩的平均分是_____________.14.如图,在Rt ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是 CD 上的一个动点,连接AP,则AP的最小值是_____.15.已知,如图,半径为1的⊙M直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=________.16.如图,点A(m,6),B(n,1)在反比例函数kyx=的图象上,AD⊥x轴于点D,BC⊥x轴于点C,点E在CD上,CD=5,△ABE的面积为10,则点E的坐标是_____.三、计算题(本大题共3小题,共29.0分)17.先化简,再求值:111a1a1a1⎛⎫-÷⎪+--⎝⎭,其中a1=.18.某校开展了“互助、平等、感恩、和谐、进取”主题班会,后,就的个主题进行了抽样(每位同学只选最关注的一个),根据结果绘制了两幅没有完整的统计图.根据图中提供的信息,解答下列问题:(1)这次的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行,根据(2)中结果,用树状图或列表法,求恰好选到学生关注至多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).19.如图,O 是ABC 的内心,BO 的延长线和ABC 的外接圆相交于D ,连结DC 、DA 、OA 、OC ,四边形OADC 为平行四边形.()1求证:BOC ≌CDA .()2若AB 3=,求阴影部分的面积.四、解答题(本大题共7小题,共73.0分)20.计算:0112(2018)2sin 60(3π---++︒+21.若没有等式x a 3x 24x 1>⎧⎨+<-⎩的解集是x >3,则a 的取值范围是_______.22.如图,在Rt ABC ,ACB 90∠= ,AC BC =,分别过A 、B 作直线l 的垂线,垂足分别为M 、N .()1求证:AMC ≌CNB ;()2若AM 3=,BN 5=,求AB 的长.23.某商场用36万元购进A 、B 两种商品,完后共获利6万元,其进价和售价如下表:AB进价(元/件)12001000售价(元/件)13801200(注:获利=售价-进价)(1)该商场购进A 、B 两种商品各多少件?(2)商场第二次以原进价购进A 、B 两种商品.购进B 种商品的件数没有变,而购进A 种商品的件数是次的2倍,A 种商品按原价出售,而B 种商品打折.若两种商品完毕,要使第二次经营获利没有少于81600元,B 种商品售价为每件多少元?24.已知:关于x 的一元二次方程:()()2m 1x m 2x 10(m -+--=为实数).()1若方程有两个没有相等的实数根,求m 的取值范围;()2若12是此方程的实数根,抛物线()()2y m 1x m 2x 1=-+--与x 轴交于A 、B ,抛物线的顶点为C ,求ABC 的面积.25.如图,在△ABC 中,ABAC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆点M ,交BC 于点G ,交AB 于点F .(1)求证:AE 为⊙O 的切线;(2)当BC =4,AC =6时,求⊙O 的半径;(3)在(2)的条件下,求线段BG 的长.26.如图,抛物线y=–43x2+bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A没有重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.山东省济宁市2022-2023学年中考数学专项突破仿真模拟卷(三模)一、选一选(本大题共10小题,共30.0分)1.2018的相反数是()A.12018 B.2018 C.-2018 D.12018【正确答案】C【详解】【分析】根据只有符号没有同的两个数互为相反数进行解答即可得.【详解】2018与-2018只有符号没有同,由相反数的定义可得2018的相反数是-2018,故选C.本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.将一副三角板按如图方式摆放,∠1与∠2没有一定互补的是()A. B. C. D.【正确答案】D【详解】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2没有一定互补.故选:D.本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.~区间的有8名学生,那么3.已知某班有40名学生,将他们的身高分成4组,在160165cm这个小组的人数占全体的()A.10%B.15%C.20%D.25%【正确答案】C【分析】用这个小组的人数除以全班人数即可求得结果.【详解】根据题意得:84020%÷=.故选C .本题主要考查了有理数除法的应用,掌握理数除法法则是解题的关键.4.下列变形中没有正确的是()A.若a b >,则22ac bc (c >为有理数)B.由a b ->-得b a >C.由a b >得b a <D.由1x y 2-<得x 2y >-【正确答案】A【分析】根据没有等式的性质即可一一判断.【详解】A 、若a b >,则22ac bc (c >为有理数),错误,c 0=时,没有成立;B 、由a b ->-得b a >,正确;C 、由a b >得b a <,正确;D 、由1x y 2-<得x 2y >-,正确;故选A .本题考查没有等式的性质,解题的关键是熟练掌握没有等式的性质,应用没有等式的性质应注意的问题:在没有等式的两边都乘以(或除以)同一个负数时,一定要改变没有等号的方向;当没有等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.5.二次函数y =2x 2﹣8x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当6<x <7时,它的图象位于x 轴的上方,则m 的值为()A.8B.﹣10C.﹣42D.﹣24【正确答案】D【分析】根据抛物线顶点式得到对称轴为直线x 2=,通过顶点坐标位置特征求出m 的范围,将A 选项剔除后,将B 、C 、D 选项带入其中,并根据二次函数对称性和增减性特点判断是否合理.【详解】 抛物线22y 2x 8x m 2(x 2)8m =-+=--+的对称轴为直线x 2=,而抛物线在2x 1-<<-时,它的图象位于x 轴的下方;当6x 7<<时,它的图象位于x 轴的上方,m 0∴<,当m 10=-时,则2y 2x 8x 10=--,令y 0=,则22x 8x 100--=,解得1x 1=-,2x 5=,则有当2x 1-<<-时,它的图象位于x 轴的上方;当m 42=-时,则2y 2x 8x 42=--,令y 0=,则22x 8x 420--=,解得1x 3=-,2x 7=,则有当6x 7<<时,它的图象位于x 轴的下方;当m 24=-时,则2y 2x 8x 24=--,令y 0=,则22x 8x 240--=,解得1x 2=-,2x 6=,则有当2x 1-<<-时,它的图象位于x 轴的下方;当6x 7<<时,它的图象位于x 轴的上方;故选D .本题考查了抛物线与x 轴的交点以及抛物线的轴对称性:求二次函数2y ax bx c(a,=++b ,c 是常数,a 0)≠与x 轴的交点坐标,令y 0=,即2ax bx c 0++=,解关于x 的一元二次方程即可求得交点横坐标2.b 4ac =- 决定抛物线与x 轴的交点个数:2b 4ac 0=-> 时,抛物线与x 轴有2个交点;2b 4ac 0=-= 时,抛物线与x 轴有1个交点;2b 4ac 0=-< 时,抛物线与x 轴没有交点.6.当A 为锐角,且12<cos ∠A <2时,∠A 的范围是()A.0°<∠A <30°B.30°<∠A <60°C.60°<∠A <90°D.30°<∠A<45°【正确答案】B【详解】试题解析:∵cos60°=12,cos30°=32,∴30°<∠A <60°.故选B .7.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数没有到8棵若设同学人数为x 人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.()7x 99x 10+-->B.()7x 99x 18+--<C.()()7x 99x 107x 99x 18⎧+--≥⎪⎨+--<⎪⎩ D.()()7x 99x 107x 99x 18⎧+--≥⎪⎨+--≤⎪⎩【正确答案】C【分析】没有到8棵意思是植树棵树在0棵和8棵之间,包括0棵,没有包括8棵,关系式为:植树的总棵树()x 1≥-位同学植树的棵树,植树的总棵树()8x 1<+-位同学植树的棵树,把相关数值代入即可.【详解】()x 1-位同学植树棵树为()9x 1⨯-,有1位同学植树的棵数没有到8棵.植树的棵数为()7x 9+棵,∴可列没有等式组为:()()7x 99x 17x 989x 1⎧+≥-⎪⎨+<+-⎪⎩,即()()7x 99x 107x 99x 18⎧+--≥⎪⎨+--<⎪⎩.故选C .本题考查了列一元没有等式组,得到植树总棵树和预计植树棵树之间的关系式是解决本题的关键;理解“有1位同学植树的棵数没有到8棵”是解决本题的突破点.8.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是()A.﹣4<P <0B.﹣4<P <﹣2C.﹣2<P <0D.﹣1<P <0【正确答案】A【详解】解:∵二次函数的图象开口向上,∴a>0.∵对称轴在y轴的左边,∴b2a<0.∴b>0.∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,∵b>0,∴b=2﹣a>0.∴a<2.∵a>0,∴0<a<2.∴0<2a<4.∴﹣4<2a﹣4<0,即﹣4<P<0.故选A.本题考查二次函数图象与系数的关系,利用数形思想解题是本题的解题关键.9.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移4个单位长度后,与y轴交于点C,与双曲线y=kx(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.94 D.92【正确答案】D【详解】∵将直线y=12x向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+4,分别过点A 、B 作AD ⊥x 轴,BE ⊥x 轴,CF ⊥BE 于点F,设A(3x,32x),∵OA=3BC,BC ∥OA,CF ∥x 轴,∴△BCF ∽△AOD ,∴CF=13OD ,∵点B 在直线y=12x+4上,∴B(x,12x+4),∵点A.B 在双曲线y=kx上,∴3x ⋅32x=x ⋅(12x+4),解得x=1,∴k=3×1×32×1=92.故选D.10.如图,直线l1∥l2∥l3,直线AC 分别交l1,l2,l3于点A ,B ,C ;直线DF 分别交l1,l2,l3于点D 、E 、F ,AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF=()A.35B.2C.25D.12【正确答案】A【分析】由题意易得AB=3,然后根据平行线所截线段成比例直接求解即可.【详解】解: AH=2,HB=1,BC=5,∴AB=3,123////l l l ,∴DE AB3 EF BC5==;故选A.本题主要考查平行线所截线段成比例,熟练掌握平行线所截线段成比例是解题的关键.二、填空题(本大题共6小题,共18.0分)11.17-的倒数是_____________.【正确答案】-7【分析】根据倒数定义可知,−17的倒数是-7.【详解】−17的倒数是-7.故-7.本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.当x=2的值是_________.【正确答案】1【详解】试题分析:将x=21==.13.某学生7门学科考试成绩的平均分是80分,其中=门学科都考了78分,则另外4门学科成绩的平均分是_____________.【正确答案】81.5【详解】根据题意可得,用7门学科考试成绩的总分-3门学科的总分即为4门学科成绩的总分,再用4门学科成绩的总分除以门数即得4门学科成绩的平均分.由此可得另外4门学科成绩的平均分为:(80×7-78×3)÷4=81.5分.14.如图,在Rt ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是 CD 上的一个动点,连接AP,则AP的最小值是_____.1.【分析】找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,再根据勾股定理求出AE的长,然后减掉半径即可.【详解】解:找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,∵AE=,P2E=1,∴AP21-.1-15.已知,如图,半径为1的⊙M直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=________.【正确答案】30°,∴cos∠BAO=OAAB =32,∴∠OAB=30°,∠OBA=60°;∵OC是⊙M的切线,∴∠BOC=∠BAO=30°,∴∠ACO=∠OBA-∠BOC=30°.故答案是:30°.16.如图,点A(m,6),B(n,1)在反比例函数kyx=的图象上,AD⊥x轴于点D,BC⊥x轴于点C,点E在CD上,CD=5,△ABE的面积为10,则点E的坐标是_____.【正确答案】(3,0)【详解】试题解析:由题意得:65m nm n ⎧⎨+⎩==,解得:16 mn⎧⎨⎩==,∴A(1,6),B(6,1),将A(1,6)代入kyx=得:k=6,则反比例解析式为6 yx =;设E(x,0),则DE=x-1,CE=6-x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,连接AE ,BE ,则S △ABE =S 四边形ABCD -S △ADE -S △BCE=12(BC+AD )•DC-12DE•AD-12CE•BC =12×(1+6)×5-12(x-1)×6-12(6-x )×1=352-52x=10,解得:x=3,则E (3,0).故答案为(3,0)三、计算题(本大题共3小题,共29.0分)17.先化简,再求值:111a 1a 1a 1⎛⎫-÷ ⎪+--⎝⎭,其中a 1=.【正确答案】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】原式()()()a 1a 12a 1a 1a 1a 1---=⋅-=-+-+,当a 1=时,原式=.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.某校开展了“互助、平等、感恩、和谐、进取”主题班会,后,就的个主题进行了抽样(每位同学只选最关注的一个),根据结果绘制了两幅没有完整的统计图.根据图中提供的信息,解答下列问题:(1)这次的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行,根据(2)中结果,用树状图或列表法,求恰好选到学生关注至多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【正确答案】(1)280名;(2)补图见解析;108°;(3)0.1.【分析】(1)根据“平等”的人数除以占的百分比得到的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【详解】解:(1)56÷20%=280(名),答:这次的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中结果知:学生关注至多的两个主题为“进取”和“感恩”用列表法为:AB C D E A (A,B)(A,C)(A,D)(A,E)B (B,A)(B,C)(B,D)(B,E)C (C,A)(C,B)(C,D)(C,E)D (D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.19.如图,O 是ABC 的内心,BO 的延长线和ABC 的外接圆相交于D ,连结DC 、DA 、OA 、OC ,四边形OADC 为平行四边形.()1求证:BOC ≌CDA .()2若AB 3=,求阴影部分的面积.【正确答案】(1)证明见解析(2)4π9-【分析】()1由点O 为三角形的内心,得到BO 与CO 都为角平分线,再由四边形AOCD 为平行四边形,得到对边平行且相等,进而利用AAS 得到三角形全等;()2由()1三角形全等得到对应边相等,对应角相等,确定出三角形ABC 为等边三角形,可得出内心与外心重合,即OA OB OC ==,阴影部分面积等于扇形AOB 面积减去三角形AOB 面积,求出即可.【详解】()1O 是ABC 的内心,23∠∠∴=,56∠∠=,12∠∠= ,13∠∠∴=,由AD //CO ,AD CO =,46∠∠∴=,在BOC 和CDA 中,1346AD CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,BOC ∴ ≌()CDA AAS;()2由()1得,BC AC =,346∠∠∠==,ABC ACB ∠∠∴=,AB AC ∴=,ABC ∴ 是等边三角形,O ∴是ABC 的内心也是外心,OA OB OC ∴==,设E 为BD 与AC 的交点,BE 垂直平分AC ,在Rt OCE 中,11CE AC AB 122===,OCE 30∠= ,23OA OB OC 3∴===,AOC 120∠=,2AOB AOB 23120π(14π3S S S 2360239⨯-∴=-=-⨯⨯=阴影扇形.此题考查了三角形内心与外心,全等三角形的判定与性质,平行四边形的性质,扇形面积的计算,熟练掌握各自的性质是解本题的关键.四、解答题(本大题共7小题,共73.0分)20.计算:0112(2018)2sin 60(3π---++︒+【正确答案】4【详解】分析:根据值的概念、负整数指数幂、零指数幂的法则、锐角三角函数计算.详解:原式=321232+⨯+=1+3=4点睛:本题考查了实数运算,解题的关键掌握相关运算法则.21.若没有等式x a 3x 24x 1>⎧⎨+<-⎩的解集是x >3,则a 的取值范围是_______.【正确答案】a≤3.【详解】化简没有等式组可知x a{x 3>>.∵解集为x >3,∴根据“同大取大,同小取小,大小小大中间找,小小解没有了(无解)”法则,得a≤3.22.如图,在Rt ABC ,ACB 90∠= ,AC BC =,分别过A 、B 作直线l 的垂线,垂足分别为M 、N .()1求证:AMC ≌CNB ;()2若AM 3=,BN 5=,求AB 的长.【正确答案】(1)证明见解析(2)【分析】()1根据AM l ⊥,BN l ⊥,ACB 90∠= ,可得MAC NCB ∠∠=,再根据AAS 即可判定AMC ≌CNB ;()2根据AMC ≌CNB ,即可得出CM BN 5==,再根据Rt ACM 中,AC 的长,即可得出等腰直角三角形ABC 中AB 的长.【详解】()1AM l ⊥ ,BN l ⊥,ACB 90∠= ,AMC ACB BNC 90∠∠∠∴=== ,MAC MCA 90∠∠∴+= ,MCA NCB 1809090∠∠+=-= ,MAC NCB ∠∠∴=,在AMC 和CNB 中,AMC BNC MAC NCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,AMC ∴ ≌()CNB AAS ;()2AMC ≌CNB ,CM BN 5∴==,Rt ACM ∴中,AC ===Rt ABC ,ACB 90∠=,AC BC ==,AB ∴===.本题主要考查了全等三角形的判定与性质,等腰直角三角形的性质的运用,解题时注意:两角及其中一个角的对边对应相等的两个三角形全等.23.某商场用36万元购进A 、B 两种商品,完后共获利6万元,其进价和售价如下表:A B进价(元/件)12001000售价(元/件)13801200(注:获利=售价-进价)(1)该商场购进A 、B 两种商品各多少件?(2)商场第二次以原进价购进A 、B 两种商品.购进B 种商品的件数没有变,而购进A 种商品的件数是次的2倍,A 种商品按原价出售,而B 种商品打折.若两种商品完毕,要使第二次经营获利没有少于81600元,B 种商品售价为每件多少元?【正确答案】(1)该商场购进A 、B 两种商品分别为200件和120件.(2)B 种商品售价为每件1080元.【分析】(1)设购进A 种商品x 件,B 种商品y 件,列出方程组即可求得.(2)由(1)得A 商品购进数量,再利用没有等关系“第二次经营获利没有少于81600元”可得出B 商品的售价.【详解】(1)设购进A 种商品x 件,B 种商品y 件,根据题意得()()12001000360000,138012001200100060000.x y x y +=⎧⎨-+-=⎩解得200,120.x y =⎧⎨=⎩故该商场购进A 、B 两种商品分别为200件和120件.(2)由于A 商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B 商品售完获利应没有少于81600﹣72000=9600(元)设B 商品每件售价为z 元,则120(z ﹣1000)≥9600解之得z≥1080故B 种商品售价为每件1080元.本题主要考查了二元方程组的应用和一元没有等式的应用,构建数学模型是解答本题的关键.24.已知:关于x 的一元二次方程:()()2m 1x m 2x 10(m -+--=为实数).()1若方程有两个没有相等的实数根,求m 的取值范围;()2若12是此方程的实数根,抛物线()()2y m 1x m 2x 1=-+--与x 轴交于A 、B ,抛物线的顶点为C ,求ABC 的面积.【正确答案】()1m 0<或()m 0m 1>≠;()22732【分析】()1根据2b 4ac -与零的关系即可判断出的关于x 的一元二次方程()()2m 1x m 2x 10(m -+--=为实数)的解的情况;()2把1x 2=代入方程,求出m 的值,得出函数的解析式,求出A 、B 、C 的坐标,求出AB ,根据三角形面积公式求出即可.【详解】()1根据题意,得()()2(m 2)4m 110=--⨯-⨯-> ,即2m 0>,解得m 0>或m 0<①,又m 10-≠ ,m 1∴≠②,由①②,得m 0<或()m 0m 1>≠;()122是此方程的实数根,()()211m 1(m 21022∴-⨯+-⨯-=,解此方程得:m 3=,∴抛物线的解析式为2y 2x x 1=+-,化成顶点式是:219y 2(x )48=+-,∴顶点C 的坐标为19,48⎛⎫-- ⎪⎝⎭,令y 0=,得22x x 10+-=,解得:x 1=-或12,得13AB 122=--=,所以ABC 13927S 22832=⨯⨯= .本题考查了用待定系数法求出二次函数的解析式、二次函数图象上点的坐标特征,一元二次方程的解等知识点,能求出对应的二次函数的解析式是解此题的关键.25.如图,在△ABC 中,ABAC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆点M ,交BC 于点G ,交AB 于点F .(1)求证:AE 为⊙O 的切线;(2)当BC =4,AC =6时,求⊙O 的半径;(3)在(2)的条件下,求线段BG 的长.【正确答案】(1)证明见解析;(2)32;(3)1.【分析】(1)连接OM ,如图1,先证明OM ∥BC ,再根据等腰三角形的性质判断AE ⊥BC ,则OM ⊥AE ,然后根据切线的判定定理得到AE 为⊙O 的切线;(2)设⊙O 的半径为r ,利用等腰三角形的性质得到BE=CE=12BC=2,再证明△AOM ∽△ABE ,则利用相似比得到626r r-=,然后解关于r 的方程即可;(3)作OH ⊥BE 于H ,如图,易得四边形OHEM 为矩形,则HE=OM=32,所以BH=BE-HE=12,再根据垂径定理得到BH=HG=12,所以BG=1.【详解】解:(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=12BC=2,∵OM∥BE,∴△AOM∽△ABE,∴OM AOBE AB=,即626r r-=,解得r=32,即设⊙O的半径为3 2;(3)解:作OH⊥BE于H,如图,∵OM ⊥EM ,ME ⊥BE ,∴四边形OHEM 为矩形,∴HE=OM=32,∴BH=BE ﹣HE=2﹣32=12,∵OH ⊥BG ,∴BH=HG=12,∴BG=2BH=1.26.如图,抛物线y=–43x 2+bx+c 过点A (3,0),B (0,2).M (m ,0)为线段OA 上一个动点(点M 与点A 没有重合),过点M 作垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N .(1)求直线AB 的解析式和抛物线的解析式;(2)如果点P 是MN 的中点,那么求此时点N 的坐标;(3)如果以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标.【正确答案】(1)223y x =-+,2410233y x x =-++;(2)110(,23N ;(3)5(,0)2M【分析】(1)运用待定系数法求解即可;(2)设2410,233N m m m ⎛⎫-++ ⎪⎝⎭,2,23P m m ⎛⎫-+ ⎪⎝⎭得2443NP m m =-+223PM m =-+,再由点坐标公式得出方程,求解即可;(3)分两种情况进行讨论即可得解.【详解】(1)解:设直线AB 的解析式为y kx b =+(0k ≠)∵()3,0A ,()0,2B ∴302k b b +=⎧⎨=⎩解得232k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为223y x =-+∵抛物线243y x bx c =-++点()3,0A ,()0,2B ∴493032b c c ⎧-⨯++=⎪⎨⎪=⎩解得1032b c ⎧=⎪⎨⎪=⎩∴2410233y x x =-++(2)∵MN x ⊥轴,(),0M m ∴设2410,233N m m m ⎛⎫-++ ⎪⎝⎭,2,23P m m ⎛⎫-+ ⎪⎝⎭∴2443NP m m =-+,223PM m =-+∵P 点是MN 的中点∴NP PM =∴2424233m m m -+=-+解得112m =,23m =(没有合题意,舍去)∴110,23N ⎛⎫⎪⎝⎭(3)∵()3,0A ,()0,2B ,2,23P m m ⎛⎫-+ ⎪⎝⎭∴AB =133BP m =∴133AP m =-∵BPN APM∠=∠∴当BPN △与APM △相似时,存在以下两种情况:①BP PMPN PA=∴2132233443m m m m -+=-+解得118m =∴11,08M ⎛⎫⎪⎝⎭②BP PA PN PM =∴2131333424233m m m m m =-+-+,解得52m =∴点M 的坐标为5,02M ⎛⎫ ⎪⎝⎭山东省济宁市2022-2023学年中考数学专项突破仿真模拟卷(四模)一、选一选(本大题共8小题,共32.0分)1.据国土资源部数据显示,我国是全球“可燃冰”资源储量至多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×1092.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A. B. C. D.3.下列运算正确的是()A.a﹣(b+c)=a﹣b+cB.2a2•3a3=6a5C.a3+a3=2a6D.(x+1)2=x2+14.李老师为了了解学生暑期在家的阅读情况,随机了20名学生某的阅读小时数,具体情况统计如下:阅读时间(小时)2 2.53 3.54学生人数(名)12863则关于这20名学生阅读小时数的说确的是()A.众数是8B.中位数是3C.平均数是3D.方差是0.345.若分式242xx-+的值为0,则x的值为()A.-2B.0C.2D.±26.求证:菱形的两条对角线互相垂直.已知:如图所示,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC ⊥BD .以下是打乱的证明过程:①∵BO=DO ,②∴AO 是BD 的垂直平分线,即AC ⊥BD .③∵四边形ABCD 是菱形,④∴AB=AD .证明步骤正确的顺序是()A.①→③→④→②B.③→②→①→④C.③→④→①→②D.③→④→②→①7.下列方程中,没有实数根的是()A.x 2﹣2x =0B.x 2﹣2x ﹣1=0C.x 2﹣2x +1=0D.x 2﹣2x +2=08.如图,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN=NF ;③38MB MG =;④S 四边形CGNF =S 四边形ANGD .其中正确的结论的序号是_______.二、填空题(本大题共6小题,共18.0分)9.16的倒数是______.10.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是:根据仪器结构,可得ABC ≌ADC ,这样就有QAE PAE.∠∠=则说明这两个三角形全等的依据是______11.下列分式化简运算中,每一步运算都在后面列出了依据,所列依据错误的是______.(只填写序号)计算:3a a b +++4a ba b+解:原式=3+4a a ba b++①同分母分式的加减法法则=4+4a ba b+②合并同类项法则=4(+)a b a b+③提公因式法=4④等式的基本性质12.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180),如果EF ∥AB ,那么n 的值是_____.13.端午节前夕,某超市用1680元购进A ,B 两种商品共60件,其中A 种商品每件24元,B 种商品每件36元,设购买A 种商品x 件,B 种商品y 件,依题意列出的方程组是______.14.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB 8cm =,圆柱体部分的高BC 6cm =,圆锥体部分的高CD 3cm =,则这个陀螺的表面积是______2cm .三、解答题15.() 1计算:10201912()(3π)(1)3-+----.()2解没有等式组:2x312x x2 33->⎧⎪-⎨>-⎪⎩16.某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽查部分学生做了问卷,要求学生选出自己最喜欢的一个版面,将数据进行了整理、绘制成部分统计图如下:请根据图中信息,解答下列问题:(1)该的样本容量为,a=%,“版”对应扇形的圆心角为°;(2)请你补全条形统计图;(3)若该校有1000名学生,请你估计全校学生中最喜欢“第三版”的人数.17.为了弘扬传统文化,某校组织了“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“两个黄鹂鸣翠柳”.(1)小明回答该问题时,对第二个字是选“个”还是选“只”难以抉择,若随机选择其中一个,则小明回答正确的概率是__________;(2)小丽回答该问题时,对第二个字是选“个”还是选“只”、第五个字是选“鸣”还是选“明”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.18.如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 处测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.求A ,B 两点间的距离(结果到0.1km ).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)19.在求24567813333333+++++++的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:2345678S 133333333=++++++++①,然后在①式的两边都乘以3,得:234567893S 333333333=++++++++②,-②①得:93S S 31-=-,即92S 31=-,931S 2-∴=.请阅读张红发现的规律,并帮张红解决下列问题:()1爱动脑筋的张红想:如果把“3”换成字母m(m 0≠且m 1)≠,应该能用类比的方法求出23420181m m m m m +++++⋯+的值,对该式的值,你的猜想是______(用含m 的代数式表示).()2证明你的猜想是正确的.20.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB =32.(1)求反比例函数的解析式;(2)若P 1x 1y 、Q 2x 2y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.21.如图所示,在ABC 中,ACB 90∠= ,O 是边AC 上一点,以O 为圆心,OA 为半径的圆分别交AB ,AC 于点E ,D ,在BC 的延长线上取点F ,连接EF 交AC 于点G .()1若BF EF =,试判断直线EF 与O 的位置关系,并说明理由;()2若OA 2=,A 30∠= ,求弧DE 的长.22.青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨,下表是去年该酒店豪华间某两天的相关记录:旺季淡季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元(2)今年旺季来临,豪华间的间数没有变.经市场发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.没有考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入?日总收入是多少元?23.平面直角坐标系xOy 中,点A 、B 的横坐标分别为a 、a 2+,二次函数。
2022年山东省济宁市中考数学模拟真题练习 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是我国某市12月份连续4天的天气预报数据,其中日温差最大的一天是( ) A .12月13日B .12月14日C .12月15日D .12月16日2、如图,平行四边形ABCD 的边BC 上有一动点E ,连接DE ,以DE 为边作矩形DEGF 且边FG 过点A .在点E 从点B 移动到点C 的过程中,矩形DEGF 的面积( )A .先变大后变小B .先变小后变大C .一直变大D .保持不变 3、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )·线○封○密○外A .16B .19C .24D .364、如图所示,一座抛物线形的拱桥在正常水位时,水面AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A .B .10米C .米D .12米5、如图,下列选项中不能判定△ACD ∽△ABC 的是( )A .AC AD =AB AC B .BC BD =AB BC C .∠ACD =∠B D .∠ADC =∠ACB6、如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+7、如图,等腰三角形ABC 的底边BC 长为4,面积是20,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( ) A .8 B .10 C .12 D .14 8、下列图形是全等图形的是( ) A . B . C . D .9、下列图形中,既是轴对称图形,又是中心对称图形的是( ) A . B . C . D . 10、代数式2()a b c +的意义是( ) A .a 与b 的平方和除c 的商 B .a 与b 的平方和除以c 的商 C .a 与b 的和的平方除c 的商 D .a 与b 的和的平方除以c 的商第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图,Rt △ABC ,∠B =90∘,∠BAC =72°,过C 作CF ∥AB ,联结 AF 与 BC 相交于点 G ,若 GF =2AC ,则 ∠BAG =_____________°.·线○封○密○外2、如图,射线BD ,CE 相交于点A ,则B 的内错角是__.3、计算:12-=______.4、《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2 m 记作2m +,则下降3m 记作______.5、已知3x ﹣3•9x =272,则x 的值是 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,已知直线EF GH ∥,AC BC ⊥,BC 平分DCH ∠.(1)求证:ACD DAC ∠=∠;(2)若ACG ∠比BCH ∠的2倍少3度,求DAC ∠的度数.2、按下列要求画图:(1)如图1,已知三点A ,B ,C ,画直线AB ,射线AC ;(2)如图2.已知线段a ,b ,作一条线段MN ,使2MN a b =-(尺规作图,保留作图痕迹).3、如图,方格纸中每个小正方形的边长为1,点A 、B 、C 均为格点.(1)根据要求画图:①过点C 画MN AB ∥;②过点C 画EF AB ⊥,垂足为D ; (2)图中线段______的长度表示点A 到直线CD 的距离; (3)比较线段CA 、CD 的大小关系是______. 4、已知直线43y x =与双曲线k y x =交于A 、B 两点,且点A 的纵坐标为4,第一象限的双曲线上有一点P ,过点P 作PQ x ∥轴交直线AB 于点Q ,点A 到PQ 的距离为2.(1)直接写出k 的值及点B 的坐标; ·线○封○密·○外(2)求线段PQ 的长;(3)如果在双曲线k y x=上一点M ,且满足PQM 的面积为9,求点M 的坐标.5、如图1所示,已知△ABC 中,∠ACB =90°,BC =2,AC =D 在射线BC 上,以点D 为圆心,BD 为半径画弧交AB 边AB 于点E ,过点E 作EF ⊥AB 交边AC 于点F ,射线ED 交射线AC 于点G .(1)求证:EA =EG ;(2)若点G 在线段AC 延长线上时,设BD =x ,FC =y ,求y 关于x 的函数解析式并写出定义域;(3)联结DF ,当△DFG 是等腰三角形时,请直接写出BD 的长度.-参考答案-一、单选题1、A【解析】【分析】根据“日温差=当日的最高气温-当日的最低气温”求出这4天的日温差,由此即可得.【详解】解:12月13日的日温差为2(8)10()C --=︒,12月14日的日温差为2(9)7()C ---=︒,12月15日的日温差为0(9)9()C --=︒,12月16日的日温差为3(11)8()C ---=︒,则日温差最大的一天是12月13日,故选:A .【点睛】 本题考查了有理数减法的应用,掌握日温差的计算方法是解题关键. 2、D 【解析】 【分析】 连接AE ,根据11,22ADE ADE ABCD DEGF S S S S ==矩形,推出ABCD DEGF S S =矩形,由此得到答案. 【详解】 解:连接AE , ∵11,22ADE ADE ABCD DEGF SS S S ==矩形,∴ABCD DEGF S S =矩形, 故选:D . . 【点睛】 此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE 是解题的关键. ·线○封○密○外3、C【解析】【分析】分别求出各视图的面积,故可求出表面积.【详解】由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5故表面积为2×(4+3+5)=24故选C.【点睛】此题主要考查三视图的求解与表面积。
2022年山东省济宁市中考数学三模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项) 1. 下列各数是无理数的是( )A. 0B. √273C. 1.010010001…D. −13 2. 要调查下列问题,适合采用全面调查(普查)的是( )A. 中央电视台《开学第一课》的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程3. 下列计算正确的是( )A. (a 5)2=a 10B. x 16÷x 4=x 4C. 2a 2+3a 2=6a 4D. b 3⋅b 3=2b 3 4. 如图,△ABC 的顶点都是正方形网格中的格点,则cos∠ABC 的值为( )A. 3√510B. 2√55C. √32D. 125. 把不等式组{1−x ≤4x+12<1中两个不等式的解集在数轴上表示出来,正确的是( )A.B.C.D. 6. 如图,圆O 是Rt △ABC 的外接圆,∠ACB =90°,∠A =25°,过点C 作圆O 的切线,交AB 的延长线于点D ,则∠D 的度数是( )A. 25°B. 40°C. 50°D. 65°7. 若方程x2−2x−4=0的两个实数根为α,β,则α2+β2的值为( )A. 12B. 10C. 4D. −48. 定义新运算:a⊕b={ab(b>0)−ab(b<0),例如:4⊕5=45,4⊕(−5)=45.则函数y=2⊕x(x≠0)的图象大致是( )A. B.C. D.9. 已知如图,在平面直角坐标系中,有菱形OABC,点A的坐标为(10,0),对角线OB、AC相交于点D,双曲线y=kx(x>0)经过点D,交BC的延长线于点E,且OB⋅AC=160,有下列四个结论:①双曲线的解析式为y=40x (x>0);②点E的坐标是(4,8);③sin∠COA=45;④AC+OB=12√5.其中正确的结论有( )A. 3个B. 2个C. 1个D. 0个10. 边长为a的等边三角形,记为第一个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )A. 13×(12)5a B. 12×(13)5a C. 13×(12)6a D. 12×(13)6a二、填空题(本大题共5小题,共15.0分)11. 若3x m+5y2与x3y n的和是单项式,则n m=______ .12. 如图为一个长方体,则该几何体主视图的面积为______cm2.13. 如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E、F分别是AB、AC边的中点,若AB=8,AC=6,则△DEF的周长为______.14. 如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”P到x轴的距离为2,则点P的坐标为______.15. 如图,A,B,C,D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A,D,E三点,且∠AOD=120°,设AB=x,CD=y,则y与x的函数关系式为_______.三、解答题(本大题共7小题,共55.0分。
2022年山东省济宁学院附中中考数学三模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在实数|−3.14|,−3,−√3,π中,最小的数是( )A. −√3B. −3C. |−3.14|D. π2. 如图所示的几何体的左视图是( )A. B. C. D.3. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A. 7.6×10−9B. 7.6×10−8C. 7.6×109D. 7.6×1084. 把多项式2x2−8分解因式,结果正确的是( )A. 2(x2−8)B. 2(x−2)2C. 2(x+2)(x−2)D. 2x(x−4)x5. 我校为了更好地开发校本课程,丰富同学们的“第二课堂”,随机调查了50名初一年级同学,其中喜欢剪纸、绘画活动的有16人,喜欢机器人设计的有12人,喜欢摄影的有10人,其余的喜欢球类运动,则喜欢球类运动的频率是( )A. 0.28B. 0.27C. 0.26D. 0.246. 如图,BC⊥AE于点C,CD//AB,∠B=40°,则∠ECD的度数是( )A. 70°B. 60°C. 50°D. 40°7. 已知关于x的方程mx+3=4的解为x=1,则直线y=(m−2)x−3一定不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 若点A(−4,y1),B(−1,y2),C(1,y3)在抛物线y=−12(x+2)2−1上,则( )A. y1<y3<y2B. y2<y1<y3C. y3<y2<y1D. y3<y1<y29. 如图,在△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AC=12,MN=2,则AB的长为( )A. 4B. 6C. 7D. 810. 如图,已知A,B是反比例函数y=kx(k>0,x>0)图象上的两点,BC//x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为( )A. B. C. D.二、填空题(本大题共5小题,共15.0分)11. 若√x−2x有意义,则x的取值范围是______.12. 分式方程1x =5x+3的解是______ .13. 如图,在扇形OEF中,∠EOF=90°,半径为2,正方形ABCD的顶点C是EF⏜的中点,点D 在OF上,点A在OF的延长线上,则图中阴影部分的面积为______.14. 已知m,n是一元二次方程x2+x−2021=0的两个实数根,则代数式m2−n的值等于______.15. 如图,以正六边形ABCDEF 的中心O 为原点建立平面直角坐标系,过点A 作AP 1⊥OB 于点P 1,再过P 1作P 1P 2⊥OC 于点P 2,再过P 2作P 2P 3⊥OD 于点P 3,依次进行⋯⋯若正六边形的边长为1,则点P 2022的横坐标为______.三、解答题(本大题共7小题,共55.0分。
2022年最新中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列解方程的变形过程正确的是( )A .由321x x =-移项得:321x x +=-B .由4321x x +=-移项得:3214x x -=-C .由3121123x x -+=+去分母得:3(31)12(21)x x -=++D .由()42311x --=去括号得:4621x -+= 2、下列分式中,最简分式是( ) A .()()3485x y x y -+ B .22y x x y -+ C .2222x y x y xy ++ D .()222x y x y -+ 3、分式方程133x m x x +=--有增根,则m 为( ) A .0 B .1 C .3 D .6 4、日历表中竖列上相邻三个数的和一定是( ). A .3的倍数 B .4的倍数 C .7的倍数 D .不一定 ·线○封○密○外5、在2201922(8),(1),3,|1|,|0|,5--------中,负数共有( )个. A .4 B .3 C .2 D .16、如图,已知12,AB AB BC =⊥于点B ,AB AD ⊥于点A ,5,10AD BC ==.点E 是CD 的中点,则AE 的长为( )A .6B .132C .5D 7、计算3.14-(-π)的结果为( ) .A .6.28B .2πC .3.14-πD .3.14+π8、一元二次方程254x x +=-的一次项的系数是( )A .4B .-4C .1D .59、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x 元,根据题意列方程为( )A .60006000405x x =+- B .60006000405x x =-- C .60006000405x x =++ D .60006000405x x =-+ 10、若把分式2x y x y+-中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .不变 C .缩小10倍 D .缩小20倍第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC 中,BC=3cm ,∠BAC=60°,那么△ABC 能被半径至少为 cm 的圆形纸片所覆盖.2、已知圆锥的底面周长为4cm π,母线长为3cm .则它的侧面展开图的圆心角为________度.3、以下说法:①两点确定一条直线;②两点之间直线最短;③若||a a =-,则0a <;④若a ,b 互为相反数,则a ,b 的商必定等于1-.其中正确的是_________.(请填序号)4、如图,在ABC 中,2,,AB AC B C BD CE ∠∠====,F 是AC 边上的中点,则AD EF -________1.(填“>”“=”或“<”)5、用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是_____. 三、解答题(5小题,每小题10分,共计50分) 1、如图,在数轴上记原点为点O ,已知点A 表示数a ,点B 表示数b ,且a ,b 满足()2560a b ++-=,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点A 与点B 之间的距离记作AB . (1)=a ______,b =______; (2)若动点P ,Q 分别从A ,B 同时出发向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,当点P 和点Q 重合时,P ,Q 两点停止运动.当点P 到达原点O 时,动点R 从原点O 出发,以每秒3个单位长度的速度也向右运动,当点R 追上点Q 后立即返回,以同样的速度向点P 运动,遇到点P 后再立即返,以同样的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点R 也停止运动,求在此过程中点R 行驶的总路程,以及点R 停留的最后位置在数轴上所对应的有理数; ·线○封○密·○外(3)动点M从A出发,以每秒1个单位的速度沿数轴在A,B之间运动,同时动点N从B出发,以每秒2个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM ON=?若存在,请直接写出t值;若不存在,请说明理由.2、为鼓励居民节约用水,昆明市主城区居民生活用水推行每月阶梯水费收费制度,具体执行方案如下(注:自2021年1月4日起执行):(1)一户居民二月份用水8立方米,则需缴水费______元;(2)某用户三月份缴水费67元,则该用户三月份所用水量为多少立方米?(3)某户居民五、六月份共用水29立方米,缴纳水费129元,已知该用户六月份用水量大于五月份,且五、六月份的用水量均小于17.5立方米.求该户居民五、六月份分别用水多少立方米?3、综合与探究如图,直线243y x=-+与x轴,y轴分别交于B,C两点,抛物线243y ax x c=++经过B,C两点,与x轴的另一个交点为A(点A在点B的左侧),抛物线的顶点为点D.抛物线的对称轴与x轴交于点E.(1)求抛物线的表达式及顶点D的坐标;(2)点M是线段BC上一动点,连接DM并延长交x轴交于点F,当:1:4FM FD=时,求点M的坐标;(3)点P 是该抛物线上的一动点,设点P 的横坐标为m ,试判断是否存在这样的点P ,使90PAB BCO ∠+∠=︒,若存在,请直接写出m 的值;若不存在,请说明理由.4、如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于点A (-1,0)和点B (3,0),与y 轴交于点C ,顶点为点D .(1)求该抛物线的表达式及点C 的坐标; (2)联结BC 、BD ,求∠CBD 的正切值; (3)若点P 为x 轴上一点,当△BDP 与△ABC 相似时,求点P 的坐标. 5、已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB =(单位长度),慢车长4CD =(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b .若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以2个单位长度/秒的速度向左匀速继续行驶,且8a +与()216b -互为相反数.(1)求此时刻快车头A 与慢车头C 之间相距多少单位长度? ·线○封○密·○外(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A 和C 相距8个单位长度.(3)此时在快车AB 上有一位爱动脑筋的六年级学生乘客P ,他发现行驶中有一段时间t 秒钟,他的位置P 到两列火车头A ,C 的距离和加上到两列火车尾B ,D 的距离和是一个不变的值(即PA PC PB PD +++为定值).你认为学生P 发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由.-参考答案-一、单选题1、D【分析】对于本题,我们可以根据解方程式的变形过程逐项去检查,必须符合变形规则,移项要变号.【详解】解析:A .由321x x =-移项得:321x x -=-,故A 错误;B .由4321x x +=-移项得:3214x x -=--,故B 错误;C.由3121123x x -+=+去分母得:()()3316221x x -=++,故C 错误; D.由()42311x --=去括号得:4621x -+= 故D 正确.故选:D .【点睛】本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则.2、C【详解】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A 、分式的分子与分母中的系数34和85有公因式17,可以约分,故A 错误;B 、22y x x y -+=y x y x x y +-+()()=y −x ,故B 错误;C 、分子分母没有公因式,是最简分式,故C 正确;D 、()222x y x y -+=()2x y x y x y +-+()()=x yx y -+,故D 错误, 故选C . 【点睛】本题考查了最简分式,熟练掌握最简分式的概念是解题的关键.分式的化简过程,首先要把分子分母分解因式,然后进行约分.3、C【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的值,让最简公分母x −3=0,得到x =3,然后代入整式方程算出m 的值. 【详解】 解:方程两边都乘x −3,得x+x-3=m ∵原方程有增根, ∴最简公分母x −3=0, 解得x =3, 将x =3代入x+x-3=m ,得m =3, 故m 的值是3. 故选C . 【点睛】 本题考查了分式方程的增根.增根问题可按如下步骤进行:·线○封○密○外①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.4、A【分析】设中间的数字为x ,表示出前一个与后一个数字,求出和即可做出判断.【详解】解:设日历中竖列上相邻三个数的中间的数字为x ,则其他两个为x-7,x+7,则三个数之和为x-7+x+x+7=3x ,即三数之和为3的倍数.故选:A .【点睛】本题考查列代数式,解题的关键是知道日历表中竖列上相邻三个数的特点.5、A【分析】首先将各数化简,然后根据负数的定义进行判断.【详解】解:∵-(-8)=8,2019)1(1=--,293=--,-|-1|=-1,-|0|=0,224=-55-, ∴负数共有4个.故选A . 【点睛】 此题考查的知识点是正数和负数,关键是判断一个数是正数还是负数,要把它化简成最后形式再判断.负数是指小于0的数,注意0既不是正数,也不是负数. ·线6、B【分析】延长AE 交BC 于点F ,根据已知条件证明()ASA ADE FCE ≌,得出,5AE FE AD CF ===,根据勾股定理求出AF 的长度,可得结果.【详解】如图,延长AE 交BC 于点F ,∵,AB BC AB AD ⊥⊥,∴//AD BC ,∴D C ∠=∠,∵点E 是CD 的中点,∴DE CE =,在ADE 和FCE △中,,,,D C DE CE AED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ADE FCE ≌,∴,5AE FE AD CF ===,∴1055BF BC CF =-=-=,在Rt ABF中,13AF ===,∵点E 是AF 的中点, ∴11322AE AF ==, 故选:B .【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识点,熟练运用全等三角形的判定定理以及性质是解本题的关键.7、D【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】解: 3.14-(-π)= 3.14+π.故选:D .【点睛】本题考查减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.8、A【分析】方程整理为一般形式,求出一次项系数即可.【详解】方程整理得:x 2+4x +5=0,则一次项系数为4.故选A . 【点睛】 本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次·线项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.9、C【分析】首先设甲种陀螺单价为x元,则乙种陀螺单价为(5)x+元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程60006000405x x=++.【详解】首先设甲种陀螺单价为x元,则乙种陀螺单价为(5)x+元,根据题意可得:60006000405x x=++,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程.10、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案.【详解】解:分式2x yx y+-中的x和y都扩大10倍可得:1021010(2)2101010()x y x y x yx y x y x y+⨯++==---,∴分式的值不变,故选B.【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.二、填空题1【分析】作圆O 的直径CD ,连接BD ,根据圆周角定理求出60D ∠=︒,根据锐角三角函数的定义得出sin BC D CD∠=,代入求出CD 即可. 【详解】解:作圆O 的直径CD ,连接BD ,∵圆周角∠A、∠D 所对弧都是BC ,∴∠D=∠A=60°.∵CD 是直径,∴∠DBC=90°. ∴sin∠D=BC CD. 又∵BC=3cm,∴sin60°=3CD ,解得:CD= ∴Ocm ).∴△ABC的圆形纸片所覆盖.【点睛】 本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径. 2、240·线【分析】根据弧长=圆锥底面周长=4π,弧长=180n r π计算. 【详解】由题意知:弧长=圆锥底面周长=4πcm ,3180n π⨯=4π,解得:n =240. 故答案为240.【点睛】本题考查了的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系.3、①【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案.【详解】①两点确定一条直线,正确;②两点之间直线最短,错误,应为两点之间线段最短;③若||a a =-,则0a ≤,故③错误;④若a ,b 互为相反数,则a ,b 的商等于1-(a ,b 不等于0),故④错误. 故答案为:①.【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键.4、<【分析】连接AE ,先证明△≌△ADB AEC 得出AD AE =,根据三角形三边关系可得结果.【详解】如图,连接AE ,在ADB △和AEC 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADB AEC ≌,∴AD AE =,在AEF 中,AE EF AF -<,∴AD EF AF -<,∵F 是AC 边上的中点, ∴112AF AC ==, ∴1AD EF -<,故答案为:<.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键.5、2【详解】 解:扇形的弧长=0208161π⨯=2πr, ∴圆锥的底面半径为r=2.故答案为2.三、解答题1、(1)5,6-(2)点R行驶的总路程为25.5;R停留的最后位置在数轴上所对应的有理数为17(3)13t=或113或7或11【分析】(1)根据非负数的意义分析即可;(2)根据题意,,,P Q R三点重合,则只需计算P点的位置以及运动时间即可;(3)根据题意分情况讨论,根据情况建立一元一次方程解决问题.(1)()2560a b++-=5,6a b∴=-=故答案为:5,6-(2)当点P到达原点O时,动点R从原点O出发,则P到达O点需要:52 2.5÷=秒则此时Q点的位置为2.568.5+=设t秒后停止运动,则28.5t t=+解得8.5t=·线○封○密○外此时P 点的位置在28.517⨯=,即R 点也在P 点位置,其对应的有理数为:17R 点的运动时间为8.5,速度为3个单位长度每秒,则总路程为8.5325.5⨯=(3)存在,t 的值为:111,7,1133, 理由如下:()6511--=,111÷11=∴11秒后,M N 点停止运动①当,O M 分别位于O 的两侧时,如图,此时,OM ON =M 表示的有理数为5t -+,N 表示的有理数为62t -5620t t ∴-++-= 解得13t = ②当,M N 重合时,即第一次相遇时,如图,则562t t -+=- 解得113t = ③当N 点从A 点返回时,则点N 表示的有理数为()5211216t t -+-=-若此时点M 未经过点O ,则5t <则2165t t -=-+解得11t =,则此种情况不存在则此时点M 已经过点O ,5t >,如图,则()21650t t -+-+= 解得7t = ④当,M N 在O 点右侧重合时,如图,则2165t t -=-+ 解得11t=此时点,M N 都已经到达点B ,此时即,,M N B 三点重合,,M N 停止运动故t 的值为:111,7,1133, 【点睛】 本题考查了绝对值的非负性,用数轴上的点表示有理数,两点之间的距离,动点问题,一元一次方程的应用,数形结合是解题的关键. 2、·线○封○密○外(1)33.6元(2)15立方米(3)12立方米,17立方米【分析】(1)用水8立方米,未超过12.5立方米,按照每立方米4.2元求解即可;(2)由12.5×4.2=52.5<67说明该居民用水超过12.5立方米,设用水为x 立方米,根据水费为67元列出方程:12.5×4.2+(x -12.5)×5.8=67,求解即可;(3)分29立方米全部用在5月份、全部用在6月份、一部分用水在5月份一部分用水在6月份3种情况分类讨论求解.(1)解:∵每月用水量小于或等于12.5时每立方米按4.2元收费,一户居民用水为8立方米, ∴需要交纳的水费为:8×4.2=33.6元.(2)解:∵12.5×4.2=52.5<67元,∴三月份该居民用水超过12.5立方米,设该居民用水为x 立方米,由题意可知:12.5×4.2+(x -12.5)×5.8=67,解出:x =15(立方米),故该居民三月份用水为15立方米.(3)解:①假设五、六月份都在第一阶梯时:12.5225⨯=(立方米),∵25<29(不符合舍去);②假设五、六月份都在第二阶梯时:()12.52 4.22912.52 5.8128.2⨯⨯+-⨯⨯=(元),∵128.2<129(不符合舍去);③假设五月份在第一阶梯、六月份在第二阶梯时:设五月份用水量为x 立方米,六月份为()29x -立方米,由题意得:()4.212.5 4.22912.5 5.8129x x +⨯+--⨯=, 解得:12x =; 此时五月份用水量为12立方米,六月份用水量为291217-=立方米,符合题意, ∴五月份用水量为12立方米,六月份用水量为291217-=立方米. 【点睛】 本题考查一元一次方程的应用,解决本题的关键是读懂题意,得出每月用水量在三个不同阶梯时的水费进而求解. 3、(1)214-433y x x =++,16(2,)3;(2)44,3⎛⎫ ⎪⎝⎭;(3)存在,m 的值为4或8 【分析】(1)分别求出,B C 两点坐标代入抛物线243y ax x c =++即可求得a 、c 的值,将抛物线化为顶点式,即可得顶点D 的坐标; (2)作MG x ⊥轴于点G ,可证ΔMGF ∽DEF ∆,从而可得FM MG FD DE =,代入:1:4FM FD =,163DE =,可求得43MG =,代入243y x =-+可得4x =,从而可得点M 的坐标; (3)由90PAB BCO ∠+∠=︒,90CBO BCO ∠+∠=︒可得∠=∠PAB CBO ,由,B C 两点坐标可得42tan 63∠==CBO ,所以2tan 3∠=PAB ,过点P 作PQ ⊥AB ,分点P 在x 轴上方和下方两种情况即可求解. 【详解】(1)当0x =时,得4y =,∴点C 的坐标为(0,4),当0y =时,得2403x -+=,解得:6x =, ·线○封○密○外∴点B 的坐标为(6,0),将,B C 两点坐标代入,得43660,3 4.a c c ⎧+⨯+=⎪⎨⎪=⎩ 解,得1,34.a c ⎧=-⎪⎨⎪=⎩ ∴抛物线线的表达式为214- 4.33y x x =++ ∵()()222141116444442.33333y x x x x x =-++=--+-+=--+ ∴顶点D 坐标为16(2,)3. (2)作MG x ⊥轴于点G ,∵MFG DFE ∠=∠,90MGF DEF ∠=∠=︒, ∴ΔMGF ∽DEF ∆. ∴FM MG FD DE=. ∴11643MG =. ∴43MG = 当43y =时,42-433x =+ ∴4x =.∴点M 的坐标为44,3⎛⎫ ⎪⎝⎭.(3)∵90PAB BCO ∠+∠=︒,90CBO BCO ∠+∠=︒, ∴∠=∠PAB CBO , ∵点B 的坐标为(6,0),点C 的坐标为(0,4), ∴42tan 63∠==CBO , ∴2tan 3∠=PAB ,过点P 作PQ ⊥AB ,当点P 在x 轴上方时,214122323-++=+m m m解得m =4符合题意,当点P 在x 轴下方时,214122323--=+m m m解得m =8符合题意,∴存在,m 的值为4或8.【点睛】·线○封○密○外本题考查了抛物线解析式的求法,抛物线的性质,三角形相似的判定及性质,三角函数的应用,解题的关键是准确作出辅助线,利用数形结合的思想列出相应关系式.4、(1)223y x x =--,点C 的坐标为(0,-3)(2)13(3)(-3,0)或(-13,0)【分析】(1)把A 、B 两点坐标代入函数求出b ,c 的值即可求函数表达式;再令x =0,求出y 从而求出C 点坐标;(2)先求B 、C 、D 三点坐标,再求证△BCD 为直角三角形,再根据正切的定义即可求出;(3)分两种情况分别进行讨论即可.(1)解:(1)将A (-1,0)、B (3,0)代入2++=y x bx c ,得10930.b c b c -+=⎧⎨++=⎩, 解得:23.b c =-⎧⎨=-⎩, 所以,223y x x =--.当x =0时,3y =-.∴点C 的坐标为(0,-3).(2)解:连接CD ,过点D 作DE ⊥y 轴于点E ,∵()2223=14=----y x x x ,∴点D 的坐标为(1,-4).∵B (3,0)、C (0,-3)、D (1,-4),E (0,-4),∴OB =OC =3,CE =DE =1, ∴BC=BD= ∴222+18220=+==BC DC DB . ∴∠BCD =90°. ∴tan ∠CBD=13DC BC ==.(3) 解:∵tan ∠ACO=13AO OC =, ∴∠ACO =∠CBD . ∵OC =OB ,∴∠OCB =∠OBC =45°.∴∠ACO+∠OCB =∠CBD+∠OBC . 即:∠ACB =∠DBO . ∴当△BDP 与△ABC 相似时,点P 在点B 左侧. (i )当=AC DB CB BP 时, ·线○封○密○外= ∴BP =6.∴P (-3,0).(ii )当=AC BP CB DB时,= ∴BP =103. ∴P (-13,0).综上,点P 的坐标为(-3,0)或(-13,0).【点睛】本题是二次函数的综合题,掌握相关知识是解题的关键.5、(1)14单位长度;(2)0.75秒或2.75秒;(3)正确,这个时间是0.5秒,定值是6单位长度.【分析】(1)根据非负数的性质求出a =﹣6,b =8,求差即可求解;(2)根据时间=路程和÷速度和,设行驶t 秒钟两列火车行驶到车头A 和C 相距8个单位长度,列方程即可求解;(3)由于PA +PB =AB =2,只需要PC +PD 是定值,从快车AB 上乘客P 与慢车CD 相遇到完全离开之间都满足PC +PD 是定值,依此分析即可求解.(1)解:(1)∵|a +6|与(b ﹣8)2互为相反数,∴|a +6|+(b ﹣8)2=0,∴a +6=0,b ﹣8=0,解得a =﹣6,b =8.∴此时刻快车头A 与慢车头C 之间相距8﹣(﹣6)=14(单位长度); 答:此时快车头A 与慢车头C 之间相距14单位长度; (2) 解:设行驶t 秒钟两列火车行驶到车头A 和C 相距8个单位长度,两车相遇前可列方程为 62148t t +=-, 解得,0.75t =. 两车相遇后可列方程为 62148t t +=+, 解得, 2.75t =. 答:再行驶0.75秒或2.75秒两列火车行驶到车头AC 相距8个单位长度; (3) 正确, ∵PA +PB =AB =2, 当P 在CD 之间时,PC +PD 是定值4,即路程为4,所以,行驶时间t =4÷(6+2) =4÷8 =0.5(秒), 此时PA +PC +PB +PD =(PA +PB )+(PC +PD )=2+4=6(单位长度). ·线○封○密○外故这个时间是0.5秒,定值是6单位长度.【点睛】本题考查了一元一次方程的应用,数轴、绝对值和偶次方的非负性,熟练掌握行程问题的等量关系:时间=路程÷速度,根据数形结合的思想理解和解决问题.。
2022届山东省济宁地区(SWZ)重点中学中考三模数学测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.C.2 D.42.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=03.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为()A.B.C.D.4.已知圆内接正三角形的面积为33,则边心距是()A.2 B.1 C.3D.3 25.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC6.解分式方程12x-﹣3=42x-时,去分母可得()A .1﹣3(x ﹣2)=4B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=47.下列命题是真命题的是( ) A .一组对边平行,另一组对边相等的四边形是平行四边形B .两条对角线相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .平行四边形既是中心对称图形,又是轴对称图形8.下列各式计算正确的是( )A .a 2+2a 3=3a 5B .a •a 2=a 3C .a 6÷a 2=a 3D .(a 2)3=a 59.如图,在△ABC 中,AD 是BC 边的中线,∠ADC=30°,将△ADC 沿AD 折叠,使C 点落在C′的位置,若BC=4,则BC′的长为 ( )A .23B .2C .4D .310.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为6,∠ADC=60°,则劣弧AC 的长为( )A .2πB .4πC .5πD .6π二、填空题(本大题共6个小题,每小题3分,共18分)11.如果正比例函数y=(k-2)x 的函数值y 随x 的增大而减小,且它的图象与反比例函数y=k x的图象没有公共点,那么k 的取值范围是______.12.若数据2、3、5、3、8的众数是a ,则中位数是b ,则a ﹣b 等于_____.13.如图,点,,D E F 分别在正三角形ABC 的三边上,且DEF ∆也是正三角形.若ABC ∆的边长为a ,DEF ∆的边长为b ,则AEF ∆的内切圆半径为__________.14.分解因式:3x3﹣27x=_____.15.化简1111x x-+-的结果是_______________.16.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,DE平分∠BDC交BC于点E,则=.三、解答题(共8题,共72分)17.(8分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)18.(8分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为_____.19.(8分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度数;(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.20.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A .非常了解”的程度.21.(8分)如图,一次函数y =kx +b 的图象与反比例函数y =m x 的图象交于A (﹣2,1),B (1,n )两点. 求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.22.(10分)如图,在平面直角坐标系中,反比例函数(0)k y x x=>的图像与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.若点M 是AB 边的中点,求反比例函数k y x=的解析式和点N 的坐标;若2AM =,求直线MN 的解析式及OMN △的面积23.(12分)已知抛物线y =x 2+bx +c (b ,c 是常数)与x 轴相交于A ,B 两点(A 在B 的左侧),与y 轴交于点C . (1)当A (﹣1,0),C (0,﹣3)时,求抛物线的解析式和顶点坐标;(2)P (m ,t )为抛物线上的一个动点.①当点P 关于原点的对称点P ′落在直线BC 上时,求m 的值;②当点P 关于原点的对称点P ′落在第一象限内,P ′A 2取得最小值时,求m 的值及这个最小值.24.2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.2022学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,∴2+=8{2=1m n n m -,解得=3{=2m n ..即2m n -的算术平方根为1.故选C .2、A【答案解析】由图像经过点(0,m )、(4、m )可知对称轴为x=2,由n <m 知x=1时,y 的值小于x=0时y 的值,根据抛物线的对称性可知开口方向,即可知道a 的取值.【题目详解】∵图像经过点(0,m )、(4、m )∴对称轴为x=2, 则-22b a=, ∴4a+b=0∵图像经过点(1,n ),且n <m∴抛物线的开口方向向上,∴a >0,故选A.【答案点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.3、C【答案解析】先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.【题目详解】由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,y=12x,当2<x≤4,y=1,由以上分析可知,这个分段函数的图象是C.故选C.4、B【答案解析】根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x,利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.【题目详解】如图,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,则AD=3x,∵tan∠BAD=BD AD,∴BD= tan30°·AD3,∴BC=2BD3x,∵133 2BC AD⋅=,∴12×3×3x3∴x=1所以该圆的内接正三边形的边心距为1,故选B.【答案点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.5、D【答案解析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【题目详解】cosα=BD BC CD BC AB AC==.故选D.【答案点睛】熟悉掌握锐角三角函数的定义是关键.6、B【答案解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【题目详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【答案点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.7、C【答案解析】根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.【题目详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选:C.【答案点睛】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.8、B【答案解析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解【题目详解】A.a2与2a3不是同类项,故A不正确;B.a•a2=a3,正确;C.原式=a4,故C不正确;D.原式=a6,故D不正确;故选:B.【答案点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.9、A【答案解析】连接CC′,∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等边三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC边的中线,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=12∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC•cos ∠DBC′=4×32=23, 故选A.【答案点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.10、B【答案解析】连接OA 、OC ,然后根据圆周角定理求得∠AOC 的度数,最后根据弧长公式求解.【题目详解】连接OA 、OC ,∵∠ADC =60°,∴∠AOC =2∠ADC =120°,则劣弧AC 的长为:=4π.故选B .【答案点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式180n r l π=.二、填空题(本大题共6个小题,每小题3分,共18分)11、02k <<【答案解析】先根据正比例函数y=(k-1)x 的函数值y 随x 的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=k x 的图象没有公共点,说明反比例函数y=k x的图象经过一、三象限,k >0,从而可以求出k 的取值范围.【题目详解】∵y=(k-1)x 的函数值y 随x 的增大而减小,∴k-1<0∴k <1而y=(k-1)x 的图象与反比例函数y=k x 的图象没有公共点,∴k >0综合以上可知:0<k <1.故答案为0<k <1.【答案点睛】本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k 的意义是解决本题的关键.12、2【答案解析】将数据排序后,位置在最中间的数值。
2021-2022中考数学模拟试卷含解析注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)1.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .332.下列图形中,既是中心对称图形又是轴对称图形的是 ( )A .B .C .D .3.如图,取一张长为a 、宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边,a b 应满足的条件是( )A .2a b =B .2a b =C .2a b =D .2a b =4.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示: 成绩(米)4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1则这15名运动员成绩的中位数、众数分别是( )A .4.65,4.70B .4.65,4.75C .4.70,4.70,D .4.70,4.75 5.7的相反数是( )A .7B .-7C .17D .-176.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =7.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =2k x 的图象无交点,则有( ) A .k 1+k 2>0 B .k 1+k 2<0 C .k 1k 2>0 D .k 1k 2<08.比1小2的数是( )A .3-B .2-C .1-D .19.下列运算正确的是( )A .x 4+x 4=2x 8B .(x 2)3=x 5C .(x ﹣y )2=x 2﹣y 2D .x 3•x=x 410.已知等边三角形的内切圆半径,外接圆半径和高的比是( )A .1:2:3B .2:3:4C .1:3:2D .1:2:3二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,边长为6cm 的正三角形内接于⊙O ,则阴影部分的面积为(结果保留π)_____.12.双曲线11y x =、23y x=在第一象限的图像如图,过y 2上的任意一点A ,作x 轴的平行线交y 1于B ,交y 轴于C ,过A 作x 轴的垂线交y 1于D ,交x 轴于E ,连结BD 、CE ,则BD CE = .13.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.14.计算:12+3=_______.15.如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 .16.如图,在O 中,AB 为直径,点C 在O 上,ACB ∠的平分线交O 于D ,则ABD ∠=______.三、解答题(共8题,共72分)17.(8分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x >3时,求y 关于x 的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.18.(8分)如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=120°,BD=520m ,∠D=30°.那么另一边开挖点E 离D 多远正好使A ,C ,E 三点在一直线上(3取1.732,结果取整数)?19.(8分)如图,已知抛物线y =ax 2+bx+1经过A (﹣1,0),B (1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l 1:y =k 1x+b 1(k 1,b 1为常数,且k 1≠0),直线l 2:y =k 2x+b 2(k 2,b 2为常数,且k 2≠0),若l 1⊥l 2,则k 1•k 2=﹣1.解决问题:①若直线y =2x ﹣1与直线y =mx+2互相垂直,则m 的值是____;②抛物线上是否存在点P ,使得△PAB 是以AB 为直角边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)M 是抛物线上一动点,且在直线AB 的上方(不与A ,B 重合),求点M 到直线AB 的距离的最大值.20.(8分)如图,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB=2,PC=1.(1)求证:PC 是⊙O 的切线.(2)求tan ∠CAB 的值.21.(8分)在ABC ∆中,AB AC =,以AB 为直径的圆交BC 于D ,交AC 于E .过点E 的切线交OD 的延长线于F .求证:BF 是O 的切线.22.(10分)如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.23.(12分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?24.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.求证:△ABF≌△CDE;如图,若∠1=65°,求∠B的大小.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴3,故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.2、C【解析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.3、B【解析】由题图可知:得对折两次后得到的小长方形纸片的长为b ,宽为14a ,然后根据相似多边形的定义,列出比例式即可求出结论.【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为b ,宽为14a , ∵小长方形与原长方形相似, ,14a b b a ∴=2a b ∴=故选B .【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.4、D【解析】根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D .【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.5、B【解析】根据只有符号不同的两个数互为相反数,可得答案.【详解】7的相反数是−7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.6、D【解析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.7、D【解析】当k 1,k 2同号时,正比例函数y =k 1x 与反比例函数y =2k x的图象有交点;当k 1,k 2异号时,正比例函数y =k 1x 与反比例函数y =2k x 的图象无交点,即可得当k 1k 2<0时,正比例函数y =k 1x 与反比例函数y =2k x 的图象无交点,故选D.8、C【解析】1-2=-1,故选C9、D【解析】A. x 4+x 4=2x 4 ,故错误;B. (x 2)3=x 6 ,故错误;C. (x ﹣y )2=x 2﹣2xy+y 2 ,故错误; D. x 3•x=x 4 ,正确,故选D.10、D【解析】试题分析:图中内切圆半径是OD ,外接圆的半径是OC ,高是AD ,因而AD=OC+OD ;在直角△OCD 中,∠DOC=60°,则OD :OC=1:2,因而OD :OC :AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D .考点:正多边形和圆.二、填空题(本大题共6个小题,每小题3分,共18分)11、(4π﹣3cm 1【解析】连接OB 、OC ,作OH ⊥BC 于H ,根据圆周角定理可知∠BOC 的度数,根据等边三角形的性质可求出OB 、OH 的长度,利用阴影面积=S 扇形OBC -S △OBC 即可得答案【详解】:连接OB 、OC ,作OH ⊥BC 于H ,则BH=HC= BC= 3,∵△ABC 为等边三角形,∴∠A=60°,由圆周角定理得,∠BOC=1∠A=110°,∵OB=OC ,∴∠OBC=30°,∴OB=cos OBCBH ∠3 ,3 ∴阴影部分的面积= 2120(23)360π⨯﹣12×6×3=4π﹣3 ,故答案为:(4π﹣3cm 1.【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.12、23【解析】 设A 点的横坐标为a ,把x=a 代入23y x =得23y a =,则点A 的坐标为(a ,3a ). ∵AC ⊥y 轴,AE ⊥x 轴,∴C 点坐标为(0,3a ),B 点的纵坐标为3a,E 点坐标为(a ,0),D 点的横坐标为a . ∵B 点、D 点在11y x =上,∴当y=3a 时,x=a 3;当x=a ,y=1a. ∴B 点坐标为(a 3,3a ),D 点坐标为(a ,1a). ∴AB=a -3a =2a 3,AC=a ,AD=3a -1a =2a ,AE=3a .∴AB=23AC ,AD=23AE . 又∵∠BAD=∠CAD ,∴△BAD ∽△CAD .∴BD AB 2CE AC 3==. 13、15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π.考点:圆锥的计算.14、3【解析】 12化成23.【详解】原式3+3=33故答案为33【点睛】 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式. 15、10【解析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】如图,连接DE ,交AC 于P ,连接BP ,则此时PB +PE 的值最小.∵四边形ABCD 是正方形,∴B 、D 关于AC 对称,∴PB =PD ,∴PB +PE =PD +PE =DE .∵BE =2,AE =3BE ,∴AE =6,AB =8,∴DE 2268+=10,故PB +PE 的最小值是10.故答案为10.16、1【解析】由AB 为直径,得到ACB 90∠=,由因为CD 平分ACB ∠,所以ACD 45∠=,这样就可求出ABD ∠.【详解】解:AB 为直径,ACB 90∠∴=,又CD 平分ACB ∠,ACD 45∠∴=,ABD ACD 45∠∠∴==.故答案为1.【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了直径所对的圆周角为90度.三、解答题(共8题,共72分)17、 (1)y =2x +2(2)这位乘客乘车的里程是15km【解析】(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y 与x 的函数关系式为y=kx+b (k≠0),运用待定系数法就可以求出结论;(2)将y=32代入(1)的解析式就可以求出x 的值.【详解】(1)由图象得:出租车的起步价是8元;设当x >3时,y 与x 的函数关系式为y =kx +b (k ≠0),由函数图象,得83125k b k b=+⎧⎨=+⎩, 解得:22k b =⎧⎨=⎩故y 与x 的函数关系式为:y =2x +2;(2)∵32元>8元,∴当y =32时,32=2x +2,x =15答:这位乘客乘车的里程是15km .18、450m.【解析】若要使A 、C 、E 三点共线,则三角形BDE 是以∠E 为直角的三角形,利用三角函数即可解得DE 的长.【详解】解:ABD 120∠=︒,D 30∠=︒,AED 1203090∠∴=︒-︒=︒,在Rt ΔBDE 中,BD 520m =,D 30∠=︒,1BE BD 260m 2∴==,()DE 450m ∴==≈.答:另一边开挖点E 离D450m ,正好使A ,C ,E 三点在一直线上.【点睛】本题考查的知识点是解直角三角形的应用和勾股定理的运用,解题关键是是熟记含30°的直角三角形的性质.19、(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(3. 【解析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得 10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12; ②AB 的解析式为1122y x =+当PA⊥AB时,PA的解析式为y=﹣2x﹣2,联立PA与抛物线,得21112222y x xy x⎧=++⎪⎨⎪=--⎩,解得1xy=-⎧⎨=⎩(舍),614xy=⎧⎨=-⎩,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得21112223y x xy x⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB=2221=5,设M到AB的距离为h,由三角形的面积,得h=15=55.点M到直线AB的距离的最大值是55.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键20、(1)见解析;(2).【解析】(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.(2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.【详解】(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB是直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC ⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC 和△PCA 中:∠BCP=∠A ,∠P=∠P∴△PBC ∽△PCA , ∴∴tan ∠CAB=【点睛】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.21、证明见解析.【解析】连接OE ,由OB=OD 和AB=AC 可得ODB C ∠=∠,则OF ∥AC ,可得BOD A ∠=∠,由圆周角定理和等量代换可得∠=∠EOF BOF ,由SAS 证得∆≅∆OBF OEF ,从而得到=90∠∠=︒OBF OEF ,即可证得结论.【详解】证明:如图,连接OE ,∵AB AC =,∴ABC C ∠=∠,∵OB OD =,∴ABC ODB ∠=∠,∴ODB C ∠=∠,∴//OF AC ,∴BOD A ∠=∠∵=BE BE∴2BOE A ∠=∠,则2∠+∠=∠BOD EOD A ,∴2∠+∠=∠BOD EOD BOD ,∴∠=∠EOD BOD ,即∠=∠EOF BOF ,在OBF ∆和OEF ∆中,∵OB OE BOF EOF OF OF =⎧⎪∠=∠⎨⎪=⎩,∴()∆≅∆OBF OEF SAS ,∴OBF OEF ∠=∠∵FE 是O 的切线,则OE FE ⊥,∴90OEF ∠=︒,∴90OBF ∠=︒,则OB BF ⊥,∴BF 是O 的切线.【点睛】本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.22、(1)见解析(2)相切【解析】(1)首先利用角平分线的作法得出CO ,进而以点O 为圆心,OB 为半径作⊙O 即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【详解】(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点睛】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出d=r是解题关键.23、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).答:2018至2020年寝室数量的年平均增长率为37.5%.(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,∵单人间的数量在20至30之间(包括20和30),∴121620{121630yy-≥-≤,解得:15 16≤y≤1656.根据题意得:w=2y+20y+121﹣6y=16y+121,∴当y=16时,16y+121取得最大值为1.答:该校的寝室建成后最多可供1名师生住宿.【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.24、(1)证明见解析;(2)50°.【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS 证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.试题解析:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.。
2022年山东省济宁市中考数学模拟真题练习 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,边长为a 的等边△ABC 中,BF 是AC 上中线且BF =b ,点D 在BF 上,连接AD ,在AD 的右侧作等边△ADE ,连接EF ,则△AEF 周长的最小值是( ) A .12a 23+ b B .12a +b C .a 12+ b D .23a2、纳米(nm )是非常小的长度单位,1nm 0.000000001m =.1nm 用科学记数法表示为( ) A .7110m -⨯ B .8110m -⨯ C .91m 10-⨯ D .10110m -⨯3、下列图形是全等图形的是( ) A . B . C . D .·线○封○密○外4、用下列几组边长构成的三角形中哪一组不是直角三角形( )A .8,15,17B .6,8,10CD .1,5、下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6、如图,已知点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,那么添加下列一个条件后,仍无法判定ABC DEF ≌△△的是( )A .BF CE =B .A D ∠=∠C .AC DF ∥D .AC DF =7、如图所示,在长方形ABCD 中,AB a ,BC b =,且a b >,将长方形ABCD 绕边AB 所在的直线旋转一周形成圆柱甲,再将长方形ABCD 绕边BC 所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为甲S 、乙S .下列结论中正确的是( )A .S S >甲乙B .甲乙S S <C .S S =甲乙D .不确定8、已知ab =a ,b 的关系是( ) A .相等 B .互为相反数C .互为倒数D .互为有理化因式9、利用如图①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A .22()4()a b ab a b -+=+B .22()()a b a b a b -+=-C .222()2a b a ab b +=++D .222()2a b a ab b ---+ 10、如图,下列条件中不能判定AB CD ∥的是( ) A .12∠=∠B .34∠=∠C .35180∠+∠=︒D .15∠=∠ 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是_________. ·线○封○密○外2、如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,连接EB ,ED ,当126BED ∠=︒时,EDA ∠的度数为______.3、若a +b =﹣3,ab =1,则(a +1)(b +1)(a ﹣1)(b ﹣1)=_____.4、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.5、如图所示,已知直线m n ∥,且这两条平行线间的距离为5个单位长度,点P 为直线n 上一定点,以P 为圆心、大于5个单位长度为半径画弧,交直线m 于A 、B 两点.再分别以点A 、B 为圆心、大于12AB 长为半径画弧,两弧交于点Q ,作直线PQ ,交直线m 于点O .点H 为射线OB 上一动点,作点O 关于直线PH 的对称点O ',当点O '到直线n 的距离为4个单位时,线段PH 的长度为______.三、解答题(5小题,每小题10分,共计50分) 1、如图1,点D 、O 、A 共线且20COD ︒∠=,80BOC ︒∠=,射线OM ,ON 分别平分AOB ∠和BOD ∠. 如图2,将射线OD 以每秒6︒的速度绕点O 顺时针旋转一周,同时将BOC ∠以每秒4︒的速度绕点O 顺时针旋转,当射线OC 与射线OA 重合时,BOC ∠停止运动.设射线OD 的运动时间为t .(1)运动开始前,如图1,AOM ∠=________︒,DON ∠=________︒ (2)旋转过程中,当t 为何值时,射线OB 平分AON ∠? (3)旋转过程中,是否存在某一时刻使得35MON ︒∠=?若存在,请求出t 的值;若不存在,请说明理由. 2、定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1,在∆ABC 中,若AB 2+AC 2-AB ⋅AC =BC 2,则∆ABC 是“和谐三角形”. ·线○封○密○外(1)等边三角形一定是“和谐三角形”,是______命题(填“真”或“假”).(2)若Rt ∆ABC 中,∠C =90︒,AB =c ,AC =b ,BC =a ,且b >a ,若∆ABC 是“和谐三角形”,求a :b :c .3、已知:如图,点A ,F ,C ,D 在同一条直线上,点B 和点E 在直线AD 的两侧,且AF =DC ,BC ∥FE ,∠A =∠D .求证:AB =DE .4、如图, 已知在 Rt ABC 中, 90,5ACB AC BC ∠===, 点 D 为射线 AB 上一动点, 且 BD AD <, 点 B 关于直线 CD 的对称点为点 E , 射线 AE 与射线 CD 交于点 F .(1)当点 D 在边 AB 上时,① 求证: 45AFC ∠=;②延长 AF 与边 CB 的延长线相交于点 G , 如果 EBG 与 BDC 相似,求线段 BD 的长;(2)联结 ,CE BE , 如果 12ACE S =, 求 ABE S 的值. 5、已知,如图,AD BE ∥,C 为BE 上一点,CD 与AE 相交于点F ,连接AC .12∠=∠,34∠=∠.(1)求证:AB CD ∥;(2)已知12cm AE =,5cm AB =,13cm =BE ,求AC 的长度.-参考答案- 一、单选题 1、B 【解析】 【分析】 先证明点E 在射线CE 上运动,由AF 为定值,所以当AE+E F 最小时,△AEF 周长的最小, 作点A 关于直线CE 的对称点M ,连接FM 交CE 于E ',此时AE+FE 的最小值为MF ,根据等边三角形的判定和性质求出答案. 【详解】 解:∵△ABC 、△ADE 都是等边三角形, ∴AB=AC ,AD=AE ,∠BAC =∠DAE =60°, ∴∠BAD =∠CAE , ·线○封○密○外∴△BAD≌△CAE,∴∠ABD=∠ACE,∵AF=CF,∴∠ABD=∠CBD=∠ACE=30°,∴点E在射线CE上运动(∠ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E ,此时AE+FE的值最小,此时AE+FE=MF,∵CA=CM,∠ACM=60°,∴△ACM是等边三角形,∴△ACM≌△ACB,∴FM=FB=b,a+b,∴△AEF周长的最小值是AF+AE+EF=AF+MF=12故选:B.【点睛】此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.2、C【解析】【分析】根据科学记数法的特点即可求解.【详解】解:91nm 0.000000001=110m -=⨯.故选:C【点睛】 本题考查了用科学记数法表示绝对值小于1的数,绝对值小于1的数用科学记数法可以写为10n a -⨯的形式,其中1≤|a |<10,n 为正整数,n 的值为从第一个不为0的数向左数所有0的个数,熟知科学记数法的形式并准确确定a 、n 的值是解题关键. 3、D 【解析】 【详解】 解:A 、不是全等图形,故本选项不符合题意; B 、不是全等图形,故本选项不符合题意; C 、不是全等图形,故本选项不符合题意; D 、全等图形,故本选项符合题意; 故选:D 【点睛】 本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键. 4、C 【解析】 【分析】 由题意根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直·线○封○密○外角三角形.如果没有这种关系,这个就不是直角三角形进行分析即可.【详解】解:A 、∵82+152=172,∴此三角形为直角三角形,故选项错误;B 、∵2226810+=,∴此三角形是直角三角形,故选项错误;C 、∵2222+≠,∴此三角形不是直角三角形,故选项正确;D 、∵22212+=,∴此三角形为直角三角形,故选项错误.故选:C .【点睛】本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系.5、C【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】解:A 、不是中心对称图形,是轴对称图形,故此选项错误;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、是中心对称图形,也是轴对称图形,故此选项正确;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 6、D 【解析】 【分析】 结合选项中的条件,是否能够构成,,AAS ASA SAS 的形式,若不满足全等条件即为所求; 【详解】 解:由AB DE 可得B E ∠=∠,判定两三角形全等已有一边和一角; A 中由BF CE =可得BC EF =,进而可由SAS 证明三角形全等,不符合要求; B 中A D ∠=∠,可由ASA 证明三角形全等,不符合要求; C 中由AC DF 可得ACB DFC ∠=∠,进而可由AAS 证明三角形全等,不符合要求; D 中无法判定,符合要求; 故选D . 【点睛】 本题考查了三角形全等.解题的关键在于找出能判定三角形全等的条件. 7、C 【解析】 【分析】 根据公式,得甲S =2AD AB π••,乙S =2AB AD π••,判断选择即可. 【详解】 ∵甲S =2AD AB π••,乙S =2AB AD π••, ∴甲S =乙S .·线○封○密○外故选C .【点睛】本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.8、A【解析】【分析】求出a 与b 的值即可求出答案.【详解】解:∵a=,b =∴a =b ,故选:A .【点睛】本题考查了分母有理化,解题的关键是求出a 与b 的值,本题属于基础题型.9、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:()a b +,面积为:()2a b +; 1个小正方形的面积加上4个矩形的面积和为:()24a b ab -+;∴()()2222424a b ab a ab b ab a b -+=-++=+. 故选:A . 【点睛】 此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键. 10、A 【解析】 【分析】 根据平行线的判定逐个判断即可. 【详解】 解:A 、∵∠1=∠2,∠1+∠3=∠2+∠5=180°, ∴∠3=∠5, 因为”同旁内角互补,两直线平行“, 所以本选项不能判断AB ∥CD ; B 、∵∠3=∠4, ∴AB ∥CD , 故本选项能判定AB ∥CD ; C 、∵35180∠+∠=︒, ∴AB ∥CD , 故本选项能判定AB∥CD; D 、∵∠1=∠5, ∴AB ∥CD , 故本选项能判定AB ∥CD ;·线○封○密○外故选:A .【点睛】本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.二、填空题1、512π-【解析】【分析】根据直角三角形30度角的性质及勾股定理求出AC 、BC ,∠A =60°,利用扇形面积公式求出阴影面积.【详解】解:在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,∴AC =1,BC ==A =60°,∴图中阴影部分的面积=ABC CAD CBE S S S+-扇形扇形=2601113602π⨯⨯=512π故答案为:512π 【点睛】此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.2、18°##18度【解析】【分析】由“SAS ”可证△DCE ≌△BCE ,可得∠CED =∠CEB =12∠BED =63°,由三角形的外角的性质可求解. 【详解】证明:∵四边形ABCD 是正方形,∴AD =CD =BC =AB ,∠DAE =∠BAE =∠DCA =∠BCA =45°,在△DCE 和△BCE 中, CD BC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△DCE ≌△BCE (SAS ), ∴∠CED =∠CEB =12∠BED =63°, ∵∠CED =∠CAD +∠ADE , ∴∠ADE =63°-45°=18°, 故答案为:18°.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE ≌△BCE 是本题的关键. 3、-5【解析】 【分析】 根据多项式乘多项式的乘法法则解决此题. 【详解】 ·线○封○密○外解:∵a+b=-3,ab=1,∴(a+1)(b+1)(a-1)(b-1)=[(a+1)(b+1)][(a-1)(b-1)]=(ab+a+b+1)(ab-a-b+1)=(1-3+1)×(1+3+1)=-1×5=-5.故答案为:-5.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键.4、 2 两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,故答案为:2,两点确定一条直线.【点睛】此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.5、【解析】【分析】根据勾股定理求出PE =3,设OH =x ,可知,DH =(x -3)或(3- x ),勾股定理列出方程,求出x 值即可.【详解】解:如图所示,过点O '作直线n 的垂线,交m 、n 于点D 、E ,连接O H ',由作图可知,PO m ⊥,5PO PO '==,点O '到直线n 的距离为4个单位,即4EO '=,3PE , 则3OD PE ==,1O D DE O E ''=-=, 设OH =x ,可知,DH =(3- x ), 222(3)1x x -+= 解得,53x =,PH = 如图所示,过点O '作直线n 的垂线,交m 、n 于点D 、E ,连接O H ',由作图可知,PO m ⊥,5PO PO '==,点O '到直线n 的距离为4个单位,即4EO '=,3PE , 则3OD PE ==,9O D DE O E ''=+=, 设OH =x ,可知,DH =(x -3), 222(3)9x x -+= 解得,15x =,·线○封○密○外PH故答案为:【点睛】本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程.三、解答题1、 (1) 40 50(2)10(3)t=553【解析】【分析】(1)由题意结合图形可得∠ttt=100°,利用补角的性质得出∠ttt=80°,根据角平分线进行计算即可得出;(2)分两种情况进行讨论:①射线OD与射线OB重合前;②射线OD与射线OB重合后;作出相应图形,结合运动时间及角平分线进行计算即可得;(3)由(2)过程可得,分两种情况进行讨论:①当0<t ≤1303t 时,②当1303<t ≤60时;结合相应图形,根据角平分线进行计算即可得. (1) 解:∵∠ttt =20°,∠ttt =80°, ∴∠ttt =∠ttt +∠ttt =100°, ∴∠ttt =180°−∠ttt =80°, ∵射线OM 平分∠ttt , ∴∠ttt =12∠ttt =40°, ∵射线ON 平分∠ttt , ∴∠ttt =12∠ttt =50°, 故答案为:40;50;(2)解:如图所示:当射线OC 与射线OA 重合时,∴∠ttt =180°−∠ttt =160°, ∵∠ttt 以每秒4°的速度绕点O 顺时针旋转, ∴OC 以每秒4°的速度绕点O 顺时针旋转, ·线○封○密○外=40t,∴运动时间为:t=1604①射线OD与射线OB重合前,根据题中图2可得:∠ttt=100°+4t−6t=100°−2t,∵ON平分∠ttt,∠ttt=50°−t,∴∠ttt=12∴∠ttt=80°−4t,∵射线OB平分∠ttt,∴∠ttt=∠ttt,即80°−4t=50°−t,解得:t=10t;当t>40t时,∠ttt不运动,OD一直运动,射线OB平分∠ttt,当射线OD与射线OB重合时,6t=180°+∠ttt=260°,t,t=1303=60t,射线OD旋转一周的时间为:t=3606②射线OD与射线OB重合后,<t≤60时,设当OD转到如图所示位置时,OB平分∠ttt,当1303∵∠ttt=80°,∴∠ttt=∠ttt=80°,∵ON平分∠ttt,∴∠ttt=∠ttt=80°,∴∠ttt=∠ttt+∠ttt+∠ttt=240°>180°,不符合题意,舍去;综上可得:当t为10s时,射线OB平分∠ttt;(3)解:①当0<t≤1303t时,∵射线OM平分∠ttt,∴∠ttt=12∠ttt=12(80°−4t)=40°−2t,由(2)可得:∠ttt=50°−t,∠ttt=∠ttt+∠ttt=40°−2t+50°−t=90°−3t,当∠ttt=35°时,90°−3t=35°,解得:t=553t<40t,·线○封○密○外∴t=553t时,∠ttt=35°;②当1303<t≤60时,∠ttt=12∠ttt=12×80°=40°>35°,不符合题意,舍去,综上可得:t=553t时,∠ttt=35°.【点睛】题目主要考查角平分线的计算及角度的计算问题,理解题意,作出相应图形是解题关键.2、 (1)真;(2)1 2【解析】【分析】(1)根据等边三角形的性质“三边都相等”,结合“和谐三角形”的定义即可判断;(2)由勾股定理可知222+=a b c,根据ABC是“和谐三角形”,可分类讨论:①当222b c b c a+-⋅=时;②当222a b a b c+-⋅=时;③当222a c a c b+-⋅=时,再结合b a>,计算出符合题意的比即可.(1)根据等边三角形的性质可知:AB BC AC==,∴22222AB AC AB AC BC BC BC BC BC +-⋅=+-⋅=.故等边ABC 是“和谐三角形”.所以等边三角形一定是“和谐三角形”,是真命题.故答案为:真.(2)∵ABC 是直角三角形,且90C ∠=︒, ∴222+=a b c , 由ABC 是“和谐三角形”,可分类讨论, ①当222b c b c a +-⋅=时. 故有2222b c b c c b +-⋅=-,整理得:2c b =, ∴222(2)a b b +=,整理得:3a b .∴::::22a b c b b =. 此时a b >,不符合题意(舍). ②当222a b a b c +-⋅=时. 故有22c a b c -⋅=,整理得:0ab -=, 故此情况不存在(舍). ③当222a c a c b +-⋅=时. 故有2222a c a c c a +-⋅=-,整理得:2c a =, ∴222(2)a b a +=,整理得:b =.∴::=:22=a b c a a . 【点睛】·线○封○密○外本题考查判断命题的真假,等边三角形的性质和勾股定理.读懂题意,理解“和谐三角形”的定义是解答本题的关键.3、见解析【解析】【分析】证明△ABC≌△DEF即可.【详解】∵BC∥FE,∴∠1 =∠2∵AF=DC,∴AF+FC=DC+CF.∴AC=DF.在△ABC和△DEF中,∵{∠1=∠2,tt=tt,∠t=∠t,∴△ABC≌△DEF(ASA).∴AB=DE.【点睛】本题考查了平行线的性质、三角形全等的判定与性质,关键是证明三角形全等.4、(1)①见解析;②5(2)3或4【解析】【分析】(1)① 如图1,连接CE ,DE ,根据题意,得到CB =CE =CA ,利用等腰三角形的底角与顶角的关系,三角形外角的性质,可以证明; ②连接BE ,交CD 于定Q ,利用三角形外角的性质,确定△DCB ∽△BGE ,利用相似,证明△ABG 是等腰三角形,△ABE 是等腰三角形,△BEF 是等腰直角三角形,用BE 表示GE ,后用相似三角形的性质求解即可; (2)分点D 在AB 上和在AB 的延长上,两种情形,运用等腰三角形的性质,勾股定理分别计算即可. (1) ① 如图1,连接CE ,DE , ∵点B 关于直线CD 的对称点为点E , ∴CE =CB ,BD =DE ,∠ECD =∠BCD ,∠ACE =90°-2∠ECD , ∵AC =BC , ∴AC =EC ,·线○封○密○外∴∠AEC =∠ACE ,∵2∠AEC =180°-∠ACE =180°-90°+2∠ECD ,∴∠AEC =45°+∠ECD ,∵∠AEC =∠AFC +∠ECD ,∴∠AEC =45°+∠ECD =∠AFC +∠ECD ,∴∠AFC =45°;②连接BE ,交CD 于定Q ,根据①得∠EAB =∠DCB ,∠AFC =45°,∵点B 关于直线CD 的对称点为点E ,∴∠EFC =∠BFC =45°,CF ⊥BE ,∴BF ⊥AG ,△BEF 是等腰直角三角形, BF =EF ,∵∠BEG >∠EAB ,EBG 与BDC 相似,∴△DCB ∽△BGE ,∴∠EAB =∠DCB =∠BGE ,∠DBC =∠BEG =45°,∴AB =BG ,∠EAB +∠EBA =∠EAB +∠BGE ,∴∠EAB =∠EBA =∠BGE ,∴AE =BE EF ,∵BF ⊥AG ,∴AF =FG =AE +EF =BE +EF =BE ,∴GE =EF +FG =(1 BE ,∴BEGE 1=,∵△DCB ∽△BGE , ∴BD BC BE GE =, ∴BE BD BC GE =, ∴BD=1)5⨯=5, (2) 过点C 作CM ⊥AE ,垂足为M , 根据①②知,△ACE 是等腰三角形,△BEF 是等腰直角三角形, ∴AM =ME ,BF ⊥AF , 设AM =ME =x ,CM =y , ∵AC =BC =5,∠ACB =90°,12ACE S =, ∴22225x y AC +==,AB=xy =12, ∴222()2x y x y xy +=++ =25212+⨯=49,∴x +y =7或x +y =-7(舍去);∴222()2x y x y xy -=+-·线○封○密○外=25212-⨯=1,∴x-y=1或x-y=-1;∴71x yx y+=⎧⎨-=⎩或71x yx y+=⎧⎨-=-⎩∴71x yx y+=⎧⎨-=⎩或71x yx y+=⎧⎨-=-⎩∴43xy=⎧⎨=⎩或34xy=⎧⎨=⎩∴AE=8或AE=6,当点D在AB上时,如图3所示,AE=6,设BF=EF=m,∴222AB AF BF=+,∴222(6)m m=++,解得m=1,m=-7(舍去),∴116122ABES AE BF==⨯⨯△=3;当点D在AB的延长线上时,如图4所示,AE=8,设BF =EF =n , ∴222AB AF BF =+,∴222(8)n n =-+, 解得n =1,n =7(舍去), ∴118122ABE S AE BF ==⨯⨯△=4; ∴3ABE S =△或4ABE S =△. 【点睛】 本题考查了轴对称的性质,等腰直角三角形的判定性质,等腰三角形的判定和性质,完全平方公式,勾股定理,三角形相似的判定和性质,一元二次方程的解法,分类思想,熟练掌握勾股定理,三角形的相似,一元二次方程的解法是解题的关键. 5、(1)证明见解析;(2)60.13AC 【解析】 【分析】 (1)先证明13,EAC 再结合4,43,EAC ACD 证明1,ACD 从而可得结论; (2)先证明90,EAB DAC 再证明390, 从而利用等面积法可得AC 的长度. ·线○封○密·○外【详解】解:(1) AD BE ∥,3,DAC 而2,DAC EAC12,∠=∠13,EAC 4,43,EAC ACD1,EAC EAC ACD 1,ACD.AB CD ∥(2) 12cm AE =,5cm AB =,13cm =BE ,22222125169,AE AB BE9012,EAB EAC EAC90,DAC,AD BC ∥390,DAC 11,22AE AB BE AC 51260.1313AC 【点睛】本题考查的是三角形的外角的性质,平行线的性质与判定,勾股定理的逆定理的应用,证明390∠=︒是解本题的关键.。
2022年山东省济宁市中考数学三年真题模拟卷(Ⅱ)考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图标中,轴对称图形的是( )A.B.C.D.2、有理数m、n 在数轴上的位置如图,则(m+n)(m+2n)(m﹣n)的结果的为()A.大于 0 B.小于 0 C.等于 0 D.不确定3、如图,在△ABC中,DE∥BC,DEBC=13,则下列结论中正确的是()A.13AEEC=B.12ADAB=C.13ADEABC的周长的周长∆=∆D.13ADEABC的面积的面积∆=∆·线○封○密○外4、如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若18ADB ∠=︒,则这个正多边形的边数为( )A .10B .11C .12D .135、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,点E 为对角线BD 上任意一点,连接AE 、CE . 若AB =5,BC =3,则AE 2-CE 2等于( )A .7B .9C .16D .256、有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( )A .|a |>|b |B .a +b <0C .a ﹣b <0D .ab >07、纳米(nm )是非常小的长度单位,1nm 0.000000001m =.1nm 用科学记数法表示为( )A .7110m -⨯B .8110m -⨯C .91m 10-⨯D .10110m -⨯8、如图,在平面直角坐标系xOy 中,已知点A (1,0),B (3,0),C 为平面内的动点,且满足∠ACB =90°,D 为直线y =x 上的动点,则线段CD 长的最小值为( )A .1B .2C1 D1 9、如图,已知点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,那么添加下列一个条件后,仍无法判定ABC DEF ≌△△的是( )A .BF CE =B .A D ∠=∠C .AC DF ∥D .AC DF = 10、用下列几组边长构成的三角形中哪一组不是直角三角形( ) A .8,15,17 B .6,8,10 CD.1,第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图,已知△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3…△PnAn ﹣1An 都是等腰直角三角形,点P 1、P 2、P 3…Pn 都在函数y =4x (x >0)的图象上,斜边OA 1、A 1A 2、A 2A 3…An ﹣1An 都在x 轴上.则点A 2021的坐标为____.·线○封○密○外B-,2、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点(10,7)则点A的坐标是__________.3、小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,请你计算墨迹盖住的所有整数的和为______.4、如图,均是由若干个的基础图形组成的有规律的图案,第①个图案由4个基础图形组成,第②个图案由7个基础图形组成,…,按此规律排列下去,第④个图案中的基础图形个数为______,用式子表示第n个图案中的基础图形个数为______.a-2a﹣b=___.5、若最简二次根式2三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸中每个小正方形的边长为1,点A、B、C均为格点.(1)根据要求画图:①过点C 画MN AB ∥;②过点C 画EF AB ⊥,垂足为D ; (2)图中线段______的长度表示点A 到直线CD 的距离; (3)比较线段CA 、CD 的大小关系是______. 2、小欣在学习了反比例函数的图象与性质后,进一步研究了函数11y x =+的图象与性质.其研究过程如下:(1)绘制函数图象.①列表:下表是x 与y 的几组对应值,其中m =______;·线○封○密·○外②描点:根据表中的数值描点(),x y ,请补充描出点()0,m ;③连线:用平滑的曲线顺次连接各点,请把图象补充完整.(2)探究函数性质.判断下列说法是否正确(正确的填“√”,错误的填“×”).①函数值y 随x 的增大而减小; ( )②函数图象关于原点对称;( )③函数图象与直线1x =-没有交点.( )(3)请你根据图象再写一条此函数的性质:______.3、汽车盲区是造成交通事故的罪魁祸首之一,它是指驾驶员位于正常驾驶座位置,其视线被车体遮挡而不能直接观察到的那部分区域,有一种汽车盲区叫做内轮差盲区,内轮差是车辆在转弯时前内轮转弯半径与后内轮转弯半径之差;由于内轮差的存在而形成的这个区域(下图所示)是司机视线的盲区.卡车,货车等车身较长的大型车在转弯时都会产生这种盲区.为了解决这个问题,现在许多路口都开始设置“右转危险区”标线.下图是我区某一路口“右转危险区”的示意图,经过测量后内轮转弯半径1110O A O D ==米,前内轮转弯半径224O B O C ==米,圆心角1290DO A CO B ∠=∠=︒,求此“右转危险区”的面积和周长.4、已知:线段a ,b .求作:菱形ABCD ,使得a ,b 分别为菱形ABCD 的两条对角线.5、甲、乙两人沿同一直道从A 地去B 地.已知A ,B 两地相距9000m ,甲的步行速度为100m/min ,他每走半个小时就休息15min ,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A 地的距离1y (单位:m )与时间x (单位:min )之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地). (1)在图中画出乙离A 地的距离2y (单位:m )与时间x 之间的函数图象;(2)求甲、乙两人在途中相遇的时间.-参考答案-一、单选题1、 A ·线○封○密○外【解析】【详解】解:A 、是轴对称图形,故本选项符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2、A【解析】【分析】从数轴上看出0n m <<,判断出()()()0200m n m n m n +<+-,,,进而判断()()()2m n m n m n ++-的正负.【详解】解:由题意知:0n m <<∴()()()0200m n m n m n +<+-,, ∴()()()20m n m n m n ++->故选A .【点睛】本题考查了有理数加减的代数式正负的判断.解题的关键在于正确判断各代数式的正负.3、C【解析】【分析】根据DE ∥BC ,可得ADE ABC ,再由相似三角形对应边成比例,周长之比等于相似比,面积之比等于相似比的平方,逐项判断即可求解. 【详解】 解:∵DE ∥BC , ∴ADE ABC , ∴13AE DE AC BC == ,故A 错误,不符合题意; ∴13AD DE AB BC ==,故B 错误,不符合题意; ∴13ADE ABC 的周长的周长∆=∆,故C 正确,符合题意; ∴221139ADE DE ABC BC ∆⎛⎫⎛⎫=== ⎪ ⎪∆⎝⎭⎝⎭的面积的面积,故D 错误,不符合题意; 故选:C【点睛】 本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形对应边成比例,周长之比等于相似比,面积之比等于相似比的平方是解题的关键. 4、A 【解析】 【分析】 作正多边形的外接圆,连接 AO ,BO ,根据圆周角定理得到∠AOB =36°,根据中心角的定义即可求解. ·线○封○密○外【详解】解:如图,作正多边形的外接圆,连接AO,BO,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数为36036=10.故选:A.【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.5、C【解析】【分析】连接AC,与BD交于点O,根据题意可得AC BD⊥,在在Rt AOE与Rt COE中,利用勾股定理可得2222AE CE AO CO-=-,在在Rt AOB与Rt COB中,继续利用勾股定理可得2222AO CO AB BC-=-,求解即可得.【详解】解:如图所示:连接AC,与BD交于点O,∵对角线互相垂直的四边形叫做“垂美”四边形, ∴AC BD ⊥, 在Rt AOE 中,222AE AO OE =+, 在Rt COE 中,222CE CO OE =+, ∴2222AE CE AO CO -=-, 在Rt AOB 中,222AO AB OB =-, 在Rt COB 中,222CO BC OB =-, ∴2222225316AO CO AB BC -=-=-=, ∴2216AE CE -=, 故选:C . 【点睛】 题目主要考查勾股定理的应用,理解题意,熟练运用勾股定理是解题关键. 6、C 【解析】 【分析】 先根据数轴上点的位置,判断数a 、b 的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项. 【详解】 ·线○封○密○外解:由数轴知:﹣1<a <0<1<b ,|a |<|b |,∴选项A 不正确;a +b >0,选项B 不正确;∵a <0,b >0,∴ab <0,选项D 不正确;∵a <b ,∴a ﹣b <0,选项C 正确,故选:C .【点睛】本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.7、C【解析】【分析】根据科学记数法的特点即可求解.【详解】解:91nm 0.000000001=110m -=⨯.故选:C【点睛】本题考查了用科学记数法表示绝对值小于1的数,绝对值小于1的数用科学记数法可以写为10n a -⨯的形式,其中1≤|a |<10,n 为正整数,n 的值为从第一个不为0的数向左数所有0的个数,熟知科学记数法的形式并准确确定a 、n 的值是解题关键.8、C【解析】【分析】取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,求出DE 长即可求出答案.【详解】解:取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,∵点A (1,0),B (3,0), ∴OA =1,OB =3, ∴OE =2, ∴ED∵∠ACB =90°, ∴点C 在以AB 为直径的圆上, ∴线段CD−1. 故选:C . 【点睛】 本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C ,D 两点的位置是解题的关键. 9、D 【解析】 ·线○封○密·○外【分析】结合选项中的条件,是否能够构成,,AAS ASA SAS 的形式,若不满足全等条件即为所求;【详解】解:由AB DE 可得B E ∠=∠,判定两三角形全等已有一边和一角;A 中由BF CE =可得BC EF =,进而可由SAS 证明三角形全等,不符合要求;B 中A D ∠=∠,可由ASA 证明三角形全等,不符合要求;C 中由AC DF 可得ACB DFC ∠=∠,进而可由AAS 证明三角形全等,不符合要求;D 中无法判定,符合要求;故选D .【点睛】本题考查了三角形全等.解题的关键在于找出能判定三角形全等的条件.10、C【解析】【分析】由题意根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形进行分析即可.【详解】解:A 、∵82+152=172,∴此三角形为直角三角形,故选项错误;B 、∵2226810+=,∴此三角形是直角三角形,故选项错误;C 、∵2222+≠,∴此三角形不是直角三角形,故选项正确;D 、∵22212+=,∴此三角形为直角三角形,故选项错误.故选:C .【点睛】本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系.二、填空题1、(0)【解析】【分析】首先根据等腰直角三角形的性质,知点P1的横、纵坐标相等,再结合双曲线的解析式得到点P1的坐标是(2,2),则根据等腰三角形的三线合一求得点A1的坐标;同样根据等腰直角三角形的性质、点A1的坐标和双曲线的解析式求得A2点的坐标;根据A1、A2点的坐标特征即可推而广之.【详解】解:可设点P1(x,y),根据等腰直角三角形的性质可得:x=y,又∵y=4x,则x2=4,∴x=±2(负值舍去),再根据等腰三角形的三线合一,得A1的坐标是(4,0),设点P2的坐标是(4+y,y),又∵y=4x,则y(4+y)=4,即y2+4y-4=0解得,y1y2∵y>0,∴y,·线○封○密·○外再根据等腰三角形的三线合一,得A2的坐标是(0);可以再进一步求得点A3的坐标是(0),推而广之,则An点的坐标是(0).故点A2021的坐标为(0).故答案是:(0).【点睛】本题考查了反比例函数的综合应用,解决此题的关键是要根据等腰直角三角形的性质以及反比例函数的解析式进行求解.2、(-3,9)【解析】【分析】设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.【详解】解:设长方形纸片的长为x,宽为y,依题意,得:2107xx y=⎧⎨+=⎩,解得:52xy=⎧⎨=⎩,∴x-y=3,x+2y=9,∴点A的坐标为(-3,6).故答案为:(-3,9).【点睛】本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键. 3、-10 【解析】 【详解】 解:结合数轴,得墨迹盖住的整数共有−6,−5,−4,−3,−2,1,2,3,4, 以上这些整数的和为:-10 故答案为:-10 【点睛】 本题主要考查数轴,解题的关键是熟练掌握数轴的定义. 4、 13 31n 【解析】 【分析】 根据前三个图形中基础图形的个数得出第n 个图案中基础图形的个数为3n +1即可. 【详解】 解:观察图形,可知 第①个图案由4个基础图形组成,即4=1×3+1, 第②个图案由7个基础图形组成,即7=2×3+1, 第③个图案由10个基础图形组成,即10=3×3+1, … 第④个图案中的基础图形个数为13=3×4+1, 第n 个图案的基础图形的个数为:3n +1. 故答案为:13,3n +1.·线○封○密○外【点睛】本题考查了图形的变化类、列代数式,解决本题的关键是观察图形的变化寻找规律.5、9【解析】【分析】结合同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行求解即可.【详解】解:∵最简二次根式2a -∴2a ﹣4=2,3a +b =a ﹣b ,解得:a =3,b =﹣3.∴2a ﹣b =2×3﹣(﹣3)=9.故答案为:9.【点睛】此题考查了同类二次根式的定义,熟记定义是解题的关键.三、解答题1、 (1)见解析(2)AD(3)CA 大于CD【解析】 【分析】 (1)根据题意画图即可;·线(2)根据点A到直线CD的距离是垂线段AD长,即可填空;(3)根据垂线段最短即可填空.(1)解:①如图所示,直线MM即为所求②直线EF和点D即为所求;(2)解:点A到直线CD的距离是垂线段AD长,故答案为:AD.(3)解:根据垂线段最短可知,CA大于CD,故答案为:CA大于CD.【点睛】本题考查了画平行线和垂线,垂线的性质,点的直线的距离,解题关键是熟练画图,准确掌握垂线段最短的性质.2、(1)①1;②描点见解析;③连线见解析(2)①×;②×;③√(3)当1x>-时,y随x的增大而减小【解析】【分析】(1)①将x =0代入即得m 的值;②描出(0,1)即可;③把描出的点用平滑的曲线顺次连接即可;(2)根据图像数形结合即可判断.(3)根据图像再写一条符合反比例函数特点的性质即可.(1)①解:将0x =代入解析式中解得1m =;②描点如图所示③补充图像如图所示:(2)根据函数图像可得:①每一个分支上的函数值y 随x 的增大而减小,故①错误,应为×;②图像关于(-1,0)对称,故②错误,应为×;③x =-1时,11x +无意义,函数图像与直线x =-1没有交点,应为√. (3) 当1x >-时,y 随x 的增大而减小. 【点睛】·线本题考查函数的图形及性质,解题的关键是熟练掌握研究函数的方法用列表、描点、连线作出图像,再数形结合研究函数性质.3、 “右转危险区”的面积为:8421π-(平方米),周长为127π+(米)【解析】【分析】根据图形可知“右转危险区”的周长等于AB CD AD BC +++,根据扇形的周长的求法及正方形的性质分别求出来,关于“右转危险区”的面积,先求出ABECD 的面积及BEC 的面积,再作差即可.【详解】解:根据题意得:121046AB O D O C =-=-=,121046CD O A O B =-=-=,121054AD ππ=⨯⨯=, 12424BC ππ=⨯⨯=, ∴“右转危险区”的周长为:6652127πππ+++=+(米),延长,AB DC 交于点E ,22,//O B CE O B CE =,且290BO C ∠=︒,∴四边形2O BEC 为正方形,根据图形之间的关系,ABECD 的面积为:110101010100254ππ⨯-⨯⨯=-, BEC 的面积为:144441644ππ⨯-⨯⨯=-, ∴“右转危险区”的面积为:10025(164)8421πππ---=-(平方米).【点睛】本题考查了不规则图形的面积,解题的关键是利用规则的图形面积进行求解不规则图形的面积.4、见解析【解析】【分析】根据菱形的对角线垂直且互相平分作图即可.【详解】解:(1)先画线段AC=b ,(2)作AC 的中垂线,与AC 的交点为O ,以交点O 为圆心, M 2 为半径画弧交B 、D 两点.(3)顺次连接ABCD ,就是所求作的菱形. .【点睛】 此题考查了菱形的作图,正确掌握菱形对角线的性质是解题的关键.·线5、 (1)图象见解析;(2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.【解析】【分析】(1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;(2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.(1)乙离A 地的距离2y (单位:m )与时间x 之间的函数图像,如图2y 即是.(2)根据题意结合图象可知甲、乙两人在途中相遇3次.如图,第一次相遇在AB 段,第二次相遇在BC 段,第三次相遇在CD 段,根据题意可设2y 的解析式为:21y k x =,∴19000120k =,解得:175k =,∴2y 的解析式为275y x =.∵甲的步行速度为100m/min ,他每走半个小时就休息15min ,∴甲第一次休息时走了100303000⨯=米,对于275y x =,当23000y =时,即300075x =,解得:40x =.故第一次相遇的时间为40分钟的时候;设BC 段的解析式为:12y k x b =+,根据题意可知B (45,3000),D (75,6000).∴22300045600075k b k b =+⎧⎨=+⎩, 解得:21001500k b =⎧⎨=-⎩, 故BC 段的解析式为:11001500y x =-.相遇时即12y y =,故有100150075x x -=,解得:60x =.故第二次相遇的时间为60分钟的时候;对于275y x =,当26000y =时,即600075x =,解得:80x =. 故第三次相遇的时间为80分钟的时候;·线○综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.【点睛】本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.。