高中数学(必修1)系列学业水平测试卷
- 格式:docx
- 大小:163.43 KB
- 文档页数:11
……○…………学校:_________装…………○…………订绝密★启用前2021-2022学年度XXX 学校测试卷高中数学试卷考试范围:必修第一册;考试时间:120分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知全集{}1,2,3,4,5U =,{}1,3A =,则UA =( )A .∅B .{}1,3C .{}2,4,5D .{}1,2,3,4,52.已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是( )A .2B .3C .4D .53.定义在R 上的函数f (x )=2|x -m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a4.设全集U =R ,{}220A x x x =-<,{}10B x x =->,则如图阴影部分表示的集合为( )A .{}1x x ≥B .{}1x x ≤C .{}01x x <≤D .{}12x x ≤<5.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( ) A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π6.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =( ) A .{|1}x x ≥B .{|12}x x ≤<C .{}1D .{}0,17.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞8.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( ) A .1 B .2C .3D .12二、多选题9.已知0<a <b <1<c ,则下列不等式不成立的是( ) A .ac <bc B .cb <ca C .log log a b c c >D .sin a >sin b10.已知0a >,0b >,且222a b +=,则下列不等式中一定成立的是( ) A .1≥ab B .2a b +≤ C .lg lg 0a b +≤D .112a b+≤11.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈ ⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=12.将函数3tan 3y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移3π个单位长度,得到函数()y g x =的图象,下列结论正确的是( )A .函数()y g x =的图象关于点,06π⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在0,4⎡⎤⎢⎥⎣⎦π上单调递增…………外……………内…………○…………装D .函数()y g x =的图象关于直线512x π=对称 第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.22(lg 2)(lg5)lg 4lg5++⋅=________.14.已知命题0:p x ∃∈R ,2000x ax a ++<是假命题,则实数a 的取值范围是________.(用区间表示)15.关于函数()12log 1f x x =-,有以下四个命题:①函数()f x 在区间(),1-∞上是单调增函数;①函数()f x 的图象关于直线1x =对称;①函数()f x 的定义域为()1,+∞;①函数()f x 的值域为R .其中所有正确命题的序号是________.16.设区间[]()1221,x x x x >的长度为21x x -,当函数2x y =的定义域为[,]a b 时,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的和为____________.四、解答题17.(1)计算:2310227-⎛⎫+ ⎪⎝⎭+23log 2-34log 9-525log 9; (2)已知角α的终边经过点M (1,-2),求()5sin()cos()22cos ππααπα+-+的值. 18.已知函数2()2sin cos (0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值. 19.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值.(2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.20.(1)求关于x 的一元二次不等式260x x --<的解集;(2)若一元二次不等式20x bx c ++≥的解集为{}21x x x ≥≤-或,求不等式210cx bx ++≥的解集.21.设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(①)求ω;(①)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.22.已知函数()1ln 1kx f x x -=+为奇函数. (1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.参考答案:1.C 【解析】 【分析】根据补集的定义可得结果. 【详解】因为全集{}1,2,3,4,5U =,{}1,3A =,所以根据补集的定义得{}2,4,5UA =,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 2.B 【解析】 【分析】根据题意把函数()3y f x x =-的零点问题即()30y f x x =-=的解,转化为函数()y f x =和3y x =的图像交点问题,由题可得()f x 关于1x =对称,由()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,可得()f x 的周期为4,根据函数图像,即可得解. 【详解】由()()2f x f x +=-可得()f x 关于1x =对称, 由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-, 所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,○…………线…………○…___○…………内…………○…………装…………○由图像可得共有3个交点,故共有3个零点, 故选:B. 3.C 【解析】 【分析】根据函数是偶函数求得参数m ,再结合对数运算求得,,a b c ,即可比较大小. 【详解】①函数f (x )为偶函数,则()()2121x mx mf x f x ---=-=-=-,故m =0,①f (x )=2|x |-1.①a =f (log 0.53)=f (-log 23)=2log 32-1=2, b =f (log 25)=2log 52-1=4, c =f (0)=20-1=0. ①c <a <b . 故选:C . 【点睛】本题考查利用函数奇偶性求参数值,涉及对数运算,属基础题. 4.D 【解析】解出集合A 、B ,然后利用图中阴影部分所表示的集合的含义得出结果. 【详解】{}{}22002A x x x x x =-<=<<,{}{}101B x x x x =->=<.图中阴影部分所表示的集合为{x x A ∈且}{}12x B x x ∉=≤<. 故选:D. 【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题. 5.B 【解析】先由已知求得函数的周期,得到ω,再整体代入正切函数的单调区间,求得函数()f x 的单调区间,可得选项. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,所以12Tπω==,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z ,所以()f x 在3,22ππ⎛⎫- ⎪⎝⎭上是增函数,由3(,),22m m ππ⎛⎫-⊆-⎪⎝⎭,得02m π<≤. 故选:B. 【点睛】本题考查正切函数的周期性,单调性,属于基础题. 6.D 【解析】 【分析】由题分别算出集合,A B 包含的范围,再取交集即可. 【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤ 所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ ,所以{}0,1A B =. 故选D. 【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围. 7.D 【解析】 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案. 【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k > 综上,k 的取值范围为(,0)(22,)-∞+∞. 故选:D.…装…………○…………订…………○…………线…………○…___姓名:___________班级:___________考号:___________订…………○…………线…………○……………………○…………内…………○…………装…………○【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题. 8.A 【解析】根据函数||2x y =的图像,可知,a b 的长度最小时,此时函数单调,区间长度是1,区间长度最大时,1,1a b =-=,区间长度是2,从而得出答案. 【详解】若函数2xy =单调,则,a b 的长度最小,若函数单调递增,0,1a b ==,此时区间长度是1,若函数单调递减,……○…………线…_________……○…………内…………○…则1,0a b =-=,此时区间长度是1,所以区间,a b 的长度的最小值是1, 若函数在区间,a b 不单调,值域又是[]1,2,则区间的最大值1,1a b =-=, 此时区间长度是()112--=,则区间,a b 的长度的最大值和最小值的差是211-=.故选:A. 【点睛】本题考查的知识点是区间的概念,函数的定义域和值域,对数函数的单调性,属于基础题型. 9.BD 【解析】 【分析】利用函数的单调性判断即可. 【详解】 对于A ,c y x =在0,1上是增函数,01a b <<<,cc a b ,故不等式成立,故A 不符合题意; 对于B ,1c >,x y c 在0,1上是增函数,01a b <<<,a b c c ,故不等式不成立,故B 符合题意;对于C ,01a b <<<,根据对数函数的性质在同一坐标系下画出log a y x =和log b y x =的图象,可以根据图象判断,当1c >时,log log a b c c >,故不等式成立,故C 不符合题意;………○…………线…………○…:___________…………○…………内…………○…………装…………○对于D ,sin y x =在0,1上是增函数,∴当01a b <<<时,sin sin a b <,故不等式不成立,故D 符合题意. 故选:BD. 【点睛】本题考查指数式、对数式、正弦值的大小判断,利用函数的单调性判断是解决问题的关键,属于基础题. 10.BC 【解析】 【分析】对于AD ,举例判断,对于BC ,利用基本不等式判断 【详解】解:对于A ,令2a b ==222a b +=,则12ab ==<,所以A 错误,对于B ,因为22222()22224a b a b ab ab a b +=++=+≤++=,所以2a b +≤,当且仅当1a b ==时取等号,所以B 正确,对于C ,因为22lg lg lg lg lg102a b a b ab ++=≤==,当且仅当1a b ==时取等号,所以C 正确,对于D ,令a b ==222a b +=,则11 1.4140.81652a b +=≈+>,所以D 错误, 故选:BC 11.ABD 【解析】 【分析】 对1sin cos 5θθ+=两边平方,利用同角关系化简可得2sin cos θθ,在根据θ范围,确定sin 0θ>,cos 0θ<;根据()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,将其与1sin cos 5θθ+=联立,求出sin ,cos θθ,再根据三角函数同角的基本关系,结合各选项,即可得到结果. 【详解】1sin cos 5θθ+=①,()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭,即221sin 2sin cos cos 25θθθθ++=,242sin cos 25θθ∴=-, (0,)θπ∈,sin 0θ∴>,cos 0θ<,,2πθπ⎛⎫∴∈ ⎪⎝⎭,故A 正确;()249sin cos 12sin cos 25θθθθ∴-=-=, 7sin cos 5θθ∴-=①,故D 正确;①加①得4sin 5θ=,①减①得3cos 5θ=-,故B 正确;4sin 45tan 3cos 35θθθ∴===--,故C 错误.故选:ABD . 【点睛】关键点睛:本题主要考查了三角函数同角的基本关系的应用,解题的关键是正确利用平方关系进行化简. 12.AC先根据函数图像的变换求得()g x 的解析式,再求其函数性质即可. 【详解】由题可知,()3tan 23tan 2333g x x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为06g π⎛⎫= ⎪⎝⎭,故A 正确;因为()g x 的周期为2T π=,故B 错误;因为0,4x π⎡⎤∈⎢⎥⎣⎦,故可得2,,33622x πππππ⎡⎤⎛⎫-∈-⊆- ⎪⎢⎥⎣⎦⎝⎭,故C 正确;因为正切函数不是轴对称函数,故D 错误. 故选:AC. 【点睛】本题考查函数图像的变换以及正切型函数的性质,属综合基础题. 13.1; 【解析】根据对数的运算法则计算可得. 【详解】解:22(lg 2)(lg5)lg 4lg5++⋅ 222(lg 2)(lg 5)lg 2lg 5=++⋅ 22(lg 2)(lg 5)2lg 2lg 5=++⋅()2lg 2lg5=+ ()2lg 25=⨯⎡⎤⎣⎦21=1=故答案为:1 【点睛】本题考查对数的运算,属于基础题. 14.[0,4]先得到命题x ∀∈R ,20x ax a ++≥是真命题,根据一元二次不等式恒成立,列出不等式求解,即可得出结果. 【详解】因为命题0:p x ∃∈R ,2000x ax a ++<是假命题, 所以命题x ∀∈R ,20x ax a ++≥是真命题, 即不等式20x ax a ++≥对任意x ∈R 恒成立, 所以只需240a a ∆=-≤,解得04a ≤≤, 即实数a 的取值范围是[0,4]. 故答案为:[0,4]. 15.①①① 【解析】 【分析】利用函数的单调性判断①的正误;利用函数的对称性判断①的正误;求出函数的定义域判断①的正误;由函数的值域判断①的正误. 【详解】函数()12log 1f x x =-在区间(1,)+∞上单调递减,在区间(,1)-∞上单调递增,所以①正确;函数()12log 1f x x =-,函数的图象关于直线1x =对称,所以①正确;函数()12log 1f x x =-的定义域是{}|1x x ≠,所以①不正确;函数()12log 1f x x =-,函数的值域是实数集,所以①正确.故答案为:①①①. 【点睛】本题考查对数型函数的定义域、值域与最值和单调区间,考查对基础知识、基本技能的理解和掌握,属于常考题. 16.2 【解析】 【分析】根据函数2x y =的单调性,可求出其值域,再结合其值域为[1,2],可确定,a b ,从而可求出区间[,]a b 的长度的最大值与最小值. 【详解】因为函数2x y =的定义域为[,]a b ,而函数2x y =在[,]a b 上是单调增函数; 所以函数2x y =的值域为[2,2]a b ,由已知函数2x y =的值域为[1,2],所以2122a b ⎧=⎨=⎩,解得01a b =⎧⎨=⎩,所以函数()f x 的定义域为[0,1],所以区间[0,1]的长度的最大值和最小值均为1, 所以区间[0,1]的长度的最大值与最小值的和为2. 故答案为:2 【点睛】方法点睛:破解新型定义题的方法是:紧扣新定义的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利解决. 17.(1)-716;(2.【解析】 【分析】(1)直接利用分数指数幂的运算和对数的运算求解即可;(2)由三角函数的定义可求得sin α,再对()5sin()cos()22cos ππααπα+-+利用诱导公式化简可得结果 【详解】(1)原式=6427⎛⎫ ⎪⎝⎭-23+2log 32-2log 323-55log 3=34⎛⎫ ⎪⎝⎭2+2-3=-716.(2)①角α的终边经过点M (1,-2), ①sin α,①()5sin()cos()22cos ππααπα+-+ =cos sin cos ααα-=-sin α【点睛】此题考查对数的运算,考查了三角函数的定义,考查了诱导公式的应用,考查计算能力,属于基础题18.(1)5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)5912π. 【解析】 【分析】(1)先利用三角函数恒等变换公式将函数化简得()2sin 23f x x πω⎛⎫=- ⎪⎝⎭,再由最小正周期为π,可求得1ω=,从而可得函数的解析式,然后由222,232k x k k Z πππππ-≤-≤+∈可求出函数的增区间;(2)由三角函数图像变换求出()y g x =的解析式,令()0g x =,求出其零点712x k ππ=+或11(Z)12x k k ππ=+∈,再由()y g x =在[0,](0)b b >上至少含有10个零点,可求出b 的最小值【详解】解:(1))2()2sin cos 2sin 1f x x x x ωωω=-sin 222sin 23x x x πωωω⎛⎫==- ⎪⎝⎭.由最小正周期为π,得1ω=,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由222,232k x k k Z πππππ-≤-≤+∈,整理得5,1212k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调递增区间是5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,可得到2sin 21y x =+的图像,所以()2sin 21g x x =+.令()0g x =,得712x k ππ=+或11(Z)12x k k ππ=+∈, 所以在[0,]π上恰好有两个零点,若()y g x =在[]0,b 上至少有10个零点,则b 不小于第10个零点的横坐标即可, 所以b 的最小值为115941212πππ+=. 19.(1)15(2)13-【解析】 【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】(1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos 2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭.(2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.20.(1){}23x x -<<;(2)112x x ⎧⎫-≤≤⎨⎬⎩⎭.【解析】 【分析】(1)直接解不含参数的一元二次不等式即可;(2)由题意可知2和1-是方程20x bx c ++=的两个实数根,结合韦达定理求出,b c 的值,进而解不含参数的一元二次不等式即可. 【详解】解:(1)因为260x x --<,则(3)(2)0x x -+<,即23x -<<, 故260x x --<的解集为{}23x x -<<;(2)不等式的解集为20x bx c ++≥的解集{}21x x x ≥≤-或,∴2和1-是方程20x bx c ++=的两个实数根,即1212bc -+=-⎧⎨-⨯=⎩,解得,1b =-,2c =-,则不等式210cx bx ++≥等价于2210x x --+≥, 即2210x x +-≤,因此()()2110x x -+≤,解得112x ≤≤-, 故所求不等式的解集为112x x ⎧⎫-≤≤⎨⎬⎩⎭.21.(①) 2ω=. (①) 32-.【解析】 【详解】试题分析:(①)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知(06f π=及03ω<<可得.(①)由(①)得())3f x x π-从而()))4312g x x x πππ=+-=-. 根据3[,44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值.试题解析:(①)因为()sin()sin(62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=-- 3cos 2x x ωω- 1sin )2x x ωω)3x πω-由题设知(06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(①)由(①)得())3f x x π-所以()))4312g x x x πππ=+-=-.因为3[,44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22.(1)1;(2)增函数,证明见解析;(3)209m << 【解析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明;(3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性. 【详解】(1)因为函数()1ln1kx f x x -=+为奇函数,所以()()0f x f x +-=, 即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln 1x f x x -=+的定义域关于原点对称. 所以1k =为满足题意的值.(2)结论:()f x 在(),1-∞,()1,+∞上均为增函数. 证明:由(1)知()1ln1x f x x -=+,其定义域为()(),11,-∞-+∞,任取12,(1,)x x ∈+∞,不妨设12x x <,则 ()()()()()()11212222111111ln 111ln 1lnx x x x f x f x x x x x --+=+--=++--, 因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->, 所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-, 即()()12f x f x <,所以()f x 在()1,+∞上为增函数. 同理,()f x 在(),1-∞上为增函数. (3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩,即,αβ是方程112x mmx x -=-+的两实根, 问题等价于方程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =- 则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩, 即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<. 【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定答案第17页,共17页 区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。
高中数学必修一测试卷及答案3套测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.如果A ={x |x >-1},那么( ) A .0⊆A B .{0}∈A C .∅∈AD .{0}⊆A2.已知f (12x -1)=2x +3,f (m )=6,则m 等于( )A .-14B.14C.32D .-323.函数y =x -1+lg(2-x )的定义域是( ) A .(1,2) B .[1,4] C .[1,2)D .(1,2]4.函数f (x )=x 3+x 的图象关于( ) A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称5.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .一次函数6.若0<m <n ,则下列结论正确的是( ) A .2m>2nB .(12)m <(12)nC .log 2m >log 2nD .12log m >12log n7.已知a =0.3,b =20.3,c =0.30.2,则a ,b ,c 三者的大小关系是( ) A .b >c >a B .b >a >c C .a >b >cD .c >b >a8.函数f (x )=log 3x -8+2x 的零点一定位于区间( ) A .(5,6) B .(3,4) C .(2,3)D .(1,2)9.下列计算正确的是( ) A .(a 3)2=a 9B .log 26-log 23=1C .12a·12a =0D .log 3(-4)2=2log 3(-4)10.已知函数f (x )=a x+log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( )A.12B.14 C .2D .411.函数y =|lg(x +1)|的图象是( )12.若函数f (x )=lg(10x+1)+ax 是偶函数,g (x )=4x-b2x 是奇函数,则a +b 的值是( )A.12B .1C .-12D .-1二、填空题(本大题共4小题,每小题5分,共20分)13.已知A ={-1,3,m },集合B ={3,4},若B ∩A =B ,则实数m =________. 14.已知f (x 5)=lg x ,则f (2)=________.15.函数y =f (x )是定义域为R 的奇函数,当x <0时,f (x )=x 3+2x-1,则x >0时函数的解析式f (x )=______________.16.幂函数f (x )的图象过点(3,427),则f (x )的解析式是______________. 三、解答题(本大题共6小题,共70分)17.(10分)(1)计算:12729⎛⎫ ⎪⎝⎭+(lg5)0+132764-⎛⎫ ⎪⎝⎭; (2)解方程:log 3(6x-9)=3.18.(12分)某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售价每涨1元,销售量就减少1个,为了获得最大利润,求此商品的最佳售价应为多少?19.(12分)已知函数f (x )=-3x 2+2x -m +1.(1)当m 为何值时,函数有两个零点、一个零点、无零点; (2)若函数恰有一个零点在原点处,求m 的值.20.(12分)已知集合M 是满足下列性质的函数f (x )的全体:在定义域D 内存在x 0,使得f (x 0+1)=f (x 0)+f (1)成立.(1)函数f (x )=1x是否属于集合M ?说明理由;(2)若函数f (x )=kx +b 属于集合M ,试求实数k 和b 满足的约束条件.21.(12分)已知奇函数f (x )是定义域[-2,2]上的减函数,若f (2a +1)+f (4a -3)>0,求实数a 的取值范围.22.(12分)已知函数f (x )=.(1)若a =1,求函数f (x )的零点;(2)若函数f (x )在[-1,+∞)上为增函数,求a 的取值范围.答案1.D [∵0∈A ,∴{0}⊆A .] 2.A [令12x -1=t ,则x =2t +2,所以f (t )=2×(2t +2)+3=4t +7. 令4m +7=6,得m =-14.]3.C [由题意得:⎩⎪⎨⎪⎧x -1≥02-x >0,解得1≤x <2.]4.C [∵f (x )=x 3+x 是奇函数, ∴图象关于坐标原点对称.] 5.C [本题考查幂的运算性质.f (x )f (y )=a x a y =a x +y =f (x +y ).]6.D [由指数函数与对数函数的单调性知D 正确.] 7.A [因为a =0.3=0.30.5<0.30.2=c <0.30=1, 而b =20.3>20=1,所以b >c >a .]8.B [f (3)=log 33-8+2×3=-1<0,f (4)=log 34-8+2×4=log 34>0.又f (x )在(0,+∞)上为增函数, 所以其零点一定位于区间(3,4).] 9.B [A 中(a 3)2=a 6,故A 错;B 中log 26-log 23=log 263=log 22=1,故B 正确;C 中,12a-·12a =1122a-+=a 0=1,故C 错;D 中,log 3(-4)2=log 316=log 342=2log 34.]10.C [依题意,函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.]11.A [将y =lg x 的图象向左平移一个单位,然后把x 轴下方的部分关于x 轴对称到上方,就得到y =|lg(x +1)|的图象.]12.A [∵f (x )是偶函数, ∴f (-x )=f (x ),即lg(10-x+1)-ax =lg 1+10x10x -ax =lg(10x+1)-(a +1)x=lg(10x+1)+ax ,∴a =-(a +1),∴a =-12,又g (x )是奇函数,∴g (-x )=-g (x ),即2-x -b 2-x =-2x+b 2x ,∴b =1,∴a +b =12.]13.4解析 ∵A ={-1,3,m },B ={3,4},B ∩A =B , ∴m =4. 14.15lg2 解析 令x 5=t ,则x =15t .∴f (t )=15lg t ,∴f (2)=15lg2.15.x 3-2-x+1解析 ∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-[(-x )3+2-x -1]=x 3-2-x +1.16.f (x )=34x解析 设f (x )=x n,则有3n=427,即3n=343, ∴n =34,即f (x )=34x .17.解 (1)原式=12259⎛⎫ ⎪⎝⎭+(lg5)0+13334-⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=53+1+43=4. (2)由方程log 3(6x-9)=3得6x -9=33=27,∴6x =36=62, ∴x =2.经检验,x =2是原方程的解.18.解 设最佳售价为(50+x )元,最大利润为y 元,y =(50+x )(50-x )-(50-x )×40=-x 2+40x +500.当x =20时,y 取得最大值,所以应定价为70元. 故此商品的最佳售价应为70元.19.解 (1)函数有两个零点,则对应方程-3x 2+2x -m +1=0有两个根,易知Δ>0,即Δ=4+12(1-m )>0,可解得m <43;Δ=0,可解得m =43;Δ<0,可解得m >43.故m <43时,函数有两个零点;m =43时,函数有一个零点; m >43时,函数无零点.(2)因为0是对应方程的根,有1-m =0,可解得m =1. 20.解 (1)D =(-∞,0)∪(0,+∞), 若f (x )=1x∈M ,则存在非零实数x 0, 使得1x 0+1=1x 0+1, 即x 20+x 0+1=0,因为此方程无实数解,所以函数f (x )=1x∉M .(2)D =R ,由f (x )=kx +b ∈M ,存在实数x 0,使得k (x 0+1)+b =kx 0+b +k +b ,解得b =0,所以,实数k 和b 的取值范围是k ∈R ,b =0.21.解 由f (2a +1)+f (4a -3)>0得f (2a +1)>-f (4a -3), 又f (x )为奇函数,得-f (4a -3)=f (3-4a ), ∴f (2a +1)>f (3-4a ),又f (x )是定义域[-2,2]上的减函数, ∴2≥3-4a >2a +1≥-2即⎩⎪⎨⎪⎧2≥3-4a3-4a >2a +12a +1≥-2∴⎩⎪⎨⎪⎧a ≥14a <13a ≥-32∴实数a 的取值范围为[14,13).22.解 (1)当a =1时,由x -2x=0,x 2+2x =0,得零点为2,0,-2.(2)显然,函数g (x )=x -2x 在[12,+∞)上递增,且g (12)=-72;函数h (x )=x 2+2x +a -1在[-1,12]上也递增,且h (12)=a +14.故若函数f (x )在[-1,+∞)上为增函数, 则a +14≤-72,∴a ≤-154.故a 的取值范围为(-∞,-154]. 测试卷二(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2D .42.设函数f (x )=,则f (1f 3)的值为( )A.127128B .-127128C.18D.1163.若函数y =f (x )的定义域是[0,2],则函数g (x )=f 2xx -1的定义域是( ) A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)4.已知f (x )=(m -1)x 2+3mx +3为偶函数,则f (x )在区间(-4,2)上为( ) A .增函数B .减函数C .先递增再递减D .先递减再递增5.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是( ) A .a <c <b B .a <b <c C .b <a <cD .b <c <a6.若函数f (x )唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(0,1)或(1,2)内有零点C .函数f (x )在区间[2,16)内无零点D .函数f (x )在区间(1,16)内无零点7.已知0<a <1,则方程a |x |=|log a x |的实根个数是( ) A .2 B .3C .4D .与a 值有关8.函数y =1+ln(x -1)(x >1)的反函数是( ) A .y =e x +1-1(x >0) B .y =e x -1+1(x >0) C .y =ex +1-1(x ∈R )D .y =ex -1+1(x ∈R )9.函数f (x )=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是( )A .-1<a <1B .a <-1或a >1C .1<a <54D .-54<a <-110.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y =x 2,x ∈[1,2]与函数y =x 2,x ∈[-2,-1]即为“同族函数”.请你找出下面函数解析式中能够被用来构造“同族函数”的是( )A .y =xB .y =|x -3|C .y =2xD .y =12log x11.下列4个函数中: ①y =2008x -1;②y =log a 2 009-x2 009+x(a >0且a ≠1);③y =x 2 009+x 2 008x +1;④y =x (1a -x-1+12)(a >0且a ≠1). 其中既不是奇函数,又不是偶函数的是( ) A .①B .②③C .①③D .①④12.设函数的集合P ={f (x )=log 2(x +a )+b |a =-12,0,12,1;b =-1,0,1},平面上点的集合Q ={(x ,y )|x =-12,0,12,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f (x )的图象恰好..经过Q 中两个点的函数的个数是( ) A .4 B .6 C .8D .10二、填空题(本大题共4小题,每小题5分,共20分) 13.计算:0.25×(-12)-4+lg8+3lg5=________.14.若规定=|ad -bc |,则不等式<0的解集是____________.15.已知关于x 的函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是________.16.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x,则不等式f (x )<-12的解集是______________. 三、解答题(本大题共6小题,共70分)17.(10分)已知函数f (x )12log (1)x -A ,函数g (x )=223m x x ---1的值域为集合B ,且A ∪B =B ,求实数m 的取值范围.18.(12分)已知f(x)=x+ax2+bx+1是定义在[-1,1]上的奇函数,试判断它的单调性,并证明你的结论.19.(12分)若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)·f(b),且当x<0时,f(x)>1;(1)求证:f(x)>0;(2)求证:f(x)为减函数;(3)当f(4)=116时,解不等式f(x2+x-3)·f(5-x2)≤14.20.(12分)我市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.某公司准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.(1)设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x);(2)选择哪家比较合算?为什么?21.(12分)已知函数y=f(x)的定义域为D,且f(x)同时满足以下条件:①f(x)在D上是单调递增或单调递减函数;②存在闭区间[a,b]D(其中a<b),使得当x∈[a,b]时,f(x)的取值集合也是[a,b].那么,我们称函数y=f(x)(x∈D)是闭函数.(1)判断f(x)=-x3是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.(2)若f(x)=k+x+2是闭函数,求实数k的取值范围.(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)22.(12分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x-1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示.答案1.D [∵A ∪B ={0,1,2,a ,a 2}, 又∵A ∪B ={0,1,2,4,16}, ∴⎩⎪⎨⎪⎧a =4,a 2=16,即a =4.否则有⎩⎪⎨⎪⎧a =16a 2=4矛盾.]2.A [∵f (3)=32+3×3-2=16, ∴1f 3=116, ∴f (1f 3)=f (116)=1-2×(116)2=1-2256=127128.] 3.B [由题意得:⎩⎪⎨⎪⎧0≤2x ≤2x ≠1,∴0≤x <1.]4.C [∵f (x )=(m -1)x 2+3mx +3是偶函数,∴m =0,f (x )=-x 2+3,函数图象是开口向下的抛物线,顶点坐标为(0,3),f (x )在(-4,2)上先增后减.]5.C [20.3>20=1=0.30>0.32>0=log 21>log 20.3.]6.C [函数f (x )唯一的一个零点在区间(0,2)内,故函数f (x )在区间[2,16)内无零点.]7.A [分别画出函数y =a |x |与y =|log a x |的图象,通过数形结合法,可知交点个数为2.]8.D [∵函数y =1+ln(x -1)(x >1), ∴ln(x -1)=y -1,x -1=ey -1,y =ex -1+1(x ∈R ).]9.C [∵f (x )=x 2-2ax +1, ∴f (x )的图象是开口向上的抛物线.由题意得:⎩⎪⎨⎪⎧f 0>0,f 1<0,f 2>0.即⎩⎪⎨⎪⎧1>0,1-2a +1<0,4-4a +1>0,解得1<a <54.]10.B11.C [其中①不过原点,则不可能为奇函数,而且也不可能为偶函数;③中定义域不关于原点对称,则既不是奇函数,又不是偶函数.]12.B [当a =-12,f (x )=log 2(x -12)+b ,∵x >12,∴此时至多经过Q 中的一个点;当a =0时,f (x )=log 2x 经过(12,-1),(1,0),f (x )=log 2x +1经过(12,0),(1,1);当a =1时,f (x )=log 2(x +1)+1经过(-12,0),(0,1),f (x )=log 2(x +1)-1经过(0,-1),(1,0);当a =12时,f (x )=log 2(x +12)经过(0,-1),(12,0)f (x )=log 2(x +12)+1经过(0,0),(12,1).]13.7解析 原式=0.25×24+lg8+lg53=(0.5×2)2×22+lg(8×53)=4+lg1000=7. 14.(0,1)∪(1,2)解析 ⎪⎪⎪⎪⎪⎪1 11x =|x -1|,由log2|x -1|<0,得0<|x -1|<1,即0<x <2,且x ≠1. 15.(1,2)解析 依题意,a >0且a ≠1, ∴2-ax 在[0,1]上是减函数,即当x =1时,2-ax 的值最小,又∵2-ax 为真数,∴⎩⎪⎨⎪⎧a >12-a >0,解得1<a <2.16.(-∞,-1)解析 当x >0时,由1-2-x<-12,(12)x >32,显然不成立. 当x <0时,-x >0.因为该函数是奇函数,所以f (x )=-f (-x )=2x-1. 由2x -1<-12,即2x <2-1,得x <-1.又因为f (0)=0<-12不成立,所以不等式的解集是(-∞,-1).17.解 由题意得A ={x |1<x ≤2},B =(-1,-1+31+m].由A ∪B =B ,得A ⊆B ,即-1+31+m≥2,即31+m≥3,所以m ≥0. 18.解 ∵f (x )=x +ax 2+bx +1是定义在[-1,1]上的奇函数,∴f (0)=0,即0+a02+0+1=0,∴a =0.又∵f (-1)=-f (1),∴-12-b =-12+b ,∴b =0,∴f (x )=xx 2+1.∴函数f (x )在[-1,1]上为增函数. 证明如下:任取-1≤x 1<x 2≤1, ∴x 1-x 2<0,-1<x 1x 2<1, ∴1-x 1x 2>0. ∴f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 21x 2-x 2x 21+1x 22+1=x 1x 2x 2-x 1+x 1-x 2x 21+1x 22+1=x 1-x 21-x 1x 2x 21+1x 22+1<0,∴f (x 1)<f (x 2),∴f (x )为[-1,1]上的增函数.19.(1)证明 f (x )=f (x 2+x2)=f 2(x2)≥0,又∵f (x )≠0,∴f (x )>0. (2)证明 设x 1<x 2,则x 1-x 2<0, 又∵f (x )为非零函数, ∴f (x 1-x 2)=f x 1-x 2·f x 2f x 2=f x 1-x 2+x 2f x 2=f x 1f x 2>1,∴f (x 1)>f (x 2),∴f (x )为减函数.(3)解 由f (4)=f 2(2)=116,f (x )>0,得f (2)=14.原不等式转化为f (x 2+x -3+5-x 2)≤f (2),结合(2)得:x +2≥2,∴x ≥0,故不等式的解集为{x |x ≥0}. 20.解 (1)f (x )=5x,15≤x ≤40;g (x )=⎩⎪⎨⎪⎧90, 15≤x ≤3030+2x ,30<x ≤40.(2)①当15≤x ≤30时,5x =90,x =18, 即当15≤x <18时,f (x )<g (x ); 当x =18时,f (x )=g (x ); 当18<x ≤30时,f (x )>g (x ). ②当30<x ≤40时,f (x )>g (x ), ∴当15≤x <18时,选甲家比较合算; 当x =18时,两家一样合算; 当18<x ≤40时,选乙家比较合算.21.解 (1)f (x )=-x 3在R 上是减函数,满足①;设存在区间[a ,b ],f (x )的取值集合也是[a ,b ],则⎩⎪⎨⎪⎧-a 3=b -b 3=a,解得a =-1,b =1,所以存在区间[-1,1]满足②,所以f (x )=-x 3(x ∈R )是闭函数.(2)f (x )=k +x +2是在[-2,+∞)上的增函数,由题意知,f (x )=k +x +2是闭函数,存在区间[a ,b ]满足② 即:⎩⎨⎧k +a +2=a k +b +2=b.即a ,b 是方程k +x +2=x 的两根,化简得,a ,b 是方程x 2-(2k +1)x +k 2-2=0的两根.且a ≥k ,b >k .令f (x )=x 2-(2k +1)x +k 2-2,得⎩⎪⎨⎪⎧f k ≥0Δ>02k +12>k,解得-94<k ≤-2,所以实数k 的取值范围为(-94,-2].22.解 (1)∵f (x )是奇函数,∴f (-2)=-f (2),即f (2)+f (-2)=0. (2)当x <0时,-x >0, ∴f (-x )=a -x-1.由f (x )是奇函数,有f (-x )=-f (x ), ∵f (-x )=a -x -1, ∴f (x )=-a -x +1(x <0).∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x-1 x ≥0-a -x+1x <0.(3)不等式等价于⎩⎪⎨⎪⎧x -1<0-1<-a-x +1+1<4或⎩⎪⎨⎪⎧x -1≥0-1<a x -1-1<4,即⎩⎪⎨⎪⎧x -1<0-3<a -x +1<2或⎩⎪⎨⎪⎧x -1≥00<a x -1<5.当a >1时,有⎩⎪⎨⎪⎧x <1x >1-log a 2或⎩⎪⎨⎪⎧x ≥1x <1+log a 5,注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .测试卷三(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |2x -1≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b=m ,且1a +1b=2,则m 等于( )A.10 B .10 C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .A ⊆B B .ABC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40%6.设则f (f (2))的值为( ) A .0 B .1 C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( )A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2x y等于( ) A .2 B .2或0 C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( )A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(b a)x的图象只可为( )11.已知f (x )=ax -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y=g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13)C .f (12)<f (13)<f (2)D .f (2)<f (12)<f (13)二、填空题(本大题共4小题,每小题5分,共20分) 13.已知函数f (x ),g (x )分别由下表给出:则不等式f [g (x )]>g [f (x )]的解为________.14.已知log a 12>0,若224x x a +-≤1a ,则实数x 的取值范围为______________.15.直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围为________________.16.已知下表中的对数值有且只有一个是错误的.三、解答题(本大题共6小题,共70分) 17.(10分)已知函数f (x )=12log [(12)x-1],(1)求f (x )的定义域; (2)讨论函数f (x )的增减性.18.(12分)已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }. (1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多只有一个元素,求a 的取值范围.19.(12分)设函数f (x )=ax -1x +1,其中a ∈R . (1)若a =1,f (x )的定义域为区间[0,3],求f (x )的最大值和最小值;(2)若f (x )的定义域为区间(0,+∞),求a 的取值范围,使f (x )在定义域内是单调减函数.20.(12分)关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围.21.(12分)据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.22.(12分)已知函数f(x)的定义域是{x|x≠0},对定义域内的任意x1,x2都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.(1)证明:f(x)是偶函数;(2)证明:f(x)在(0,+∞)上是增函数;(3)解不等式f(2x2-1)<2.答案1.C [题图中阴影部分可表示为(∁U M)∩N,集合M={x|x>2或x<-2},集合N={x|1<x≤3},由集合的运算,知(∁U M)∩N={x|1<x≤2}.]2.A [由2a=5b=m得a=log2m,b=log5m,∴1a+1b=log m2+log m5=log m10.∵1a+1b=2,∴log m10=2,∴m2=10,m=10.]3.A [由y=f(x+1)是偶函数,得到y=f(x)的图象关于直线x=1对称,∴f(-1)=f(3).又f(x)在[1,+∞)上为单调增函数,∴f(3)>f(2),即f(-1)>f(2).]4.A [∵x∈R,∴y=2x>0,即A={y|y>0}.又B={y|y=x2,x∈R}={y|y≥0},∴A⊆B.]5.C [利润300万元,纳税300·p%万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p%万元,共纳税300·p%+180·p%=120(万元),∴p%=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e1-1=2.]7.C[由题意可知f (x )=⎩⎪⎨⎪⎧ 2x x ≤0,2-x ,x >0.作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,x y >2,∴log 2x y >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴x y =4,∴log 2x y =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵b a >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-b 2a<0,∴B 错, 但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2).] 13.x =2解析 ∵f (x )、g (x )的定义域都是{1,2,3},∴当x =1时,f [g (1)]=f (3)=1,g [f (1)]=g (1)=3,不等式不成立;当x =2时,f [g (2)]=f (2)=3,g [f (2)]=g (3)=1,此时不等式成立;当x =3时,f [g (3)]=f (1)=1,g [f (3)]=g (1)=3,此时,不等式不成立.因此不等式的解为x =2.14.(-∞,-3]∪[1,+∞)解析 由log a 12>0得0<a <1. 由224x x a+-≤1a 得224x x a +-≤a -1, ∴x 2+2x -4≥-1,解得x ≤-3或x ≥1.15.1<a <54解析 y =⎩⎪⎨⎪⎧ x 2-x +a ,x ≥0,x 2+x +a ,x <0,作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a <54. 16.lg1.5解析 ∵lg9=2lg3,适合,故二者不可能错误,同理:lg8=3lg2=3(1-lg5),∴lg8,lg5正确.lg6=lg2+lg3=(1-lg5)+lg3=1-(a +c )+(2a -b )=1+a -b -c ,故lg6也正确.17.解 (1)(12)x -1>0,即x <0,所以函数f (x )定义域为{x |x <0}.(2)∵y =(12)x -1是减函数,f (x )=12log x 是减函数, ∴f (x )=121log 12x ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦在(-∞,0)上是增函数.18.解 (1)要使A 为空集,方程应无实根,应满足⎩⎪⎨⎪⎧ a ≠0Δ<0,解得a >98. (2)当a =0时,方程为一次方程,有一解x =23; 当a ≠0,方程为一元二次方程,使集合A 只有一个元素的条件是Δ=0,解得a =98,x =43. ∴a =0时,A ={23};a =98时,A ={43}. (3)问题(3)包含了问题(1)、(2)的两种情况,∴a =0或a ≥98. 19.解 f (x )=ax -1x +1=a x +1-a -1x +1=a -a +1x +1, 设x 1,x 2∈R ,则f (x 1)-f (x 2)=a +1x 2+1-a +1x 1+1=a +1x 1-x 2x 1+1x 2+1. (1)当a =1时,f (x )=1-2x +1,设0≤x 1<x 2≤3, 则f (x 1)-f (x 2)=2x 1-x 2x 1+1x 2+1, 又x 1-x 2<0,x 1+1>0,x 2+1>0,∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2).∴f (x )在[0,3]上是增函数,∴f (x )max =f (3)=1-24=12, f (x )min =f (0)=1-21=-1.(2)设x 1>x 2>0,则x 1-x 2>0,x 1+1>0,x 2+1>0.若使f (x )在(0,+∞)上是减函数,只要f (x 1)-f (x 2)<0,而f (x 1)-f (x 2)=a +1x 1-x 2x 1+1x 2+1, ∴当a +1<0,即a <-1时,有f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2).∴当a <-1时,f (x )在定义域(0,+∞)内是单调减函数.20.解 设f (x )=x 2+(m -1)x +1,x ∈[0,2]. f (0)=1>0,(1)当2是方程x 2+(m -1)x +1=0的解时,则4+2(m -1)+1=0,∴m =-32. (2)当2不是方程x 2+(m -1)x +1=0的解时,①方程f (x )=0在(0,2)上有一个解时,则f (2)<0,∴4+2(m -1)+1<0.∴m <-32. ②方程f (x )=0在(0,2)上有两个解时,则⎩⎪⎨⎪⎧ Δ=m -12-4≥0,0<-m -12<2,f 2=4+2m -1+1>0,∴⎩⎪⎨⎪⎧ m ≥3或m ≤-1,-3<m <1,m >-32.∴-32<m ≤-1. 综合(1)(2),得m ≤-1.∴实数m 的取值范围是(-∞,-1].21.解 (1)由图象可知:当t =4时,v =3×4=12,∴s =12×4×12=24. (2)当0≤t ≤10时,s =12·t ·3t =32t 2, 当10<t ≤20时,s =12×10×30+30(t -10)=30t -150; 当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550.综上可知s =⎩⎪⎨⎪⎧ 32t 2, t ∈[0,10],30t -150,t ∈10,20],-t 2+70t -550,t ∈20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650. t ∈(10,20]时,s max =30×20-150=450<650. ∴当t ∈(20,35]时,令-t 2+70t -550=650. 解得t 1=30,t 2=40,∵20<t ≤35,∴t =30, 所以沙尘暴发生30h 后将侵袭到N 城.22.(1)证明 令x 1=x 2=1,得f (1)=2f (1), ∴f (1)=0.令x 1=x 2=-1,得f (-1)=0, ∴f (-x )=f (-1·x )=f (-1)+f (x )=f (x ). ∴f (x )是偶函数.(2)证明 设x 2>x 1>0,则f (x 2)-f (x 1)=f (x 1·x 2x 1)-f (x 1)=f (x 1)+f (x 2x 1)-f (x 1)=f (x 2x 1),∵x 2>x 1>0,∴x 2x 1>1.∴f (x 2x 1)>0,即f (x 2)-f (x 1)>0.∴f (x 2)>f (x 1).∴f (x )在(0,+∞)上是增函数.(3)解 ∵f (2)=1,∴f (4)=f (2)+f (2)=2. 又∵f (x )是偶函数,∴不等式f (2x 2-1)<2可化为f (|2x 2-1|)<f (4).又∵函数f (x )在(0,+∞)上是增函数,∴|2x 2-1|<4. 解得-102<x <102, 即不等式的解集为(-102,102).。
第一章学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=( A )A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}[解析]A∩B={x|-2<x<1}∩{x|x<-1或x>3}={x|-2<x<-1},故选A.2.下列集合中表示同一集合的是( B )A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={1,2},N={(1,2)}[解析]A选项中,元素为点,且不是同一点,C,D选项中的元素,一个为点,一个为数,都不可能为同一集合,故B正确.3.设集合A={a,b},B={x|x∈A},则( D )A.B∈A B.B AC.A∉B D.A=B[解析]由已知可得B={a,b},∴A=B4.设全集U=R,A={x|x>0},B={x|x>1},则A∩∁U B=( B )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[解析]易得∁U B={x|x≤1},故A∩∁U B={x|0<x≤1}.5.(2019·全国卷Ⅱ理,1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( A )A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)[解析]∵A={x|x2-5x+6>0}={x|(x-2)(x-3)>0}={x|x<2或x>3},B={x|x-1<0}={x|x<1}.∴A∩B={x|x<2或x>3}∩{x|x<1}={x|x<1},故选A.6.已知集合P={x|x2≤1},M={a},若P∪M=P,则a的范围是( C )A.a≤-1 B.a≥1C.-1≤a≤1 D.a≥1或a≤-1[解析]∵P={x|-1≤x≤1},P∪M=P,∴a∈P.即-1≤a≤1.7.设集合A ={x|x≤13},a =11,那么( D ) A .a A B .a ∉A C .{a}∉AD .{a} A[解析] A 是集合,a 是元素,两者的关系应是属于与不属于的关系.{a}与A 是包含与否的关系,据此,A 、C 显然不对.而11<13,所以a 是A 的一个元素,{a}是A 的一个子集.故选D .8.设全集U ={x ∈N|x≥2},集合A ={x ∈N|x 2≥5},则∁U A =( B ) A .∅ B .{2} C .{5}D .{2,5}[解析] 本题考查集合的运算.A ={x ∈N|x 2≥5}={x ∈N|x≥5},故∁U A ={x ∈N|2≤x<5}={2}.选B .9.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A 等于( D ) A .{1,3} B .{3,7,9} C .{3,5,9}D .{3,9}[解析] 因为A∩B={3},所以集合A 中必有元素3.因为(∁U B)∩A={9},所以属于集合A 不属于集合B 的元素只有9.综上可得A ={3,9}.10.已知集合A ={x|-2≤x≤7},B ={x|m +1<x<2m -1},且B≠∅,若A ∪B =A ,则m 的取值范围为( D )A .-3≤m≤4B .-2<m<4C .2<m<4D .2<m≤4[解析] 因为A ∪B =A ,所以B ⊆A . 又因为B≠∅,所以⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,所以2<m≤4.11.已知集合A ={x|x<3或x≥7},B ={x|x<a}.若(∁U A)∩B≠∅,则a 的取值范围为( A ) A .a>3 B .a≥3 C .a≥7D .a>7[解析] 因为A ={x|x<3或x≥7},所以∁U A ={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.12.下列四个命题:①{0}是空集;②若a ∈N ,则-a ∉N ;③集合{x ∈R|x 2-2x +1=0}有两个元素;④集合{x ∈Q|6x∈N}是有限集.其中正确命题的个数是( D )A .1B .2C .3D .0[解析] ①{0}是含有一个元素0的集合,不是空集, ∴①不正确.②当a =0时,0∈N ,∴②不正确. ③∵x 2-2x +1=0,x 1=x 2=1, ∴{x ∈R|x 2-2x +1=0}={1}, ∴③不正确.④当x 为正整数的倒数时6x ∈N ,∴{x ∈Q|6x ∈N}是无限集,∴④不正确.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.已知集合A ={x|x -2>0},若a ∈A ,则集合B ={x|x 2-ax +1=0}中元素的个数为2.[解析] ∵A ={x|x -2>0},a ∈A ,∴a -2>0,即a>2,∴a 2-4>0,则方程x 2-ax +1=0有两个不相等的实数根.故集合B 中元素的个数为2.14.设集合A ={x||x|<2},B ={x|x>a},全集U =R ,若A ⊆∁U B ,则a 的取值范围是a≥2. [解析] ∵|x|<2,∴-2<x<2,∴A ={x|-2<x<2}.而∁U B ={x|x≤a},故当A ⊆∁U B 时,a≥2. 15.设全集U =R ,A ={x ∈N|1≤x≤10},B ={x ∈R|x 2+x -6=0},则图中阴影表示的集合为{-3}.[解析] 如图阴影部分为(∁U A)∩B.∵A ={x ∈N|1≤x≤10}={1,2,3,4,…,9,10}, B ={x|x 2+x -6=0}={2,-3}, ∴(∁U A)∩B={-3}.16.集合M ={x|x =3k -2,k ∈Z},P ={y|y =3l +1,l ∈Z},S ={z|z =6m +1,m ∈Z}之间的关系是SP =M.[解析] M 、P 是被3除余1的数构成的集合,则P =M ,S 是被6除余1的数,则S P. 三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x ∈Z|-6≤x≤6},B ={1,2,3},C ={3,4,5,6}.求: (1)A ∪(B∩C); (2)A∩[∁A (B ∪C)].[解析] 由题意知A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}. (1)易知B∩C={3},故A ∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)∵B ∪C ={1,2,3,4,5,6},∴∁A (B ∪C)={-6,-5,-4,-3,-2,-1,0}, ∴A∩[∁A (B ∪C)]={-6,-5,-4,-3,-2,-1,0}.18.(本小题满分12分)已知M ={1,2,a 2-3a -1},N ={-1,a,3},M∩N={3},求实数a 的值. [解析] ∵M∩N={3},∴3∈M ; ∴a 2-3a -1=3,即a 2-3a -4=0, 解得a =-1或4.但当a =-1时,与集合中元素的互异性矛盾; 当a =4时,M ={1,2,3},N ={-1,3,4},符合题意. ∴a =4.19.(本小题满分12分)已知A ={x|x 2-3x +2=0},B ={x|mx -2=0}且A ∪B =A ,求实数m 组成的集合C .[解析] 由A ∪B =A 得B ⊆A ,因此B 有可能等于空集. ①当B =∅时,此时方程mx -2=0无解, 即m =0符合题意.②当B≠∅时,即m≠0,此时A ={1,2},B ={2m },∵B ⊆A .∴2m =1或2m =2,∴m =2或m =1.因此,实数m 组成的集合C 为{0,1,2}.20.(本小题满分12分)集合A ={x|-2<x<4},集合B ={x|x -m<0}. (1)若m =3,求A∩B,A ∪B ;(2)若A∩B=∅,求实数m 的取值范围; (3)若A∩B=A ,求实数m 的取值范围. [解析] (1)当m =3时,B ={x|x<3}. 又A ={x|-2<x<4},∴A∩B={x|-2<x<4}∩{x|x<3}={x|-2<x<3}, A ∪B ={x|-2<x<4}∪{x|x<3}={x|x<4}. (2)∵A ={x|-2<x<4},B ={x|x<m},又A∩B=∅, ∴m≤-2,即m 的取值范围是{m|m≤-2}. (3)∵A∩B=A ,∴A ⊆B .又A ={x|-2<x<4},B ={x|x<m}, ∴m≥4,即m 的取值范围是{m|m≥4}.21.(本小题满分12分)已知M ={x|x 2-5x +6=0},N ={x|ax =12},若N ⊆M ,求实数a 所构成的集合A ,并写出A 的所有非空真子集.[解析]∵M={x|x2-5x+6=0},解x2-5x+6=0得x=2或x=3,∴M={2,3}.∵N⊆M,∴N为∅或{2}或{3}.当N=∅时,即ax=12无解,此时a=0;当N={2}时,则2a=12,a=6;当N={3}时,则3a=12,a=4.所以A={0,4,6},从而A的所有非空真子集为{0},{4},{6},{0,4},{0,6},{4,6}.22.(本小题满分12分)设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10-x∈S.(1)请你写出符合条件,且分别含有1个、2个、3个元素的集合S各一个.(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由.(3)由(1)、(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论(要求至少写出两个结论)?[解析](1)由题意可知,若集合S中含有一个元素,则应满足10-x=x,即x=5,故S={5}.若集合S中含有两个元素,设S={a,b},则a,b∈N+,且a+b=10,故S可以是下列集合中的一个:{1,9},{2,8},{3,7},{4,6},若集合S中含有3个元素,由集合S满足的性质可知5∈S,故S是{1,5,9}或{2,5,8}或{3,5,7}或{4,5,6}中的一个.(2)存在含有6个元素的非空集合S如下所示:S={1,2,3,7,8,9}或S={1,2,4,6,8,9}或S={1,3,4,6,7,9}或S={2,3,4,6,7,8}共4个.(3)答案不唯一,如:①S⊆{1,2,3,4,5,6,7,8,9};②若5∈S,则S中元素个数为奇数个,若5∉S,则S中元素个数为偶数个.第二章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)=x +1+12-x 的定义域为( A )A .[-1,2)∪(2,+∞)B .(-1,+∞)C .[-1,2)D .[-1,+∞)[解析] 要使x +1有意义,须满足x +1≥0,即x≥-1;要使12-x 有意义,须满足2-x≠0,即x≠2,所以函数f(x)的定义域为{x|x≥-1,且x≠2},用区间可表示为[-1,2)∪(2,+∞).2.已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x ,则f(-1)=( D )A .2B .1C .0D .-2[解析] ∵f(x)为奇函数, ∴f(-1)=-f(1)=-(1+11)=-2.3.下列四个图像中,表示的不是函数图像的是( B )[解析] 选项B 中,当x 取某一个值时,y 可能有2个值与之对应,不符合函数的定义,它不是函数的图像.4.二次函数y =-2(x +1)2+8的最值情况是( C ) A .最小值是8,无最大值 B .最大值是-2,无最小值 C .最大值是8,无最小值 D .最小值是-2,无最大值[解析] 因为二次函数开口向下,所以当x =-1时,函数有最大值8,无最小值.5.已知集合A 和集合B 的元素都属于N ,映射f :A→B,若把集合A 中的元素n 映射到集合B 中为元素n 2+n ,则在映射f 下,像20的原像是( A )A .4B .5C.4或-5 D.-4或5[解析]由题意,得n2+n=20,∴n2+n-20=0,∴(n+5)(n-4)=0,∴n=-5或n=4.∵n∈N,∴n=4,故选A.6.(2019·山东烟台高一期中测试)已知函数y=f(x)的部分x与y的对应关系如下表:则f[f(4)]=(A.-1 B.-2C.-3 D.3[解析]由图表可知,f(4)=-3,∴f[f(4)]=f(-3)=3.7.函数f(x)在(-∞,+∞)上单调递减,且为奇函数,若f(1)=-1,则满足-1≤f(x-2)≤1的x 的取值范围是( D )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3][解析]∵f(x)为R上的奇函数,f(1)=-1,∴f(-1)=-f(1)=1,由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1),又∵f(x)在(-∞,+∞)上单调递减,∴-1≤x-2≤1,∴1≤x≤3,故选D.8.若奇函数f(x)在[3,7]上是增函数,且最小值是1,则它在[-7,-3]上是( B )A.增函数且最小值是-1 B.增函数且最大值是-1C.减函数且最大值是-1 D.减函数且最小值是-1[解析]∵奇函数在对称区间上的单调性相同,最值互为相反数.∴y=f(x)在[-7,-3]上有最大值-1且为增函数.9.定义在[1+a,2]上的偶函数f(x)=ax2+bx-2在区间[1,2]上是( B )A.增函数B.减函数C.先增后减函数D.先减后增函数[解析]∵函数f(x)是偶函数,∴b=0.定义域为[1+a,2],则1+a=-2,∴a=-3.又二次函数f(x)=-3x2-2的图像开口向下,对称轴为y轴,则在区间[1,2]上是减函数.10.若函数y=kx+5kx2+4kx+3的定义域为R,则实数k的取值范围为( D )A .(0,34)B .(34,+∞)C .(-∞,0)D .[0,34)[解析] ∵函数的定义域为R ,∴kx 2+4kx +3恒不为零,则k =0时,成立; k≠0时,Δ<0,也成立.∴0≤k<34.11.函数y =ax 2-bx +c(a≠0)的图像过点(-1,0),则a b +c +b a +c -c a +b的值是( A ) A .-1 B .1 C .12D .-12[解析] ∵函数y =ax 2-bx +c(a≠0)的图像过(-1,0)点,则有a +b +c =0,即a +b =-c ,b +c =-a ,a +c =-b. ∴a b +c +b a +c -c a +b=-1. 12.已知函数f(x)(x ∈R)满足f(x)=f(2-x),若函数y =|x 2-2x -3|与y =f(x)图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1mx i =( B )A .0B .mC .2mD .4m[解析] 因为y =f(x),y =|x 2-2x -3|都关于x =1对称,所以它们交点也关于x =1对称,当m 为偶数时,其和为2×m 2=m ,当m 为奇数时,其和为2×m -12+1=m ,因此选B .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.将二次函数y =x 2+1的图像向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是y =x 2+4x +2.[解析] y =(x +2)2+1-3=(x +2)2-2 =x 2+4x +2.14.(2019·陕西黄陵中学高一期末测试)函数f(x)=4-2x +1x +1的定义域是{x|x≤2且x≠-1}. [解析] 由题意得⎩⎪⎨⎪⎧4-2x≥0x +1≠0,解得x≤2且x≠-1,∴函数f(x)的定义域为{x|x≤2且x≠-1}.15.已知函数f(x)=x 2-|x|,若f(-m 2-1)<f(2),则实数m 的取值范围是(-1,1).[解析] 因为f(x)=x 2-|x|=|x|2-|x|=(|x|-12)2-14,所以f(x)为偶函数,且在区间(12,+∞)上为增函数.又f(-m 2-1)=f(m 2+1)<f(2), 所以m 2+1<2.所以m 2<1,即-1<m<1.16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如:解析式为y =2x 2+1,值域为{9}的“孪生函数”有三个:①y =2x 2+1,x ∈{-2};②y =2x 2+1,x ∈{2};③y =2x 2+1,x ∈{-2,2}.那么函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有3个.[解析] 根据定义,满足函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有:y =2x 2+1,x ∈{0,2};y =2x 2+1,x ∈{0,-2},y =2x 2+1,x ∈{-2,0,2}共3个.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知函数f(x)=⎩⎪⎨⎪⎧x +2(x≤-1)x 2(-1<x<2)2x (x≥2).(1)求f{f[f(3)]}的值; (2)求f(a)=3,求a 的值; (3)画出函数的图像.[解析] (1)∵-1<3<2,∴f(3)=(3)2=3. 又 3≥2,∴f[f(3)]=f(3)=2×3=6. 又6≥2,∴f{f[f(3)]}=f(6)=2×6=12.(2)当a≤-1时,f(a)=a +2.若f(a)=3,则a +2=3, ∴a =1(舍去).当-1<a<2时,f(a)=a 2.若f(a)=3,则a 2=3, ∴a =3,或a =-3(舍去).当a≥2时,f(a)=2a.若f(a)=3,则2a =3, ∴a =32(舍去).综上可知,a = 3.(3)函数f(x)的图像如图所示,18.(本小题满分12分)已知函数f(x)=x 2-2ax +2,x ∈[-3,3]. (1)当a =-5时,求f(x)的最大值和最小值;(2)求实数a 的取值范围,使y =f(x)在区间[-3,3]上是单调函数. [解析] (1)当a =-5时,f(x)=x 2+10x +2=(x +5)2-23,x ∈[-3,3], 又因为二次函数开口向上,且对称轴为x =-5,所以当x =-3时,f(x)min =-19,当x =3时,f(x)max =41.(2)函数f(x)=(x -a)2+2-a 2的图像的对称轴为x =a ,因为f(x)在[-3,3]上是单调函数, 所以a≤-3或a≥3.19.(本小题满分12分)已知函数f(x)=1a -1x (a>0,x>0).(1)求证:f(x)在(0,+∞)上是增加的;(2)若f(x)在[12,2]上的值域是[12,2],求a 的值.[解析] (1)设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2. 则f(x 1)-f(x 2)=(1a -1x 1)-(1a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2. ∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴x 1-x 2x 1x 2<0.∴f(x 1)<f(x 2). ∴函数f(x)在(0,+∞)上是增加的. (2)∵f(x)在[12,2]上的值域是[12,2],又∵f(x)在[12,2]上是增加的,∴⎩⎪⎨⎪⎧f (12)=12f (2)=2,即⎩⎪⎨⎪⎧1a -2=121a -12=2.∴a =25.20.(本小题满分12分)已知幂函数y =f(x)=x -2m2-m +3,其中m ∈{x|-2<x<2,x ∈Z},满足:(1)是区间(0,+∞)上的增函数; (2)对任意的x ∈R ,都有f(-x)+f(x)=0.求同时满足(1),(2)的幂函数f(x)的解析式,并求x ∈[0,3]时f(x)的值域. [解析] 由{x|-2<x<2,x ∈Z}={-1,0,1}. (1)由-2m 2-m +3>0,∴2m 2+m -3<0,∴-32<m<1,∴m =-1或0.由(2)知f(x)是奇函数.当m =-1时,f(x)=x 2为偶函数,舍去. 当m =0时,f(x)=x 3为奇函数. ∴f(x)=x 3.当x ∈[0,3]时,f(x)在[0,3]上为增函数, ∴f(x)的值域为[0,27].21.(本小题满分12分)设函数f(x)=x 2-2|x|-1(-3≤x≤3). (1)证明:f(x)是偶函数;(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数; (3)求函数的值域.[解析] (1)证明:∵定义域关于原点对称, f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x), 即f(-x)=f(x),∴f(x)是偶函数.(2)当x≥0时,f(x)=x 2-2x -1=(x -1)2-2, 当x<0时,f(x)=x 2+2x -1=(x +1)2-2,即f(x)=⎩⎪⎨⎪⎧(x -1)2-2,x≥0(x +1)2-2,x<0.根据二次函数的作图方法,可得函数图像,如图函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f(x)在区间[-3,-1),[0,1]上为减函数, 在[-1,0),[1,3]上为增函数.(3)当x≥0时,函数f(x)=(x -1)2-2的最小值为-2,最大值为f(3)=2. 当x<0时,函数f(x)=(x +1)2-2的最小值为-2,最大值为f(-3)=2. 故函数f(x)的值域为[-2,2].22.(本小题满分12分)已知函数f(x)=x +x 3,x ∈R. (1)判断函数f(x)的单调性,并证明你的结论;(2)若a ,b ∈R ,且a +b>0,试比较f(a)+f(b)与0的大小. [解析] (1)函数f(x)=x +x 3,x ∈R 是增函数, 证明如下:任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)-f(x 2)=(x 1+x 31)-(x 2+x 32)=(x 1-x 2)+(x 31-x 32)=(x 1-x 2)(x 21+x 1x 2+x 22+1) =(x 1-x 2)[(x 1+12x 2)2+34x 22+1].因为x 1<x 2,所以x 1-x 2<0,(x 1+12x 2)2+34x 22+1>0.所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)=x +x 3,x ∈R 是增函数. (2)由a +b>0,得a>-b ,由(1)知f(a)>f(-b), 因为f(x)的定义域为R ,定义域关于坐标原点对称, 又f(-x)=(-x)+(-x)3=-x -x 3=-(x +x 3)=-f(x), 所以函数f(x)为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.第三章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·山东潍坊高一期末测试)函数f(x)=ln (x +1)x -2的定义域是( B )A .(-1,+∞)B .(-1,2)∪(2,+∞)C .(-1,2)D .[-1,2)∪(2,+∞)[解析] 要使函数有意义,应满足⎩⎪⎨⎪⎧x +1>0x -2≠0,∴x>-1且x≠2,故函数f(x)的定义域为(-1,2)∪(2,+∞). 2.下列计算正确的是( B ) A .log 26-log 23=log 23 B .log 26-log 23=1 C .log 39=3D .log 3(-4)2=2log 3(-4)[解析] 在B 选项中,log 26-log 23=log 263=log 22=1,故该选项正确.3.(2019·安徽合肥众兴中学高一期末测试)已知函数f(x)=⎩⎪⎨⎪⎧log 2x (x>0)3x(x≤0),则f[f(14)]的值是( B )A .9B .19 C .-19D .-9[解析] ∵x>0时,f(x)=log 2x , ∴f(14)=log 214=log 22-2=-2,又∵x<0时,f(x)=3x ,∴f(-2)=3-2=19.∴f[f(14)]=f(-2)=19.4.(2019·山东潍坊高一期末测试)已知x =log 512,y =(12)0.1,z =213 ,则( A )A .x<y<zB .x<z<yC .y<x<zD .z<x<y[解析] log 512<log 51=0,∴x<0;(12)0.1<(12)0=1,∴0<y<1;213 >20=1,∴z>1,∴x<y<z.5.函数y =a x与y =-log a x(a>0,且a≠1)在同一坐标系中的图像形状只能是( A )[解析] 排除法:∵函数y =-log a x 中x>0,故排除B ;当a>1时,函数y =a x为增函数,函数y =-log a x 为减函数,故排除C ;当0<a<1时,函数y =a x 为减函数,函数y =-log a x 为增函数,故排除D ,所以选A . 6.(2019·北京文,3)下列函数中,在区间(0,+∞)上单调递增的是( A ) A .y =x 12 B .2-xC .y =log 12xD .y =1x[解析] 函数y =x 12=x ,在(0,+∞)上单调递增,函数y =2-x=(12)x ,y =log 12x ,y =1x 在(0,+∞)上都是单调递减的,故选A .7.已知函数f(x)=5|x|,g(x)=ax 2-x(a ∈R).若f[g(1)]=1,则a =( A ) A .1 B .2 C .3D .-1[解析] 由已知条件可知:f[g(1)]=f(a -1)=5|a -1|=1,∴|a -1|=0,得a =1.故选A .8.给出f(x)=⎩⎪⎨⎪⎧12x (x≥4)f (x +1)(x<4),则f(log 23)的值等于( D )A .-238B .111C .119D .124[解析] 因为log 23∈(1,2), 所以f(log 23)=f(log 23+1)=f(log 26)=f(log 26+1) =f(log 212)=f(log 212+1) =f(log 224)=12log 224=124.9.若a>b>0,0<c<1,则( B ) A .log a c<log b c B .log c a<log c b C .a c<b cD .c a>c b[解析] 对于选项A :log a c =lgc lga ,log b c =lgclgb,∵0<c<1,∴lgc<0,而a>b>0,所以lga>lgb ,但不能确定lga 、lgb 的正负,所以它们的大小不能确定; 对于选项B :log c a =lga lgc ,log c b =lgb lgc ,而lga>lgb ,两边同乘以一个负数1lgc 改变不等号方向所以选项B 正确;对于选项C :利用y =x c在第一象限内是增函数即可得到a c>b c,所以C 错误;对于选项D :利用y =c x在R 上为减函数易得为错误.所以本题选B .10.设函数f(x)=x 2-4x +3,g(x)=3x-2,集合M ={x ∈R|f[g(x)]>0},N ={x ∈R|g(x)<2},则M∩N =( D )A .(1,+∞)B .(0,1)C .(-1,1)D .(-∞,1)[解析] ∵f[g(x)]>0,∴g 2(x)-4g(x)+3>0. ∴g(x)>3或g(x)<1, ∴M∩N={x|g(x)<1}.∴3x-2<1,3x<3,∴x<1.故选D .11.已知函数f(x)=⎩⎪⎨⎪⎧ 2x -1-2,-log 2(x +1),x≤1,x>1,且f(a)=-3,则f(6-a)=( A )A .-74B .-54C .-34D .-14[解析] 由已知条件可得函数图像:故f(a)=-3=-log 2(a +1),可得a =7; f(6-a)=f(-1)=2-1-1-2=-74.故本题正确答案为A .12.已知f(x)=log 12(x 2-ax +3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是( C )A .(-4,4)B .[-4,4)C .(-4,4]D .[-4,4][解析] 要使f(x)在[2,+∞)上是减函数,则需g(x)=x 2-ax +3a 在[2,+∞)上递增且恒大于零. ∴⎩⎪⎨⎪⎧a 2≤2g (2)=22-2a +3a>0,解得-4<a≤4.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.(2019·大连市高一期末测试)已知16a=4,lg x =a ,则x =10. [解析] ∵16a=4,∴a =12,∴lg x =12,∴x =1012=10,∴x =10.14.(2019·安徽安庆二中高一期中测试)计算:(49)12 +(12)log23+lne =2.[解析] 原式=23+12log 23+1=23+13+1=2. 15.(2019·全国卷Ⅱ理,14)已知f(x)是奇函数,且当x<0时,f(x)=-e ax,若f(ln2)=8,则a -3.[解析] 解法一:设x>0,则-x<0, ∴f(-x)=-e-ax,∵f(x)为奇函数,∴f(-x)=-f(x), ∴-f(x)=-e -ax,∴f(x)=e-ax=1eax =1(e x )a , ∵ln2>0,∴f(ln2)=1(e ln2)a =12a =8,∴2a=18=2-3,∴a =-3.解法二:∵ln2>0,∴-ln2<0, 又∵当x<0时,f(x)=-e ax, ∴f(-ln2)=-e -aln2=-1e aln2=-1(e ln2)a=-12a ,又∵f(x)为奇函数,∴f(-ln2)=-f(ln2) =-8, ∴-12a =-8,∴2a=18=2-3,∴a =-3.16.关于函数y =2x2-2x -3有以下4个结论:①定义域为(-∞,-1)∪(3,+∞); ②递增区间为[1,+∞); ③是非奇非偶函数; ④值域是(116,+∞).则正确的结论是②③.(填序号即可)[解析] ①不正确,因为y =2x 2-2x -3的定义域为R ; ④不正确,因为x 2-2x -3=(x -1)2-4≥-4, ∴2x2-2x -3≥2-4=116,即值域为[116,+∞);②正确,因为y =2u为增函数,u =x 2-2x -3在(-∞,1]上为减函数,在[1,+∞)上为增函数,所以y =2x2-2x -3的递增区间为[1,+∞);③正确,因为f(-x)≠f(x)且f(-x)≠-f(x).三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(2019·安徽太和中学高一期中测试)计算下列各式的值: (1)(12)-2+(12)0-2713 +38;(2)log 327-log 33+lg25+2lg2+lne 2. [解析] (1)原式=22+1-(33) 13 +323=4+1-3+2=4.(2)原式=log 3332 -log 3312 +lg25+lg4+2=32-12+lg100+2 =32-12+2+2=5. 18.(本小题满分12分)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x +2). (1)求g(x)的解析式及定义域; (2)求函数g(x)的最大值和最小值. [解析] (1)∵f(x)=2x, ∴g(x)=f(2x)-f(x +2)=22x-2x +2.∵f(x)的定义域是[0,3],∴⎩⎪⎨⎪⎧0≤2x≤30≤x+2≤3,解得0≤x≤1.∴g(x)的定义域是[0,1]. (2)g(x)=(2x )2-4×2x=(2x-2)2-4. ∵x ∈[0,1], ∴2x ∈[1,2].∴当2x =1,即x =0时,g(x)取得最大值-3; 当2x=2,即x =1时,g(x)取得最小值-4.19.(本小题满分12分)已知定义域为R 的偶函数f(x)在[0,+∞)上是增函数,且f(12)=0,求不等式f(log 4x)>0的解集.[解析] 因为f(x)是偶函数, 所以f(-12)=f(12)=0,又f(x)在[0,+∞)上是增函数, 所以f(x)在(-∞,0)上是减函数. 所以f(log 4x)>0⇒log 4x>12或log 4x<-12,解得:x>2或0<x<12,则不等式f(log 4x)>0的解集是 {x|x>2,或0<x<12}.20.(本小题满分12分)已知a>0且a≠1,函数f(x)=log a x ,x ∈[2,4]的值域为[m ,m +1],求a 的值.[解析] 当a>1时,f(x)=log a x ,在[2,4]上是增加的,∴x =2时,f(x)取最小值;x =4时,f(x)取最大值,即⎩⎪⎨⎪⎧log a 2=m log a 4=m +1,∴2log a 2=log a 2+1.∴log a 2=1,得a =2 当0<a<1时,f(x)=log a x 在[2,4]上是减少的,∴当x =2时,f(x)取最大值;x =4时,f(x)取最小值,即⎩⎪⎨⎪⎧log a 2=m +1log a 4=m ,∴log a 2=2log a 2+1,∴log a 2=-1.∴a =12.综上所述,a =2或a =12.21.(本小题满分12分)已知函数f(x)=(12x -1+12)·x 3.(1)求f(x)的定义域; (2)讨论f(x)的奇偶性; (3)证明:f(x)>0.[解析] (1)因为要使题中函数有意义,需2x-1≠0,即x≠0, 所以所求定义域为(-∞,0)∪(0,+∞). (2)因为f(x)=2+(2x-1)2(2x-1)·x 3=2x+12(2x -1)·x 3, 又f(-x)=2-x+12(2-x -1)·(-x)3=1+2x2(1-2x )·(-x 3)=2x+12(2x-1)·x 3, 所以f(-x)=f(x),即f(x)是偶函数. (3)证明:因为x>0时,2x>1,所以2x-1>0. 又因为x 3>0,所以f(x)>0;因为x<0时,0<2x<1,所以-1<2x-1<0. 又因为x 3<0,所以f(x)>0.所以当x ∈(-∞,0)∪(0,+∞)时,f(x)>0.22.(本小题满分12分)某商品的市场日需求量Q 1和日产量Q 2均为价格P 的函数,且Q 1=144·(12)P +12,Q 2=6×2P ,日总成本C 关于日产量Q 2的关系式为:C =10+13Q 2.(1)Q 1=Q 2时的价格为均衡价格,求此均衡价格P 0;(2)当P =P 0时,求日利润L 的大小.[解析] 均衡价格即供需相等时所对应的价格,利润=收益-成本,列出方程即可求解. (1)根据题意有Q 1=Q 2, 144·(12)P +12=6×2P,即(2P )2-2·2P-24=0. 解得2P=6,2P=-4(舍去). ∴P =log 26,故P 0=P =log 26. 即均衡价格为log 26元. (2)由于利润=收益-成本,故L =Q 1P -C =36log 26-(10+13×36)=36log 26-22,故P =P 0时,利润为(36log 26-22)元.第四章学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)的图像与x轴有3个交点,则方程f(x)=0的实数解的个数是( D )A.0 B.1C.2 D.3[解析]因为函数f(x)的图像与x轴有3个交点,所以函数f(x)有3个零点,即方程f(x)=0有3个实数解.2.函数y=x的零点是( A )A.0 B.(0,0)C.(1,0) D.1[解析]函数y=x的零点是其图像与横轴交点的横坐标0,它是一个实数,而不是点,故选A.3.方程lgx+x=0的根所在区间是( B )A.(-∞,0) B.(0,1)C.(1,2) D.(2,4)[解析]若lgx有意义,∴x>0,故A不正确,又当x>1时,lgx>0,lgx+x>0,C、D不正确,故选B.4.函数f(x)的图像如图所示,则函数f(x)的零点个数为( D )A.1 B.2C.3 D.4[解析]因为f(x)与x轴有4个交点,所以共有4个零点.5.若f(x)是一个二次函数,且满足f(2+x)=f(2-x),该函数有两个零点x1,x2,则x1+x2=( C ) A.0 B.2C.4 D.无法判断[解析]由f(2+x)=f(2-x)知f(x)的图像关于x=2对称.∴x1+x2=4.6.下图是函数f(x)的图像,它与x轴有4个不同的公共点.在下列四个区间中,存在不能用二分法求出的零点,则该零点所在的区间是( B )A .[-2,-1]B .[1,2]C .[4,5]D .[5,6][解析] 在区间[1,2]上的零点为不变号零点,故不能用二分法求.7.夏季高山温度从山脚起每升高100m ,降低0.7摄氏度,已知山顶的温度是14.1摄氏度,山脚的温度是26摄氏度,则山的相对高度为( C )A .1 750mB .1 730mC .1 700mD .1 680m[解析] 设从山脚起每升高x 百米时,温度为y 摄氏度,根据题意得y =26-0.7x ,山顶温度是14.1摄氏度,代入得14.1=26-0.7x.∴x =17(百米),∴山的相对高度是1 700m.8.函数f(x)=2x+3x 的零点所在的一个区间是( B ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)[解析] ∵f(x)=2x+3x ,∴f(-1)=-52<0,f(0)=1>0,故选B .9.若方程lnx +x -4=0在区间(a ,b)(a ,b ∈Z ,且b -a =1)上有一根,则a 的值为( B ) A .1 B .2 C .3D .4[解析] 设f(x)=lnx +x -4,f(2)=ln2-2<0,f(3)=ln3-1>0,f(2)f(3)<0, ∴根在区间(2,3)内,∴a =2.故选B .10.若方程x 2+(m -2)x +(5-m)=0的两根都大于2,则m 的取值范围是( A ) A .(-5,-4] B .(-∞,-4]C .(-∞,-2)D .(-∞,-5)∪(-5,-4][解析] 考查函数f(x)=x 2+(m -2)x +(5-m),由条件知它的两个零点都大于2,其图像如图所示.由图可知,⎩⎪⎨⎪⎧-m -22>2f 2=m +5>0m -22-45-m≥0,即⎩⎪⎨⎪⎧m<-2m>-5m≥4或m≤-4,∴-5<m≤-4.故选A .11.已知函数f(x)在区间[0,a]中有唯一的变号零点(a>0),在用二分法寻找零点的过程中,依次确定了零点所在的区间为[0,a 2],[0,a 4],[0,a8],则下列说法正确的是( D )A .函数f(x)在区间[0,a16]中有零点B .函数f(x)在区间[0,a 16]或[a 16,a8]中有零点C .函数f(x)在区间[a16,a]中无零点D .函数f(x)在区间[0,a 16]或[a 16,a 8]中有零点,或零点是a16[解析] 由二分法的定义可知,只有D 正确.12.已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x 2-3x.则函数g(x)=f(x)-x +3的零点的集合为( D )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}[解析] 令x<0,则-x>0,∴f(-x)=(-x)2-3(-x)=x 2+3x , 又∵f(x)为奇函数,∴f(-x)=-f(x), ∴-f(x)=x 2+3x , ∴f(x)=-x 2-3x(x<0),∴f(x)=⎩⎪⎨⎪⎧x 2-3x x≥0-x 2-3x x<0.∴g(x)=⎩⎪⎨⎪⎧x 2-4x +3x≥0-x 2-4x +3x<0.当x≥0时,由x 2-4x +3=0,得x =1或x =3. 当x<0时,由-x 2-4x +3=0,得x =-2-7, ∴函数g(x)的零点的集合为{-2-7,1,3}.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.函数f(x)=(x 2-3)(x 2-2x -3)的零点为±3,3,-1 . [解析] 令f(x)=0,得x =±3,或x =3,或x =-1.14.用一根长为12m 的细铁丝弯折成一个矩形的铁框架,则能弯成的框架的最大面积是9m 2. [解析] 设框架的一边长为xm ,则另一边长为(6-x)m.设框架面积为ym 2,则y =x(6-x)=-x 2+6x =-(x -3)2+9(0<x<6),y max =9(m 2).15.已知f(x)是定义域为R 的奇函数,且在(-∞,0)内的零点有2012个,则f(x)的零点的个数为4_025.[解析] 因为f(x)为奇函数,且在(-∞,0)内有2 012个零点,由奇函数的对称性知,在(0,+∞)内也有2 012个零点,又x ∈R ,所以f(0)=0,因此共4 025个零点.16.函数f(x)=⎩⎪⎨⎪⎧x 2-2x≤02x -6+lnx x>0的零点个数是2.[解析] 当x≤2,令x 2-2=0,得x =-2; 当x>0时,令2x -6+lnx =0, 即lnx =6-2x ,在同一坐标系中,画出函数y =6-2x 与y =lnx 的图像如图所示.由图像可知,当x>0时,函数y =6-2x 与y =lnx 的图像只有一个交点,即函数f(x)有一个零点. 综上可知,函数f(x)有2个零点.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求函数y =x 3-7x +6的零点. [解析] ∵x 3-7x +6=(x 3-x)-(6x -6) =x(x 2-1)-6(x -1) =x(x +1)(x -1)-6(x -1) =(x -1)(x 2+x -6) =(x -1)(x -2)(x +3),∴由x 3-7x +6=0即(x -1)(x -2)(x +3)=0得x 1=-3,x 2=1,x 3=2. ∴函数y =x 3-7x +6的零点为-3,1,2.18.(本小题满分12分)已知函数f(x)=x 2-x +m 的零点都在区间(0,2)内,求实数m 的范围.[解析] 由题意可得⎩⎪⎨⎪⎧Δ≥0f 0>0f 2>0,即⎩⎪⎨⎪⎧1-4m≥0m>04-2+m>0,解得0<m≤14.所以实数m 的取值范围是(0,14].19.(本小题满分12分)(济南一中月考,有改动)判断方程x 3-4x -2=0在区间[-2,0]内实数根的个数.[解析] 设f(x)=x 3-4x -2,则f(x)的图像是连续曲线,而f(-2)=-2<0,f(0)=-2<0,若取区间[-2,0]内一点-1,得f(-1)=1>0,取x =3,得f(3)=13>0,因此函数f(x)满足f(-2)·f(-1)<0,f(-1)·f(0)<0,f(0)·f(3)<0,∴f(x)分别在[-2,-1),(-1,0),(0,3)内至少存在一个零点, 又∵x 3-4x -2=0最多有3个根,∴方程x 3-4x -2=0在区间[-2,0]内有2个实数根.20.(本小题满分12分)某公司从2009年的年产值100万元,增加到10年后2019年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1+x)≈x,lg2=0.3,ln10=2.30)[解析] 设每年年增长率为x , 则100(1+x)10=500,即(1+x)10=5, 两边取常用对数,得 10·lg(1+x)=lg5,∴lg(1+x)=lg510=110(lg10-lg2)=0.710.又∵lg(1+x)=ln1+xln10,∴ln(1+x)=lg(1+x)·ln10.∴ln(1+x)=0.710×ln10=0.710×2.30=0.161=16.1%.又由已知条件ln(1+x)≈x 得x≈16.1%. 故每年的平均增长率约为16.1%.21.(本小题满分12分)是否存在这样的实数a ,使函数f(x)=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.[解析] 若实数a 满足条件,则只需f(-1)f(3)≤0即可.f(-1)f(3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a)(5a +1)≤0,所以a≤-15或a≥1.检验:(1)当f(-1)=0时a =1,所以f(x)=x 2+x. 令f(x)=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a≠1. (2)当f(3)=0时a =-15,此时f(x)=x 2-135x -65.令f(x)=0,即x 2-135x -65=0.解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).22.(本小题满分12分)某房地产公司要在荒地ABCDE(如图所示)上划出一块长方形地面建造一幢公寓,问:如何设计才能使公寓占地面积最大?求出最大面积(尺寸单位:m).[解析] 如图所示,设计长方形公寓分三种情况:(1)当一顶点在BC 上时,只有在B 点时长方形BCDB 1面积最大, ∴S 1=SBCDB 1=5 600m 2.(2)当一顶点在EA 边上时,只有在A 点时长方形AA 1DE 的面积最大, ∴S 2=SAA 1DE =6 000m 2.(3)当一顶点在AB 边上时,设该点为M ,则可构造长方形MNDP ,并补出长方形OCDE. 设MQ =x(0≤x≤20),∴MP =PQ -MQ =80-x. 又OA =20,OB =30,则OA OB =MQ QB ,∴23=x QB ,∴QB =32x ,∴MN =QC =QB +BC =32x +70,∴S 3=S MNDP =MN·MP=(70+32x)·(80-x)=-32(x -503)2+18 0503,当x =503时,S 3=18 0503.比较S 1,S 2,S 3,得S 3最大,此时MQ =503m ,BM =25 133m ,故当长方形一顶点落在AB 边上离B 点25133m 处时公寓占地面积最大,最大面积为18 0503m 2.。
俯视图 侧视图第8题图 河南省2008级普通高中学生学业水平考试数学试题一、选择题(本大题共16小题,每小题3分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合}3,2,1{=M ,集合}4,2,0{=N ,则=N MA .}4,2{B .}4,2,0{C .}4,3,2,1{D .}4,3,2,1,0{2.计算:=-1lg 10lgA .1B .11C .10D .03.计算:=-)390sin(0A .21B .21- C .23 D .23- 4.函数1-=x y 的定义域是 A .),0[+∞ B .]1,(-∞ C .),1(+∞ D .),1[+∞5.在等比数列}{n a 中,若471=⋅a a ,则=⋅62a aA .2-B .2C .4D .4-6.设),(0R y x x y ∈<<,则下列不等式正确的是A .22x y <B .xy 11> C .x y -<- D .y x y x +>- 7.函数)321cos(+=x y 的最小正周期为 A .2π B .π C .π2 D .π4 8.如图,一个几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的侧面积为A .πB .πC .πD .π9.下列四个命题中,正确的是A .过平面外一点作与这个平面垂直的平面有且只有一个B .两个平面平行,其中一个平面内的直线一定平行于另一个平面C .一个平面内有无数条直线与另一个平面平行,则这两个平面平行D .两条直线与一个平面所成的角相等,则这两条直线平行10.假设某台设备在一天内随机发生一次故障,那么在8点到11点内出故障的概率是A .21B .81C .121D 11.若执行右边的程序框图,则输出的=kA .8B .9C .10D .以上A 、B 、C 都不对12.方程02ln =-x x 的根所在的区间是 A .)2,1( B .),2(e C .)3,(e D .),3(+∞13.设)(x f 是定义在R 上的偶函数,且)(x f 在),0[+∞上为增函数,则A .)2()3()4(->>-f f fB .)3()2()4(f f f >->-C .)2()3()4(-<<-f f fD .)3()2()4(f f f <-<-14.过点)2,4(P 作圆1)1()1(22=-++y x 的一条切线,切点为Q ,则=||PQA .5B .26C .62D .615.已知12=+b a ,则b a 42+的最小值是A .8B .6C .22D .23 16.某城市一年中12个月的平均气温与月份的关系可近似地用函数}12,,3,2,1{)],6(6cos[)( ∈-+=x x A B x f π来表示.已知6月份的平均气温为28C 0,12月份的平均气温为18C 0,则10月份的平均气温为A .20C 0B .20.5C 0 C .21C 0D .21.5C 0。
【湘教版】高中数学(必修一、必修二)学业水平测试试题(6)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中...............) 1.设b 是a 的相反向量,则下列说法一定错误的是( ) A .a 与b 的长度相等 B .a ∥b C .a 与b 一定不相等 D .a 与b 互为相反向量 答案:C2.记符号{}B x A x x B A ∉∈=-且,,若⎭⎬⎫⎩⎨⎧<<=2221xxA ,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<=1log 31x x B ,则=-B A ( ) A ⎥⎦⎤⎝⎛-31,1 B ⎪⎭⎫⎝⎛-31,1 C ⎪⎭⎫⎢⎣⎡+∞,21D ⎥⎦⎤⎝⎛31,0答案:A3.若f (x ) cos 2xπ 是周期为2的奇函数,则f (x )可以是( )A .sin 2x π B .cos 2xπ C .sinπx D .cosπx答案:A4.函数()431-+=x x x f 的零点所在的区间是( )A ()3,2B ()2,1C ()1,0D ()4,3 答案:A5.方程sinx = lgx 的实根有( )A .1个B .3个C .2个D . 无穷多个 答案:B6.已知函数y =f (x ),将f (x )图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得到图象沿x 轴向左平移4π个单位,这样得到的曲线与y =3sin x 的图象相同,那y =f (x )的解析式为( )A .f(x)=3sin(42π-x ) B .f(x)=3sin(2x+4π) C .f(x)=3sin(42π+x ) D .f(x)=3sin(2x -4π)答案:D7.已知函数112++=mx mx y 的定义域是R ,则实数m 的取值范围是( )A (][)+∞∞-,40,B []4,0C (]4,0D [)4,0 答案:D8.y= log 21sin(2x +4π)的单调递减区间是( )A .[kπ-4π,kπ](k ∈Z) B .(kπ-8π ,kπ+8π)(k ∈Z)C .[kπ-83π ,kπ+8π] (k ∈Z) D . (kπ-8π, kπ+83π)(k ∈Z)答案:B9.已知函数)(x f y =为R 上的偶函数,若对于0≥x 时,都有)()2(x f x f -=+,且当[)2,0∈x 时,),1(log )(2+=x x f 则)12()11(f f +-等于( )A 6log 2B 23log 2C 1D 1-答案:D10.函数f (x )(x ∈R )的图象如图所示,则函数)(log)(x f x g a=(0<a <1)的单调减区间是( )A.[0,21] B.(-∞,0)∪[21,+∞)C.[a ,1]D.[,] 答案:C二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填入答题卡中............) 11.设,x y ∈R ,向量(,1),(1,),(2,4)a x b y c ===-且c b c a //,⊥+=答案:因为c b c a //,⊥,所以有042=-x 且042=+y ,解得2=x ,2-=y ,即)2,1(),1,2(-==b a ,所以)1,3(-=+b a10=+,12.计算45tan 2sin216log )001.0(3log 12312++--+-π= .答案:213.函数|)3cos()23cos(|x x y --=ππ最小正周期是 . 答案:π14.设,11)(xxx f -+=又记:,,2,1)),(()(),()(11 ===+k x f f x f x f x f k k 则=)2012(2012f答案:201215.以下结论正确的有 (写出所有正确结论的序号)①函数xy 1=在()()+∞∞-,00, 上是减函数;②对于函数()12+-=x x f ,当21x x ≠时,都有()()⎪⎭⎫ ⎝⎛+<+222121x x f x f x f ;③已知幂函数的图象过点⎪⎪⎭⎫⎝⎛532,2,则当1>x 时,该函数的图象始终在直线x y =的下方; ④奇函数的图像必过坐标原点;⑤函数)(x f 对任意实数y x ,,都有,1)()()(-+=+y f x f y x f 且当,1)(0<<x f x 时,则)(x f 在R 上为增函数。
(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。
(人教A版)高中数学必修一(全册)课时练习+单元测试卷汇总第1课时集合的含义第2课时集合的表示(2)当M中只含两个元素时, 其元素只能是x和8-x,所以元素个数为2的所有的集合M为{0,8}, {1,7}, {2,6}, {3,5}.(3)满足条件的集合M是由集合{4}, {0,8}, {1,7}, {2,6}, {3,5}中的元素组成, 它包括以下情况:①{4}, {0,8}, {1,7}, {2,6}, {3,5}, 共5个;②{4,0,8}, {4,1,7}, {4,2,6}, {4,3,5}, {0,8,1,7}, {0,8,2,6}, {0,8,3,5}, {1,7,2,6}, {1,7,3,5}, {2,6,3,5}, 共10个;③{4,0,8,1,7}, {4,0,8,2,6}, {4,0,8,3,5}, {4,1,7,2,6}, {4,1,7,3,5}, {4,2,6,3,5}, {0,8,1,7,2,6}, {0,8,1,7,3,5}, {1,7,2,6,3,5}, {0,8,2,6,3,5}, 共10个;④{4,0,8,1,7,2,6}, {4,0,8,1,7,3,5}, {4,0,8,2,6,3,5}, {4,1,7,2,6,3,5}, {0,8,1,7,2,6,3,5}, 共5个;⑤{4,0,8,1,7,2,6,3,5}, 共1个.于是满足题设条件的集合M共有5+10+10+5+1=31(个).A BB A且空集的子集只有一个A{3,4,9},A⊆B A=BA B A BZ), 当A B答案:D解析:因为N ={x |x ≤k }, 又M ={x |-1≤x <2}, 所以当M ⊆N 时, k ≥2.6.已知集合P ={x |x 2=1}, 集合Q ={x |ax =1}, 若Q ⊆P , 则a 的值为( ) A .1 B .-1C .1或-1D .0,1或-1 答案:D解析:P ={-1,1}, 当a =0时, Q =∅, 当a ≠0时, Q ={x |x =1a }, ∵Q ⊆P , ∴a =0或a =±1.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.用适当的符号填空. (1)0________{x |x 2=0};(2)∅________{x ∈R |x 2+1=0}; (3){0,1}________N ;(4){0}________{x |x 2=x };(5){2,1}________{x |x 2-3x +2=0}. 答案:(1)∈ (2)= (3) (4) (5)=8.已知集合P ={x |0<x -a ≤2}, Q ={x |-3<x ≤4}, 若P ⊆Q , 则a 的取值范围是________.答案:{a |-3≤a ≤2}解析:依题意, 知P ={x |a <x ≤a +2}, 又Q ={x |-3<x ≤4}, 若P ⊆Q , 则⎩⎪⎨⎪⎧a ≥-3a +2≤4, 解得-3≤a ≤2.9.已知集合M ={-1,3,2m -1}, 集合N ={3, m 2}, 若N ⊆M , 则实数m =________. 答案:1解析:依题意, 知当N ⊆M 时, 只能有m 2=2m -1, 解得m =1, 经检验知满足题意. 三、解答题(本大题共6小题, 共45分)10.(5分)以下各组中两个对象是什么关系, 用适当的符号表示出来: (1)0与{0}; (2)0与∅; (3)∅与{0};(4){0,1}与{(0,1)}; (5){(a , b )}与{(b , a )}. 解:(1)0∈{0}; (2)0∉∅(3)∅与{0}都是集合, 两者的关系是“包含与不包含”的关系, 所以∅{0}; (4){0,1}是含两个无素0,1的集合;而{(0,1)}是以有序数对为元素的集合, 它只含一个元素.所以{0,1}⊆{(0,1)};且{0,1}⊉{(0,1)};(5)当a =b 时, {(a , b )}={(b , a )};当a ≠b 时, {(a , b )} ⊆{(b , a )}, 且{(a , b )}⊉{(b , a )}. 11.(13分)设集合A ={x , x 2, xy }, 集合B ={1, x , y }, 且集合A 与集合B 相等, 求实数x 、y 的值.解:由题意得⎩⎪⎨⎪⎧ x 2=1,xy =y ,①或⎩⎪⎨⎪⎧x 2=y ,xy =1.②解①, 得⎩⎪⎨⎪⎧ x =1,y ∈R ,或⎩⎪⎨⎪⎧ x =-1,y =0.经检验⎩⎪⎨⎪⎧ x =1,y ∈R ,不合题意, 舍去, 则⎩⎪⎨⎪⎧x =-1,y =0.解②, 得⎩⎪⎨⎪⎧x =1,y =1.经检验⎩⎪⎨⎪⎧x =1,y =1,不合题意, 舍去.∅∅12.(9分)已知M ={(x , y )|y =x 2+2x +5}, N ={(x , y )|y =ax +1}. (1)若M ∩N 有两个元素, 求实数a 的取值范围;(2)若M ∩N 至多有一个元素, 求实数a 的取值范围.解:(1)因为M ∩N 有两个元素, 所以方程组⎩⎪⎨⎪⎧ y =x 2+2x +5y =ax +1有两组解,即一元二次方程x 2+(2-a )x +4=0有两个不等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12>0,结合二次函数y =a 2-4a -12的图象, 可得a >6或a <-2. 所以实数a 的取值范围为{a |a >6或a <-2}.(2)因为M ∩N 至多有一个元素, 所以方程组⎩⎪⎨⎪⎧y =x 2+2x +5y =ax +1无解或只有一组解,即一元二次方程x 2+(2-a )x +4=0无实数根或有两个相等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12≤0,结合二次函数y =a 2-4a -12的图象, 可得-2≤a ≤6. 所以实数a 的取值范围为{a |-2≤a ≤6}.能力提升13.(5分)对于集合A , B , 我们把集合{x |x ∈A , 且x ∉B }叫做集合A 与B 的差集, 记作A -B .若A ={1,2,3,4}, B ={3,4,5,6}, 则A -B =________.答案:{1,2}解:A -B ={x |x ∈A 且x ∉B } ={1,2,3,4}-{3,4,5,6} = {1,2 }.14.(13分)已知集合A ={x |x 2-ax +a 2-19=0}, 集合B ={x |x 2-5x +6=0}, 是否存在实数a , 使得集合A , B 同时满足下列三个条件?①A ≠B ;②A ∪B =B ;③∅ (A ∩B ).若存在, 求出这样的实数a 的值;若不存在, 说明理由.解:由已知条件可得B ={2,3}, 因为A ∪B =B , 且A ≠B , 所以A ⊆B , 又A ≠∅, 所以A ={2}或A ={3}.当A ={2}时, 将2代入A 中方程, 得a 2-2a -15=0, 所以a =-3或a =5, 但此时集合A 分别为{2, -5}和{2,3}, 与A ={2}矛盾.所以a ≠-3, 且a ≠5.当A ={3}时, 同上也能导出矛盾.综上所述, 满足题设要求的实数a 不存在.第5课时 补集1.已知全集U={0,1,3,5,6,8}, 集合A={1,5,8}, B={2}, 则集合(∁U A)∪B=()A.{0,2,3,6} B.{0,3,6}C.{1,2,5,8} D.∅答案:A解析:依题意, 知∁U A={0,3,6}, 又B={2}, 所以(∁U A)∪B={0,2,3,6}.故选A.2.设集合U={1,2,3,4,5}, A={1,3,5}, B={2,3,5}, 则∁U(A∩B)等于()A.{1,2,4} B.{4}C.{3,5} D.{∅}答案:A解析:易知:A∩B={3,5}, 则∁U(A∩B)={1,2,4}, 故选A.3.设全集U={1,2,3,4,5,6,7}, 集合A={1,3,5,7}, B={3,5}, 则下列各式正确的是() A.U=A∪B B.U=(∁U A)∪BC.U=A∪(∁U B) D.U=(∁U A)∪(∁U B)答案:C解析:∵∁U B={1,2,4,6,7},∴A∪(∁U B)={1,2,3,4,5,6,7}=U.故选C.4.已知M, N为集合I的非空真子集, 且M, N不相等, 若N∩(∁I M)=∅, 则M∪N=() A.M B.NC.I D.∅答案:A解析:由N∩(∁I M)=∅, 可知N与∁I M没有公共元素, 则N⊆M, 又M≠N, 所以N M, 所以M∪N=M.故选A.5.已知集合A={x|x<a}, B={x|1<x<2}, 且A∪(∁R B)=R, 则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}答案:C解析:由于A∪(∁R B)=R, 则B⊆A, 可知a≥2.故选C.6.如图所示, I是全集, M, P, S是I的3个子集, 则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S答案:C解析:阴影部分是M与P的公共部分, 且在S的外部, 故选C.7.设集合M ={3,4,7,9}, N ={4,5,7,8,9}, 全集U =M ∪N , 则集合∁U (M ∩N )中的元素共有________个.答案:3解析:因为U =M ∪N ={3,4,5,7,8,9}, M ∩N ={4,7,9}, 则∁U (M ∩N )={3,5,8}, 可知其中的元素有3个.8.已知集合A ={x |-2≤x <3}, B ={x |x <-1}, 则A ∩(∁R B )=________. 答案:{x |-1≤x <3} 解析:因为B ={x |x <-1}, 则∁R B ={x |x ≥-1}, 所以A ∩(∁R B )={x |-2≤x <3}∩{x |x ≥-1}={x |-1≤x <3}.9.高一(1)班共有学生50人, 其中参加诗歌鉴赏兴趣小组的有30人, 参加书法练习兴趣小组的有26人, 同时参加两个兴趣小组的有15人, 则两个兴趣小组都没有参加的学生有________人.答案:9解析:设参加诗歌鉴赏兴趣小组的学生组成集合A , 参加书法练习兴趣小组的学生组成集合B , 如图所示, 依题意card(A )=30, card(B )=26, card(A ∩B )=15, 则card(A ∪B )=30+26-15=41.所以两个兴趣小组都没有参加的学生有50-41=9(人).三、解答题(本大题共4小题, 共45分)10.(12分)已知全集U ={3, a 2-3a -2,2}, A ={3, |a -1|}, ∁U A ={-2}, 求实数a 的值. 解:因为A ∪(∁U A )=U ,所以{3, -2, |a -1|}={3, a 2-3a -2,2},从而⎩⎪⎨⎪⎧a 2-3a -2=-2|a -1|=2, 解得a =3.11.(13分)已知全集U ={x |x ≤4}, 集合A ={x |-2<x <3}, B ={x |-3≤x ≤2}. (1)求(∁U A )∪B ; (2)求A ∩(∁U B ).解:易知∁U A ={x |x ≤-2或3≤x ≤4}, ∁U B ={x |x <-3或2<x ≤4}. 则(1)(∁U A )∪B ={x |x ≤2或3≤x ≤4}. (2)A ∩(∁U B )={x |2<x <3}.能力提升12.(5分)已知全集U ={1,2,3,4,5}, A ={1,5}, B ∁U A , 则集合B 的个数是( ) A .5 B .6 C .7 D .8B∁A.M=N B.M⊆NC.M⊇N D.M, N无公共元素答案:D解析:因为M={(x, y)|(x+3)2+(y-1)2=0}={(-3,1)}是点集, 而N={-3,1}是数集, 所以两个集合没有公共元素, 故选D.6.已知全集U=R, 集合A={x|1<x≤3}, B={x|x>2}, 则A∩(∁U B)等于()A.{x|1<x≤2} B.{x|1≤x<2}C.{x|1≤x≤2} D.{x|1≤x≤3}答案:A解析:U=R, ∴∁U B={x|x≤2}, A∩∁U B={x|1<x≤3}∩{x|x≤2}={x|1<x≤2}.选A.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.已知集合U=R, A={x|-2<x≤5}, B={x|4≤x<6}, 则∁U(A∪B)=________.答案:{x|x≤-2或x≥6}解析:(A∪B)={x|-2<x<6}又U=R, 所以可得∁U(A∪B)={x|x≤-2或x≥6}.8.如图所示, 阴影部分表示的集合为________.答案:∁U(A∪B)∪(A∩B)解析:阴影部分有两类:(1)∁U(A∪B);(2)A∩B.9.设集合M={x|x>1, x∈R}, N={y|y=2x2, x∈R}, P={(x, y)|y=x-1, x∈R, y∈R}, 则(∁R M)∩N=________, M∩P=________.答案:{x|0≤x≤1}∅解析:因为M={x|x>1, x∈R}, 所以∁R M={x|x≤1, x∈R}, 又N={y|y=2x2, x∈R}={y|y≥0}, 所以(∁R M)∩N={x|0≤x≤1}.因为M={x|x>1, x∈R}表达数集, 而P={(x, y)|y=x -1, x∈R, y∈R}表示点集, 所以M∩P=∅.三、解答题(本大题共4小题, 共45分)10.(12分)某班有50名学生, 有36名同学参加学校组织的数学竞赛, 有23名同学参加物理竞赛, 有3名学生两科竞赛均未参加, 问该班有多少同学同时参加了数学、物理两科竞赛?解:全集为U, 其中含有50名学生, 设集合A表示参加数学竞赛的学生, B表示参加物理竞赛的学生, 则U中元素个数为50, A中元素个数为36, B中元素个数为23, 全集中A、B 之外的学生有3名, 设数学、物理均参加的学生为x名, 则有(36-x)+(23-x)+x+3=50, 解得x=12.所以, 本班有12名学生同时参加了数学、物理两科竞赛.11.(13分)已知集合A={x|2<x<7}, B={x|2<x<10}, C={x|5-a<x<a}.(1)求A∪B, (∁R A)∩B;(2)若C⊆B, 求实数a的取值范围.={x|∅满足题设条件, 易知A BA B∅第7课时函数的有关概念第9课时映射与分段函数答案:B解析:因为|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x (x ≤0或x ≥2),-x 2+2x (0<x <2),所以所求的图象为B 选项.5.设集合A ={a , b }, B ={0,1}, 从A 到B 的映射共有______个( )A .2B .3C .4D .5 答案:C解析:如图:(2)y =x 2-2|x |-1=⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图所示.11.(13分)已知函数f (x )=⎩⎪⎨⎪⎧-2x +1,x <1x 2-2x ,x ≥1.(1)试比较f (f (-3))与f (f (3))的大小;(2)画出函数f (x )的图象; (3)若f (x )=1, 求x 的值.解:(1)因为-3<1, 所以f (-3)=-2×(-3)+1=7, 又因为7>1, 所以f (f (-3))=f (7)=72-2×7=35. 因为3>1, 所以f (3)=32-2×3=3, 所以f (f (3))=3. 所以f (f (-3))>f (f (3)).(2)函数图象如图实线部分所示.而f(x1)<0, f(x2)<0, ∴f(x1)f(x2)>0. ∴F(x2)-F(x1)<0, 即F(x2)<F(x1).∴F(x)在(0, +∞)上为减函数.。
高一数学(必修1·人教A版)学业水平测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 已知集合A={x|x2-5x+6≤0},集合B={x||2x-1|>3},则集合A∩B=( )A. {x|2≤x≤3}B. {x|2≤x<3}C. {x|2<x≤3}D. {x|-1<x<3} 2.下列四个图形中,不是以x为自变量的函数的图像的是()3.若偶函数f(x)在(-∞,1]上是增函数,则下列关系式中成立的是()A.f(2) <f(-32)<f(-1) B.f(-1) <f(-32)<f(2)C.f(2)<f(-1)< f(-32) D.f(-32)<f(-1)<f(2)4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984f(1.375)=-0.260 f(1.4375)=0.162 f(1.40625)=-0.054那么方程x3+x2-2x-2=0的一个近似解(精确到0.1)为()A. 1.2B. 1.3C. 1.4D. 1.55. 下列命题中,正确的是()A.当α=0时,函数y=αx的图像是一条直线;B.幂函数的图像都过点(0,0)和(1,1);C.若幂函数y=x α为奇函数,则y=αx是定义域上的增函数;D.幂函数的图像不可能出现在第四象限.6. 某商店某种商品进货价为每件40元,当售价为50元时,一个月能卖出500件.通过市场调查发现,若每件商品的单价每提高1元,则该商品一个月的销售量会减少10件.商店为使销售商品的月利润最高,应将该商品每件定价为( )A .70元B .65元C .60元D .55元 7.函数⎩⎨⎧≥<+-=)0()0(3)(x a x a x x f x(a>0且a ≠1)是R 上的减函数,则a 的取值范围是( )A. (0,1)B. [13 ,1 )C.(0, 13 ]D.(0, 23]8.已知奇函数f(x)对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f(x 1)-f(x 2))>0,则一定正确的是( )A.f(4)>f(-6)B.f(-4)<f(-6)C.f(-4)>f(-6)D.f(4)<f(-6) 9.定义两种运算:a ⊕b=a 2-b 2 ,a ⊙b=(a-b)2,则f(x)=2⊕x 2-(x ⊙2) 是 ( )A.奇函数B. 偶函数C. 既奇又偶函数D.非奇非偶函数 10.函数f(x)=-3x 2+bx+c 对任意的实数x 都有f(2+x)=f(2-x),则( )A.f(2)<f(0)<f(6)B. f(6)<f(0)<f(2)C. f(6)<f(2)<f(0)D. f(0)<f(2)<f(6) 11. 已知函数f(x)=|lgx|-(12)x有两个零点x 1,x 2,则有( )A.x 1x 2<0B. x 1x 2=1C.x 1x 2>1D. 0<x 1x 2<112.已知定义在R 上的函数()y f x =满足以下三个条件:①对于任意的x R ∈,都有(4)()f x f x +=;②对于任意的12,x x R ∈,且1202x x ≤<≤,都有12()()f x f x <;③函数(2)y f x =+的图象关于y 轴对称,则下列结论中正确的是 A .(4.5)(7)(6.5)f f f << B .(7)(4.5)(6.5)f f f << C .(7)(6.5)(4.5)f f f << D .(4.5)(6.5)(7)f f f <<第Ⅱ卷(非选择题 90分)注意事项: 1.第Ⅱ卷用0.5mm 黑色签字笔直接答在试卷的答题卡上. 2.答卷前将密封线内项目填写清楚.二、填空题(每题4分,共16分.把答案填在答题纸的横线........上)13.已知函数f(x)是R 上的奇函数,且x ∈(-∞,0)时,f(x)=-xlg(2-x),则函数 f(x)=14.已知函数⎩⎨⎧≤>=)0(3)0(log )(2x x x x f x ,那么f[f(14 )]= .15.抽气机每次抽出容器内空气的60%,要使容器内剩下的空气少于原来的0.1%,则至少要抽 次.(参考数据:lg2=0.3010,lg3=0.4771) 16. 给出下列四个命题:①函数||x y =与函数2)(x y =表示同一个函数; ②奇函数的图像一定通过直角坐标系的原点; ③函数2)1(3-=x y 的图像可由23x y =的图像向右平移1个单位得到;④若函数)(x f 的定义域为]2,0[,则函数)2(x f 的定义域为]4,0[; ⑤设函数()x f 是在区间[]b a ,上图像连续的函数,且()()0<⋅b f a f ,则方程()0=x f 在区间[]b a ,上至少有一实根.其中正确命题的序号是三、解答题:(本题共6个小题,共74分,解答应写出文字说明,证明过程和演算步骤) 17.(本题满分12分)设A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(1)若A ∪B =A ∩B ,求实数a 的值;(2)若A ∩B ≠∅,且A ∩C =∅,求实数a 的值; (3)若A ∩B =A ∩C ≠∅,求实数a 的值.18.(本题满分12分)已知函数f (x )=x 2+ax(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性.评卷人 得分评卷人 得分评卷人 得分19.(本题满分12分)已知函数[]2()22,5,5f x x ax x =++∈-(1)当a=-1时,求函数的最大值和最小值;(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数20. (本题满分12分)设21()12x xa f x ∙-=+是R 上的奇函数. (1)求实数a 的值;(2)判定()f x 在R 上的单调性.21.(本题满分12分)设函数kx g x x x f =--=)(|,54|)(2(1)在区间]6,2[-上画出函数)(x f 的图像; (2)若函数)(x f 与)(x g 有3个交点,求k 的值; (3)试分析函数k x x x ---=|54|)(2ϕ的零点个数.22.(本题满分14分)某厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产100台,需要增加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售的收入函数为R (x )=5x -x 22(0≤x ≤5),其中x 是产品售出的数量(单位:百台).(1)把利润表示为年产量的函数;(2)年产量是多少时,工厂所得利润最大? (3)年产量是多少时,工厂才不亏本?评卷人得分评卷人 得分评卷人 得分评卷人 得分高一数学(必修1·人教A 版)学业水平测试题号 填空题计算题 总分13∽1617 18 19 20 2122分数二、(共16分,请将答案填在相应的横线上)13 14 15 16 三、(共76分,请将解答过程和结果写在相应的位置)评卷人得分17.(12分) 县区 学校 年级 班级 姓名 考号评卷人得分18.(12分)评卷人得分19.(12分)评卷人得分20.(12分)评卷人得分21.(12分)评卷人得分22.(14分)高一数学(必修1·人教A 版)学业水平测试参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CCACDABCABDA1.C 提示:据题意知A={x|2≤x ≤3},B={x|x>2或x<-1},结合数轴得:A ∩B={x|2<x ≤3}.2.C 提示:C 不符合函数的定义.3.A 提示:∵f(x)为偶函数,∴f(-2)=f(2),又因为f(x)在(-∞,1]上是增函数,所以f(2)=f(-2)<f(-32)<f(-1),故选A.4.C 提示:f(1.4375) f(1.40625)<0,且|1.4375-1.40625|<0.1.5. D 提示:当α=0时,函数y=αx 的图像是两条射线;y=αx (a<0)不过点(0,0);y=x -1是奇函数,但在定义域上不是增函数.故选D.6.A 提示:设该商品每件单价提高x 元,销售该商品的月利润为y 元,则y =(10+x)(500-10x)=-10x 2+400x +5 000=-10(x -20)2+9 000 ∴当x =20时,y max =9 000,此时每件定价为50+20=70元,故选A.7.B 提示:分段函数为减函数的条件为:⎩⎨⎧><<0310aa a ,解得13≤a<1. 8.C 提示:(x 1-x 2)(f(x 1)-f(x 2))>0恒成立可知,函数f(x)在(0,+∞)为增函数,又因为f(x)为奇函数,f(-4)=-f(4),f(-6)=-f(6),∵f(4)<f(6),∴f(-4)>f(-6). 9.A 提示:2⊕x=4-x 2,x ⊙2=(x-2)2,所以f(x)=4-x 22-(x-2)2错误!未定义书签。
高中数学必修模块一班级: 姓名:第一单元 集合(一课时)一、基础知识填空1、集合的含义: 。
2、集合的表示方法: 、 、 。
3、常见数集及表示:自然数集也称非负整数集记为 ;正整数集记为 ;整数集记为 ;有理数集记为 ;实数集记为 。
4、集合元素的特性: 、 、 。
5、集合与元素的关系: 、 。
6、集合的相等: 。
7、子集的概念: 。
8、真子集的概念: 。
9、空集: 。
10、集合的运算:(1)并集: 。
(2)交集: 。
(3)补集: 。
(4)全集: 。
11、集合的运算性质:(1)A A = ;=A A (2)=Φ A ;=Φ A (3)=⊆B A B A 则 ;=⊆B A B A 则 二、标杆题1、试分别用列举法和描述法表示下列集合: (1)方程220x -=的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.2、写出集合{}a,b 的所有子集,并指出哪些是它的真子集.3、用适当的符号填空:(){}(){}{}{}22100;20,1;(3)2,1320x xN x xx =-+=.{}{}()()()()R R R R 4A 37,210,A B A B C A B C A B C A B A C B .x x B x x =≤<=<< 、已知集合求,,,,,三、巩固练习{}{}R A 1,3,5,9,B 0,3,6,9,12,A C B .=== 1、已知集合,7求{}{}A 1,B ,A B R a .x x x x a =≤=≥== 2、已知集合且,求实数的取值范围是{}{}()()()()()R R R A 35,33,A C A B RA B R C C A B RR R x x x B x x B C C D A BR=<>=-<<==== 4、设全集,或则第二单元 函数及其表示(一课时)一、基础知识填空1、函数的概念:设A 、B 是非空数集,如果按照某种确定的 ,使对于集合A 中的 ,在集合B 中都有 和它对应,那么就称 为从集合A 到集合B 的一个函数,记作 .其中x 叫做 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 值叫做 ,函数值的集合(){}f x x A ∈叫做函数的 .值域是集合B 的 。
Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。
秘密★启用前2010学年度上学期广州市高中二年级学生学业水平测试数 学(必修)本试卷共4页. 满分150分. 考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.4.本次考试不允许使用计算器.5.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数y =A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 20y -=的倾斜角为 A .6π B .3π C .23π D .56π3.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则()U A B = ð A .{}2,4,6,8 B .{}1,3,7 C .{}4,8 D .{}2,64.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛 得分的情况用如图1平均数分别为A .14、12B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为图1A .4πB .14π-C .8πD .18π-6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于 A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示 (单位:cm ),则该几何体的表面积...为 A .212cm π B. 215cm πC. 224c m π D. 236cm π8.若23x <<,12xP ⎛⎫= ⎪⎝⎭,2log Q x =,R则P ,Q ,R 的大小关系是A .Q P R <<B .Q R P <<C .P R Q <<D .P Q R << 9.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像 如图3所示,则函数)(x f 的解析式是A .10()2sin 116f x x π⎛⎫=+⎪⎝⎭B .10()2sin 116f x x π⎛⎫=-⎪⎝⎭C .()2sin 26f x x π⎛⎫=+⎪⎝⎭ D .()2sin 26f x x π⎛⎫=-⎪⎝⎭10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是最小角的2倍,则这个三角形最小角的余弦值为主视图6侧视图图2图3A.8 B .34 C.4D .18二、填空题:本大题共4小题,每小题5分,满分20分. 11.圆心为点()0,2-,且过点()14,的圆的方程为 . 12.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3,则输出的()h x 的值为 .13.若函数()()()2213f x a x a x =-+-+是偶函数,则函数()f x 的单调递减区间为 .14.设不等式组0,02036x y x y x y -+-⎧⎪-+⎨⎪⎩≤≥≥,表示的平面区域为D ,若直线0kx y k -+=上存在区域D 上的点,则k 的取值范围是 .三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)在△ABC 中,角A ,B ,C 成等差数列. (1)求角B 的大小;(2)若()sin A B +=sin A 的值. 16.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查(1)求x ,y 的值;图4(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率. 17.(本小题满分14分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点. (1)求证:PB 平面ACE ; (2)若四面体E ACD -的体积为23,求AB 的长. 18.(本小题满分14分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和. 19.(本小题满分14分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值. 20.(本小题满分14分)已知函数()213f x ax x a =+-+()a ∈R 在区间[]1,1-上有零点,求实数a 的取值范围.2010学年度广州市高中二年级学生学业水平测试数学试题参考答案及评分标准5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.11.()22225x y ++=(或224210x y y ++-=) 12.913.()0,+∞(或[)0,+∞) 14.122⎡⎤⎢⎥⎣⎦,三、解答题15.本小题主要考查解三角形、三角恒等变换等基础知识,考查运算求解能力.满分12分. 解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+.解得3B π=.(2)方法1:由()sin 2A B +=()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=⨯+=.方法2:因为A ,B 是△ABC 的内角,且()sin 2A B +=, 所以4A B π+=或34A B π+=.由(1)知3B π=,所以34A B π+=,即512A π=.以下同方法1.方法3:由(1)知3B π=,所以sin 32A π⎛⎫+= ⎪⎝⎭即sin coscos sin332A A ππ+=.即1sin 2A A +=.sin A A .即223cos 2sin A A A =-+. 因为22cos 1sin A A =-,所以()2231sin 2sin A A A -=-+.即24sin 10A A --=.解得sin 4A =. 因为角A 是△ABC 的内角,所以sin 0A >.故sin A =.16.本小题主要考查统计与概率等基础知识,考查数据处理能力.满分12分. 解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.17.本小题主要考查直线与平面的位置关系、体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力.满分14分.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点.因为点E 是PD 的中点,所以EO 是△DPB 的中位线. 所以PB EO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB 平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EH PA . 因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x === . 解得2x =.故AB 的长为2.18.本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力和推理论证能力.满分14分. 解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++ , ① 即 111357232122481622n n n n n T ---=++++++ , ② ①-②,得2111112111224822n n nn T --=++++++-11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.19.本小题主要考查直线与圆、基本不等式等基础知识,考查运算求解能力.满分14分. 解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =,,所以21AB x x =-=所以12S AB b == 22422b b +-=≤.当且仅当b =b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d =.因为圆的半径为2R =,所以2AB ===.于是241121k S AB d k =⨯===+,即2410k k -+=,解得2k =故实数k的值为2+22-2-20.本小题主要考查二次函数、函数的零点等基础知识,考查运算求解能力,以及分类讨论的数学思想方法.满分14分. 解法1:当0a =时,()1f x x =-,令()0f x =,得1x =,是区间[]1,1-上的零点.当0a ≠时,函数()f x 在区间[]1,1-上有零点分为三种情况: ①方程()0f x =在区间[]1,1-上有重根, 令()14130a a ∆=--+=,解得16a =-或12a =. 当16a =-时,令()0f x =,得3x =,不是区间[]1,1-上的零点. 当12a =时,令()0f x =,得1x =-,是区间[]1,1-上的零点. ②若函数()y f x =在区间[]1,1-上只有一个零点,但不是()0f x =的重根, 令()()()114420f f a a -=-≤,解得102a <≤. ③若函数()y f x =在区间[]1,1-上有两个零点,则()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥<-<->++-=∆>.01-,01,1211,01412,02f f a a a a 或()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤<-<->++-=∆<.01-,01,1211,01412,02f f a a a a 解得a ∈∅.综上可知,实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦.解法2:当0a =时,()1f x x =-,令()0f x =,得1x =,是区间[]1,1-上的零点.当0a ≠时,()213f x ax x a =+-+在区间[]1,1-上有零点⇔()231x a x +=-在区间[]1,1-上有解⇔213xa x -=+在区间[]1,1-上有解. 问题转化为求函数213xy x -=+在区间[]1,1-上的值域.设1t x =-,由[]1,1x ∈-,得[]0,2t ∈.且()2013ty t =≥-+.而()214132ty t t t==-++-. 设()4g t t t=+,可以证明当(]0,2t ∈时,()g t 单调递减. 事实上,设1202t t <<≤,则()()()()121212121212444t t t t g t g t t t t t t t --⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭,由1202t t <<≤,得120t t -<,1204t t <<,即()()120g t g t ->. 所以()g t 在(]0,2t ∈上单调递减. 故()()24g t g ≥=. 所以()1122y g t =≤-.故实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦.。
第1页 共12页 ◎ 第2页 共12页2014-2015学年度高中数学学业水平测试模拟试卷(一)考试范围:必修1-5;考试时间:100分钟第I 卷(选择题)一、选择题(本大题共17个小题,每小题3分,共51分。
在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置上填涂)。
1.如果33log log 4mn +=,那么n m +的最小值是()A .4B .34C .9D .182.若0ab >,则下列四个等式: ①()lg lg lg ab a b =+②lg lg lg a a b b ⎛⎫=-⎪⎝⎭③21lg lg 2aa b b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭④()1lg log 10ab ab =中正确等式的符号是( )A .①②③④B .①②C .③④D .③3.如图为()()()πϕωϕω<>>+=,0,0sin A x A x f 的图象的一段,则其解析式为( )A .3x π⎛⎫-⎪⎝⎭B .223x π⎛⎫- ⎪⎝⎭C .23x π⎛⎫+ ⎪⎝⎭D . 23x π⎛⎫- ⎪⎝⎭4.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于 ( ) A .{0,1,2,6,8} B .{3,7,8} C .{1,3,7,8} D .{1,3,6,7,8}5.数列-1,43,-95,167,…的一个通项公式是( ) A .2(1)21nn n a n =-⋅- B .(1)(1)21n n n n a n +=-⋅-C .2(1)21nn n a n =-⋅+ D .22(1)21n n n n a n -=-⋅- 6.下列表示中,正确的是 ( )A. }0{=ΦB. }0{∈ΦC. }0{⊆ΦD.Φ∈0 7.函数()sin cos f x x x =最小值是( ) A .-1 B .12-C .12 D .18.不等式211x ≥-的解集为( ) A. [)3,+∞ B. (],3-∞ C. [)()3,,1+∞-∞ D. (]1,39.设232555322555a b c ===(),(,(),则a ,b ,c 的大小关系是( ) (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a10.函数cos sin y x x =-的图象可由函数y x =的图象( ) (A )向左4π平移个长度单位 (B )向右4π平移个长度单位 (C )向左34π平移个长度单位 (D )向右34π平移个长度单位11.已知集合U={x ∈N|0<x≤8},A={2,3,4,5},B={3,5,7},则如图所示的韦恩图中阴影部分表示的集合为( )A .{7}B .{2,4}C .{1,6,8}D .{2,3,4,5,7}12.设变量x 、y 满足约束条件0220x x y x y ≥-≥--≤, 则32z x y =-的最大值为 ( )第3页 共12页 ◎ 第4页 共12页A . 0B .2 C . 4 D . 6 13.若直线mx+y -1=0与直线x-2y +3=0平行,则m 的值为 A .21B .21-C .2D.2-14.掷两枚骰子,出现点数之和为3的概率是( ) A .41 B .91 C .121 D .18115.△ABC 中,|AB|=10,|AC|=15,∠BAC =3π,点D 是边AB 的中点,点E 在直线AC 上,且3AC AE =,直线CD与BE 相交于点P ,则线段AP 的长为( ) 16.要得到函数cos 2y x =,只需将函数sin(2)3y x π=-的图象A.向右平移512π个单位B.向右平移3π个单位C.向左平移512π个单位D.向左平移3π个单位17.(2分)圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为( ) A. B.C.D.2第II 卷(非选择题)二、填空题:本大题共5个小题,每小题3分,共15分。
高中同步测试卷 (三 )单元检测函数及其表示 (B)(时间: 120 分钟,满分: 150 分)一、选择题 (本大题共 12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.以下说法:①定义域同样,值域也同样的两个函数相等;②定义域同样,对应关系一致的两个函数相等;③值域同样,对应关系一致的两个函数相等;④只需对应关系一致,两个函数就相等;⑤只需值域不一样,两个函数就不相等.此中正确的个数为 ()A . 0B .1C . 2D . 3|2- x| - x - 3 02.函数 f(x) =2 的定义域为 ()x + 2A. -2,3B .( -2,+ ∞) 233 3C. 2,+ ∞D . -2,2 ∪2,+ ∞3.已知会合 A = {1 ,2,m} 与会合 B = {4 ,7,13} ,若 f : x →y= 3x +1 是从 A 到 B 的映照,则 m 的值为 ()A . 22B .8C . 7D . 44.如下图,能够作为函数图象的是 ( )5.已知函数 f(x) =x 2 +1( x<2 )7=(),则 ff ( x - 1)( x ≥2) 229 9A. 4B .413 53 C. 4D . 46.已知 f(x 2 -1)的定义域为 [ - 3, 3],则 f(x) 的定义域为 ( )A . [- 2, 2]B .[0,2]C . [ -1, 2]D .[- 3, 3]1 217.已知 x ≠0,函数 f(x) 知足 f x - x = x + x 2,则 f(x) 的表达式为 ()A . f(x) =x + 1(x ≠ 0) B .f(x) = x 2+ 2xC . f(x) = x 2(x ≠ 0)D . f(x) = x - 12x (x ≠ 0)8.小明和小华进行自行车竞赛( 比胜过程中,两人平均速行驶 ),刚开始小华当先,但重点时辰自行车掉了链子,小明赶超小华,小华修睦车后,急起直追,但为时已晚,小明还是先到了终点.假如用s 1,s 2 分别表示小明和小华所行走的行程, t 表示时间,则以下图中与该事件切合的是 ()1, x ≥09.已知 f(x) = ,则不等式 x +(x +2)f(x + 2) ≤5的解集是 ()- 1, x<033A . (- ∞, 2]B .[ -2, 2]C . ( -∞,- 2)D . (- ∞,+ ∞)10.定义在 R 上的函数 f(x) 知足 f(x + y)=f(x) + f(y) + 2xy(x ,y ∈ R), f(1) = 2,则 f( - 3)等于()A . 2B .3C . 6D . 911.设 f(x) =x - 2, x ≥ 10,则 f(5)的值为 ()f ( x +6), x<10,A . 10B .9C . 12D . 131112.若函数 y = f(x) 的值域是 2,3 ,则函数 F(x) = f(x) + f (x ) 的值域是 ()1 10 A. 2,3 B .2,35, 10 10 C.2 3D . 3,3题号 123456789101112答案二、填空题 (本大题共 4 小题,每题5 分,共 20 分.把答案填在题中横线上 )13.已知函数 f(2x +1) =3x + 2,且 f(a) =4,则 a = ________.bx + 1,此中 a , b 为非零常数,且 ab ≠2,若 f(x) · f 1= k ,k 为常数,14.已知 f(x) = 2x +ax则 k 的值为 ________.15.某在校大学生提早创业,想开一家服饰专卖店,经过估算,店面装饰费为10 000元,每日需要房租水电等花费100 元,受营销方法、经营信用度等因素的影响,专卖店销售1 2总收入 P 与店面经营天数 x 的关系是 P(x)=300x - x , 0≤x<300 ,2则总收益最大时店面经45 000, x ≥300,营天数是 ________.1x , x ≤ 0,16.设函数 f(x) = 2(x + |x|), g(x) = x则 f[g(x)] = ________.2, x>0,三、解答题 (本大题共6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤 )17.(本小题满分10 分 )长为l 的铁丝弯成下部为矩形、上部为半圆形的框架(如下图),若矩形底边长为2x ,求此框架围成图形的面积y 对于x 的函数.(写出定义域)1( 0<x<1 )18.(本小题满分12 分 )作出函数y=x的图象,并求其值域.x( x≥1)119.(本小题满分12 分 )已知函数y=a x+1(a<0且a为常数)在区间(-∞,1]上存心义,务实数 a 的取值范围.20. (本小题满分12 分 )已知二次函数知足f(3x + 1)= 9x2- 6x+5.(1)求 f(x) 的分析式;(2)求 f(x) 的值域.21.(本小题满分 12 分 )跟着优惠形式的多样化,“可选择性优惠”渐渐被愈来愈多的经营者采纳.一次,小马去“物美”商场购物,一块醒目的牌子吸引了他,上边说该商铺销售茶壸和茶杯,茶壸每个订价 20 元,茶杯每个订价 5 元,在所需茶壸和茶杯一次性购置的状况下,该店推出两种优惠方法:①买一送一 (即买一只茶壶送一只茶杯 );②打九折 (即按购置总价的90%付款 ).此刻小马需购置茶壸 4 个,茶杯若干个 (许多于 4 个),那么小马用哪一种优惠方法付款更省钱呢?x+ 1,x≤- 2,22.(本小题满分12 分 )已知函数f(x) =x2+2x,-2<x<2,2x- 1,x≥ 2.(1)求 f( - 5), f( -3), f f -5的值;2(2)若 f(a) = 3,务实数 a 的值;(3)若 f(m)>m(m ≤- 2 或 m≥ 2),务实数m 的取值范围.参照答案与分析1.【分析】选 C.一次函数 y = x 与 y =- x ,定义域同样,值域也同样,但对于同一个x的值1,对应元素分别为1、- 1,故①不正确;②明显正确;函数y = x 2, x ∈ {2} 与 y = x 2,x ∈ {2 ,- 2} ,值域都是{4},对应关系都是自变量 x 对应着它的平方,但两个函数不相等,故③④不正确;定义域、对应关系和值域是函数的组成因素,值域不一样,自然函数就不一样,故⑤正确.x +2>0 ,332.[导学号 02100016] 【分析】选 D.由3 - 2,得 x> - 2 且 x ≠ ,表示为会合 2 x -2≠0, 2∪ 3,+ ∞.23.【分析】选 D.由 f :x →y= 3x + 1,得 3×1+ 1=4,3× 2+ 1=7,3m + 1= 13,即 m =4.4.【分析】选 D. 函数是一对一、多对一的关系,应选 D.5.【分析】选 C.f 7= f 7-1= f 5 = f 5-1222233 2 13= f 2 =2 +1=4.6. [ 导学号 02100017]【分析】选 C.因为-3≤ x ≤ 2≤ 3.3,因此 0≤x2因此- 1≤x- 1≤2.1 21 1 27.【分析】选 B. 因为 f x - x = x + x 2= x - x+ 2.令 t = x -1x (x ≠ 0),则 t ∈ R , f(t) = t 2+ 2,因此 f(x) = x 2+ 2(x ∈R).8.【分析】选 B.小明匀速至终点,小华开始骑得快,半途修车行程未变,后又迅速骑至终点,此时小明已到终点,只有 B 切合,应选 B.9.【分析】 选 A. 当 x + 2≥0,即 x ≥- 2 时, f(x + 2)= 1.不等式可化为x ≥- 23 ? -2≤ x ≤.2x + 2≤52x< -2? x< -2,当 x +2<0 ,即 x< - 2 时, f(x +2) =- 1,不等式可化为x -( x + 2)≤53故不等式 x + (x +2)f(x + 2) ≤5的解集为 (- ∞,- 2)∪ [- 2,2]= (- ∞,32].10.【分析】选 C.令 x = y = 0,得 f(0) =0;令 x=y= 1,得 f(2) = 2f(1) + 2= 6;令 x=2, y=1,得 f(3) = f(2) + f(1) + 4= 12;令 x=3, y=- 3,得 0=f(3 -3) =f(3) + f(- 3)- 18=12+f( -3) -18,因此 f( - 3)= 6.11.[ 导学号 02100018] 【分析】选 B. 由题意得 f(5) = f(5 +6) =f(11) = 11- 2=9,应选B.11, 3,利用单一性定义知F(x) 在1, 112.【分析】选 B.令 f(x) =t ,则 F(x)= t+t,t∈2210上单一递减,在 [1,3]上单一递加,经计算得F(x) 的值域为 2,3,应选 B.t- 1,13.【分析】设 2x+ 1= t,则 x=2t- 131因此 f(t) = 3×+ 2= t+,222因为 f(a) = 4,因此3a+17 2= 4,因此 a= .23【答案】7314. [导学号 02100019]【分析】当 x≠0时,因为 f(x) =bx+1,2x+ a1b+ 1x+ b x因此 f x=2=ax+ 2,+ ax因此 f(x)1bx + 1x+ b=bx2+( b2+1) x+ b= k,f·=·2ax22x2x + a ax+ 2+( a + 4) x+2a因此 2akx2+ k(a2+ 4)x+ 2ak=bx 2+ (b2+ 1)x+ b,即 (2ak-b)x2+ [k(a 2+ 4)- (b2+ 1)]x + (2ak- b)= 0,2 2 b因此2ak- b= 0,且 k(a + 4)- (b + 1)= 0.由 2ak- b=0,得 k=,2b( a + 4)222因此-(b + 1)=0,因此 b(a + 4)- 2a(b + 1)=0,即 (ab- 2) ·(a- 2b)= 0,因为 ab≠2,因此 a-2b= 0,得 a= 2b,b b1因此 k=2a=4b=4.【答案】1 415.【分析】设总收益为L(x) ,则 L(x) =-1x2+ 200x- 10 000, 0≤ x<300 ,2-100x+ 35 000, x≥ 300,则 L(x) =-1(x- 200)2+ 10 000, 0≤x<300 ,2-100x+ 35 000, x≥ 300,当0≤x<300时,L(x) max=10 000,当 x≥300时, L(x) max= 5 000,因此总收益最大时店面经营天数是200.【答案】 200x, x>0 ,16.【分析】 f(x) =0, x≤ 0.当 x>0 时, g(x) = x2>0.则 f[g(x)] =f(x 2)= x2.当 x≤0时, g(x) = x≤0,则 f[g(x)] = f(x) = 0.x2, x>0 ,综上可得, f[g(x)] =0, x≤0.【答案】x2,x>00, x≤ 017. [导学号 02100020]︵-πx.【解】由题意知AB = 2x,CD =πx,于是 AC =l-2x2l - 2x-πx12π+ 4 2因此 y= 2x·2+2πx=-2 x + lx.2x>0 ,l又l - 2x-πx解得 0<x<.2>0 ,2+π故所求的函数为π+ 4x20<x<l. y=-2+ lx2+π18.【解】当 0<x<1 时, y=1x的图象是反比率函数图象的一部分;当x≥1时,图象为直线y=x 的一部分.函数的图象如下图.由此可知,值域为 [1,+∞).11 19.【解】要使函数 y=a x+ 1(a<0且 a 为常数 )在区间 (-∞,1]上存心义,一定有ax+ 1≥0, a<0,因此 x≤- a,即函数的定义域为(-∞,- a],因为函数在区间(-∞, 1]上存心义,因此 (-∞,1] ? ( -∞,- a],因此- a≥1,即 a≤- 1,因此 a 的取值范围是(-∞,- 1].20. [导学号 02100021]【解】(1)设f(x)=ax2+bx+c(a≠0),则 f(3x + 1)= a(3x+1)2+b(3x + 1)+ c=9ax2+ (6a+ 3b)x + a+ b+c=9x2-6x + 5.9a= 9,a= 1,比较系数,得6a+ 3b=- 6,解得b=- 4,a+ b+ c= 5,c= 8.因此 f(x) = x2- 4x+ 8.(2)因为函数f(x) 是张口向上,对称轴为x= 2 的抛物线,且极点坐标为(2, 4).因此函数图象如下图,因此函数的值域为[4,+∞).21.【解】设买茶杯x 只,付款 y 元 (x>3 ,且 x∈ N) ,则用第一种方法需付款y1= 4×20+ (x- 4) ×5=5x+ 60;用第二种方法需付款y2= (20 ×4+ 5x) ×90%=4.5x+ 72.设 d=y1- y2= 5x+ 60- (4.5x + 72)=0.5x- 12.当 d>0 时, 0.5x- 12>0,即 x>24 ;当 d=0 时, x=24;当 d<0 时, x<24.综上可知,当所购茶杯多于24 只时,方法②省钱;恰巧购置24 只时,两种方法均可;购置个数在4~ 23 之间时,方法①廉价.22.【解】 (1)由- 5∈( -∞,- 2],-3∈ (- 2,2),- 5∈ (- ∞,- 2],2 知 f( - 5)=- 5+ 1=- 4,f(- 3) =( - 3)2+ 2×(- 3)= 3- 2 3,因为 f -5 5 3 32=- + 1=- ,且- 2<- <2,222因此 f f - 53 3 23= f - = - 2 +2× -22 293 = 4-3=- 4.(2)①当 a ≤- 2 时, a + 1= 3,即 a = 2>-2,不合题意,舍去.22因此 (a -1)(a + 3)=0,得 a = 1,或 a =- 3.因为 1∈ (- 2, 2),- 3?(- 2, 2),因此 a = 1,切合题意.③当 a ≥2时, 2a - 1= 3,因此 a =2,切合题意.综合①②③,当 f(a) = 3 时, a = 1,或 a = 2.(3)因为 f(m)>m ,当 m ≤- 2 时, f(m) = m + 1>m 恒建立,故 m ≤- 2;当 m ≥2时, f(m) = 2m - 1>m ,解得 m>1. 故 m ≥2.因此, m 的取值范围是 (- ∞,- 2]∪ [2,+ ∞).。
本册综合测试题(A)(时刻:120分钟 总分值:150分)一、(本大题共12个小题,每题5分,共60分,每题给出的四个备选答案中,有且仅有一个是正确的)1.(2021~2021学年度吉林长春外国语学校高一期中测试)已知集合A ={-2,-1,0,1,2},B ={-3,-1,0,2},那么A ∩B =( )A .{-1,0,2}B .{-3,-2,-1,0,1,2}C .{0,2}D .{x |-3≤x ≤2} [答案] A[解析] A ∩B ={-2,-1,0,1,2}∩{-3,-1,0,2}={-1,0,2}.2.(2021~2021学年度江西吉安一中高一期中测试)已知集合A ={x |y =lg x },B ={x |x <1},那么A ∪B =( )A .RB .{x |0<x <1}C .∅D .{x |x >1} [答案] A[解析] ∵A ={x |y =lg x }={x |x >0},∴A ∪B =R .3.函数f (x )=3x 21-x +3x +1的概念域是( )A .(-13,+∞)B .(-13,1)C .[-13,1) D .[0,1) [答案] C[解析] 要使函数成心义,应知足⎩⎪⎨⎪⎧1-x >03x +1≥0, ∴-13≤x <1,应选C.4.设函数f (x )=⎩⎪⎨⎪⎧ 1,x >00,x =0-1,x <0,g (x )=⎩⎪⎨⎪⎧ 1,x ∈Q 0,x ∈∁R Q , 则f [g (π)]的值为( )A .1B .0C .-1D .π[答案] B [解析] g (π)=0,∴f [g (π)]=f (0)=0.5.设(x ,y )在映射f 下的象是(2x +y ,x -2y ),那么在f 下,象(2,1)的原象是( )A .(12,32) B .(1,0) C .(1,2)D .(3,2)[答案] B [解析] 由⎩⎪⎨⎪⎧ 2x +y =2x -2y =1,得⎩⎪⎨⎪⎧ x =1y =0,应选B. 6.用二分法求方程x -2lg1x =3的近似解,能够取的一个区间是( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)[答案] C [解析] 此题考查用二分法求解函数零点所在区间.设f (x )=x -2lg 1x -3=x +lg x -3,因为f (2)·f (3)=(lg2-1)×lg3<0,且函数图象在(2,3)上持续,因此能够取的一个区间是(2,3),应选C.7.函数y =(12)x 的反函数的图象为( ) [答案] D[解析] 函数y =(12)x 的反函数为y =log 12x ,应选D. 8.假设奇函数f (x )在[1,3]上为增函数且有最小值0,那么它在[-3,-1]上( )A .是减函数,有最大值0B .是减函数,有最小值0C .是增函数,有最大值0D .是增函数,有最小值0[答案] C[解析] 奇函数在对称区间上单调性相同,且图象关于原点对称,应选C.9.已知偶函数f (x )在(-∞,-2]上是增函数,那么以下关系式中成立的是( )A .f (-72)<f (-3)<f (4) B .f (-3)<f (-72)<f (4) C .f (4)<f (-3)<f (-72) D .f (4)<f (-72)<f (-3) [答案] D[解析] ∵f (x )在(-∞,-2]上是增函数,又-4<-72<-3, ∴f (4)=f (-4)<f (-72)<f (-3). 10.设函数y =x 3与y =22-x 的图象的交点为(x 0,y 0),那么x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[答案] B[解析] 令f (x )=x 3-22-x ,由题意知x 0是函数f (x )的零点,又f (1)=1-2=-1<0,f (2)=8-1=7>0,应选B.11.设a =60.5,b =0.56,c =log 60.5,那么a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .a >c >b[答案] A[解析] a =60.5>60=1,b =0.56<0,50=1,又0.56>0,∴0<0.56<1, c =log 60.5<log 61=0,∴a >b >c .12.对实数a 和b ,概念运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1b ,a -b >1,设函数f (x )=(x 2-2)⊗(x -1),x ∈R .假设函数y =f (x )-c 的图象与x 轴恰有两个公共点,那么实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1] [答案] B [解析] 依题意可得f (x )=⎩⎪⎨⎪⎧ x 2-2,-1≤x ≤2x -1,x <-1或x >2 作出其示用意如下图.由数形结合知,实数c 需有1<c ≤2或-2<c ≤-1.二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上)13.已知函数f (x +1)=3x +4,那么f (x )的解析式为________________.[答案] f (x )=3x +1[解析] 设x +1=t ,∴x =t -1,∴f (t )=3(t -1)+4=3t +1,∴f (x )=3x +1.14.3log 925+log2-1(2+1)的值为__________. [答案] 4[解析] 3 log 925+log 2-1(2+1)=3 log 35+log 2-1(2-1)-1=5-1=4.15.概念域为R 的函数y =f (x )的值域是[a ,b ],那么函数y =f (x +a )的值域是________.[答案] [a ,b ][解析] 函数f (x +a )的图象只是由f (x )的图象向左或向右平移取得,函数值y 没有转变.16.关于概念域在R 上的函数f (x ),假设实数x 0知足f (x 0)=x 0,那么称x 0是函数f (x )的一个不动点.假设函数f (x )=x 2+ax +1没有不动点,那么实数a 的取值范围是__________.[答案] (-1,3)[解析] 由题意,得方程x 2+ax +1=x ,即x 2+(a -1)x +1=0无实根,∴Δ=(a -1)2-4=a 2-2a -3<0,∴-1<a <3.三、解答题(本大题共6个小题,共74分,解许诺写出文字说明,证明进程或演算步骤)17.(本小题总分值12分)(2021~2021学年度河南信阳市高一期末测试)已知函数f (x )=log 2x -1的概念域为集合A ,函数g (x )=(12)x (-1≤x ≤0)的值域为集合B . (1)求A ∩B ;(2)假设C ={x |a ≤x ≤2a -1},且C ⊆B ,求实数a 的取值范围.[解析] (1)要使函数f (x )成心义,应知足log 2(x -1)≥0,∴x -1≥1,∴x ≥2.∴A ={x |x ≥2}.∴g (x )=(12)x (-1≤x ≤0)是减函数, ∴当x =-1时,g (x )取最大值2,当x =0时,g (x )取最小值1,∴B ={x |1≤x ≤2},∴A ∩B ={2}.(2)∵C ⊆B ,①当C =∅时知足题意,即a >2a -1,解得a <1; ②当C ≠∅时,那么有⎩⎪⎨⎪⎧a ≥12a -1≤2,解得1≤a ≤32.综上实数a 的取值范围是(-∞,32]. 18.(本小题总分值12分)设a ,b ,c 为正数,且知足a 2+b 2=c 2.(1)求证:log 2(1+b +ca )+log 2(1+a -cb )=1;(2)假设log 4(1+b +c a )=1,log 8(a +b -c )=23,求a ,b ,c 的值. [解析] (1)log 2(1+b +ca )+log 2(1+a -cb )=log 2a +b +c a+log 2a +b -c b=log 2a +b 2-c 2ab=log 2a 2+b 2-c 2+2ab ab=log 22=1.(2)由log 4(1+b +c a )=1,log 8(a +b +c )=23, 得1+b +ca =4,a +b -c =4,又a 2+b 2=c 2,整理可得⎩⎪⎨⎪⎧ b +c =3a a +b -c =4a 2+b 2=c 2,解得a =6,b =8,c =10.19.(本小题总分值12分)2020年某个体企业受金融危机和国家政策调整的阻碍,经历了从亏损到盈利的进程,下面的二次函数图象(部份)刻画了该公司年初以来的积存利润S (万元)与时刻t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系,0≤t ≤12).请依照图象提供的信息解答以下问题:(1)求积存利润S (万元)与时刻t (月)之间的函数关系式;(2)截止到第几月末公司积存利润可达到9万元?(3)该企业第四季度所获利润是多少?[解析]设S (t )=at 2+bt +c ,将点(0,0),(6,0),(3,-3)代入得⎩⎪⎨⎪⎧ 36a +6b =09a +3b =-3c =0,解得⎩⎪⎨⎪⎧ a =13b =-2c =0.∴函数关系式S (t )=13t 2-2t (0≤t ≤12). (2)令S =9即13t 2-2t =9, 解得t =9或t =-3(舍),∴截止到9月末公司积存利润可达到9万元.(3)S (12)=13×144-2×12=24(万元), S (9)=13×81-2×9=9(万元), ∴第四季度获利S (12)-S (9)=24-9=15(万元).答:第四季度所获利润为15万元.20.(本小题总分值12分)假设关于x 的方程x 2+mx +m -1=0有一个正根和一个负根,且负根的绝对值较大,求实数m 的取值范围.[解析] 依照题意,画出f (x )=x 2+mx +m -1的图象,如下图. 图象的对称轴为直线x =-m 2. 因为方程x 2+mx +m -1=0有一个正根和一个负根,那么函数f (x )有两个零点x 1,x 2,由题意不妨设x 1>0,x 2<0,且|x 1|<|x 2|.由题意,有⎩⎪⎨⎪⎧ f 0<0-m 2<0,故⎩⎪⎨⎪⎧m -1<0m >0. ∴ 0<m <1. 即所求的取值范围为(0,1).21.(本小题总分值12分)已知概念在R 上的函数f (x )知足f (log 2x )=x +a x,a 为常数. (1)求函数f (x )的表达式;(2)若是f (x )为偶函数,求a 的值;(3)若是f (x )为偶函数,用函数单调性的概念讨论f (x )的单调性.[解析] (1)令log 2x =t ,那么x =2t .∴f (t )=2t +a 2t . ∴f (x )=2x +a2x (x ∈R ).(2)由f (-x )=f (x ),那么2-x +a2-x =2x +a2x , ∴(2x -2-x )(1-a )=0对x ∈R 均成立.∴1-a =0,即a =1.(3)当a =1时,f (x )=2x +12x , 设0≤x 1<x 2,那么f (x 1)-f (x 2)=2x 1+12x 1-(2 x 2+12x 2)=(2 x 1-2 x 2)(1-12 x 1+x 2), ∵2 x 1-2 x 2<0,1-12 x 1+x 2>0,∴f (x 1)-f (x 2)<0.即f (x 1)<f (x 2).因此f (x )在区间[0,+∞)上是增函数.同应当x 1<x 2<0时,f (x 1)-f (x 2)>0,∴f (x )在区间(-∞,0)上是减函数.22.(本小题总分值14分)已知函数f (x )=x 2+ax +3,g (x )=(6+a )·2x -1.(1)假设f (1)=f (3),求实数a 的值;(2)在(1)的条件下,判定函数F (x )=21+g x的单调性,并给出证明; (3)当x ∈[-2,2]时,f (x )≥a (a ∉(-4,4))恒成立,求实数a 的最小值.[解析] (1)∵f (1)=f (3),∴函数f (x )的图象的对称轴方程为x =2,即-a2=2,故a =-4. (2)由(1)知,g (x )=(6-4)·2x -1=2x , F (x )=21+2x (x ∈R ) 函数F (x )在R 上是减函数设x 1,x 2∈R ,且x 1<x 2.∴Δx =x 2-x 1>0,Δy =F (x 2)-F (x 1)=21+2x 2-21+2x 1=22 x 1+1-2 x 2-11+2 x 11+2 x 2=22 x 1-2 x 21+2 x 11+2 x 2.依照指数函数性质及x 1<x 2,得2 x 1-2 x 2<0,由上式得Δy <0,因此F (x )在R 上是减函数.(3)f (x )=x 2+ax +3=(x +a 2)2+3-a 24,x ∈[-2,2],又a ∉(-4,4),故-a 2∉(-2,2). ①当-a 2≥2,即a ≤-4时, f (x )在[-2,2]上单调递减, f (x )min =f (2)=7+2a ,故7+2a ≥a ,即a ≥-7. 因此-7≤a ≤-4.②当-a 2≤-2,即a ≥4时, f (x )在[-2,2]上单调递增,f (x )min =f (-2)=7-2a ,故7-2a ≥a ,即a ≤73, 这与a ≥4矛盾,故此情形不存在. 因此,实数a 的最小值为-7.。
本册检测考试时间120分钟,满分150分.一'单项选择题(本大题共8小题,每小题5分,共40分.在每小题给岀的四个选项中,只有一项是符合题目要求的)21.已知集合A={L2), B={2,〒},若则实数《的值为(D )A.1或2 B・*C・1 D・22[解析I ••集合A={1,2}2・•・由集合元素的互异性及子集的概念可知〒二1 ,解彳导斤二2•故选D・2.下列关于命题"3xGR・使得F+x+l<0”的否泄说法正确的是(B )A・VxGR,均有.F+x+lvO,假命题B・V A ER.均有Q+X+120,真命题C・3A均有F+x+l^O,假命题D・R,均有.¥2+x4-1 =0>真命题[解析I根据存在呈词命题的否走是全称星词命题,対筛在量词改为全称呈词,然后1 3 否走结论,故该命题的否走为“也WR ,均有W十x + 1 M0”,因为%2十x十1二Cv十护十訐0恒成立,所以原命题的否定是真命题•3・sink cosl, tanl的大小关系为(A )A. tanl>sinl>cosl B・ sinl>tanl>coslC・ sinl>cosl>tanl D・ tanl>cosl>sinl兀胚<2 兀[解析]\*sinl>sin^= 2 / coslvcos^ 二吉-,tanl>tan^= 1 r.\tanl>sinl>cos 1.i [丄_______4. lg2 —lg§—曲2 —切迄+寸(_2)2的值为(A )A. — 1B. yC・3 D・一 5[解析]原式= lg2 + lg5-2-2 + 2 = lglO-2=l -2= - 1.故选 A ・5•设角a=35TI2sin(n+a )cos(7r—a)—cos(兀+a)1 + sin2a+sin(n—a)—cos2(n -F的值为(B.一sinaA.c.、2sin(兀十a)cos(n - a) - cos(n + a) 所以 .=.1 + siira + sin(7r - a) - cos■(兀 + a)2sinacosa + cosa 2sinacosa + cosa cosa1 十sin2a + sina - cos% 2sin2a 十sina35兀7Tcos( - —) COS- 二「二萌•故选D.sin( - sin-6.若关于x的方程•心)一2=0在(一P 0)内有解,则)=九)的图象可以是(D )【解析]因为关于x的方程沧)・2二0在(・8,0)内有解,所以函数y二心)与y二2的图象在(-8,0)内有交点,观察题中图象可知只有D中图象满足要求•7・泄义在R上的偶函数/U)在[0, +8)上单调递增,且肩)=0,贝IJ满足/(tog! x)>0的X的取值范用是(B )A. (0, +8)B・(0, |)U(2, +oo)c. (0, |)U(|, 2) D. (0, |)[解析]由题意知/U)=J( - X)二他I),所以./(llogi X I)>A|)•因为.心)在[0 ,十8)上单调递8增r所以llogi则>£ /又人>0・解得0<Y|或入>2・8 3 28.具有性质卅:)=一心)的函数,我们称为满足“倒负”变换.给岀下列函数:D0<v <l ♦B.①③D.①[解析]①用)二X In -- 二In—; ./U)1-X1+x1不满足二-人尤),满足“倒负”变换.1 +x21 "~*X 1 """F①尸山币:<§)y=7^2:③y其中满足“倒负”变换的是(CA.①②C.②③变换.③当0<y 1 时,+> 1 ,心)=.¥,.用)=-x=-.心);当Q1 时,0<+<1 ,.心)二-£ ,几弓二£ 二- f(X);当X二1 时,+二1 , f(x) = 0,用)二夬1)二0 二 + 二-A') r 满足“倒负”变换•综上,②③是符合要求的函数,故选C•二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中, 有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.将函数y=sin(A-|)的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向左平移竽个单位长度得g(x)的图象,则下列说法正确的是(ACD )A.g(x)是奇函数B.x=j是g(x)图象的一条对称轴C.g(x)的图象关于点(3兀,0)对称D.2吶=1【解析I将函数y二sin(.r -予的图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得y 二sin(f -为的图象,再向左平移弓个单位长度得曲)二_ n = s确的图象,所以A. B. C. D.A 正确;因为g (彳)H±1 ■所以B 错;因为g (3jr ) = sin n = 0 ,所以C 正确;又g (0)二0 ,所以 2?(0)= 1 ,所以D 正确•综上,ACD 正确.10. 已知0<a<b<\<c,则下列不等式不成立的是(BD ) A. a c<b (B."<出C ・ log fl c>log/x-D ・ sin a>sin b[解析]取 a = ^ , b = ^ , c = 2 ,则(扌)2<(*)2 , A 成立;2? >2 彳 朋不成立;log’2二log ] 2 二・ 1 ■・\logi 2>logj 2 f C 成立;*/0<6/</xl<z . .\sin t/<sin h t D 不成立.故选 BD . 2 "4 211. 将函数y=sin (2r+0)的图象沿x 轴向左平移頁个单位后,得到一个偶函数的图象,则 卩的一个可能取值为(AB )3 c 71A ・一卩B ・4C ・0D.—睿【解析|将函数y = sin (2r + °)的图象沿x 轴向左平移外单位,得到函数y = sin (2(x +殳)十卩]二sin (2v 十扌十卩),因为此时函数为偶函数,所以扌十卩二号十航,kWZ ,即+ kn , kE. Z,k = 0 时,(p = ^ , k= -1 时,0 二-竽.12.下列命题正确的是(CD )VxG (2, +8),都有 %2>2X=$'是函数“尸COS22" — Si22w 的最小正周期为7T”的充要条件命题 p : 3x<)R> /(x ())=ax3+xo+d = 0 是假命题,则“丘(一°°,—㊁)U (y + °°)已知% pg 则 *=矿是细皿=帥八的既不充分也不必要条件[解析]A 错,当 x 二 4 时,42= 24,故不等式不成立;B 错,y = cos 22<u- - sin 22t/.v = cos4t/x#当"二抽,y = cosZr ,当"二冷时, y = cos( - 2v) = cos2.v ,其最小正[解周期为兀,故说法不正确;C 正确,因为〃为假命题f 所以"为真命题,即不存在xoER , 使./Uo )二0 ,故J= 1 - 4"2<0 ,且“H0 '解得或</< - | ; D 正确,如果两个角为直角,那么它们的正切值不存在,反过来,如果两个角的正切值相等,那么它们可能相差 WeZ ), 故反之不成立・综上,CD 正确.三、填空题(本大题共4小题,每小题5分,共20分)2sin47°-V3sin 17° 丄门・ 2cos 17° =—2—•2sin( 17° + 30。
必修1检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共120分,考试时间90分钟.第Ⅰ卷(选择题,共48分)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6.7},A={2,4,6},B={1,3,5,7}.则A(C B)等于UA.{2,4,6}B.{1,3,5}C.{2,4,5}D.{2,5}2.已知集合A={x|x2-1=0},则下列式子表示正确的有()()①1∈A A.1个②{-1}∈AB.2个③φ⊆AC.3个④{1,-1}⊆AD.4个3.若f:A→B能构成映射,下列说法正确的有()(1)A中的任一元素在B中必须有像且唯一;(2)A中的多个元素可以在B中有相同的像;(3)B中的多个元素可以在A中有相同的原像;(4)像的集合就是集合B.A、1个B、2个C、3个D、4个4、如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上单调递减,那么实数a的取值范围是()A、a≤-3B、a≥-3C、a≤5D、a≥55、下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1。
A、①②B、①③C、③④D、①④6.根据表格中的数据,可以断定方程e x-x-2=0的一个根所在的区间是()7.若lg x-lg y=a,则l g()3-lg()3=()A.3a B.a C.a D.a≥b ,则函数f(x)=log x⊕log x的值域是(⎧2B.2x-10123 ex0.371 2.727.3920.09x+212345A.(-1,0)B.(0,1)C.(1,2)D.(2,3)x y22 32a 28、若定义运算a⊕b=⎨b⎩a a<b212)A[0,+∞)B(0,1]C[1,+∞)D R9.函数y=a x在[0,1]上的最大值与最小值的和为3,则a=()A.1C.4D.1410.下列函数中,在(0,2)上为增函数的是()A、y=log(x+1)B、y=log122x2-1C、y=log12xD、y=log(x2-4x+5)1211.下表显示出函数值y随自变量x变化的一组数据,判断它最可能的函数模型是()x45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高中数学(必修1)A 佳H 系列学业水平测试卷一、选择题(每小题只有一个选项符合题意,共12小题,每小题5分,共60分)1.下列各组函数是同一函数的是( ).①f (x )=32x -与 g (x )=x 2-②f (x )=x 与g (x )=2x③f (x )=x 0与g (x )=01x④f (x )=x 2-2x -1与g (t )=t 2-2t -2A.①② B .①③ C .③④ D .①④2.设集合A ={1,2},B ={0,1},定义运算A ※B ={z|z =y x ,x ∈A ,y ∈B},则集合A ※B 的子集的个数为( ).A .1B .2C .3D .43.已知全集U =A ⋃B 中有m 个元素,(C U A )⋃( C U B )中有n 个元素.若A ⋂B 非空, 则A ⋃B 的元素个数为( ).A .mnB .m +nC .n -mD .m -n4. 如果奇函数f (x )在[3,7]上是增函数且最小值是5,那么f (x )在[-7,-3]上是( ).A .减函数且最小值是5B .减函数且最大值是-5C .增函数且最小值是-5D .增函数且最大值是-55.已知f (x 6)= log 2x ,则f (8)等于( ).A .34 B .8 C .18 D .216.若函数f (x )=a x (a >0, a≠1)为增函数,那么g (x )=11log 1a x +的图象是().A .B .C .D .7.下列关系式中,成立的是( ).A .log 34>051⎪⎭⎫ ⎝⎛>10log 31 B .10log 31>051⎪⎭⎫ ⎝⎛>log 34 C .log 34>10log 31>051⎪⎭⎫ ⎝⎛ D .10log 31>log 34>051⎪⎭⎫ ⎝⎛8.设f (x )是R 上的偶函数,且在[0,+∞)上单调递增,则f (-2),f (-π),f (3)的大小顺序是( ).A .f (-π)>f (3)>f (-2)B .f (-π)>f (-2)>f (3)C .f (-π)<f (3)<f (-2)D .f (-π)<f (-2)<f (3)9.若f (x )=-x 2+2ax 与g (x )=(a +1)1- x (a >-1且a≠0)在区间[1,2]上都是减函数,则a 的取值范围是( ).A .(-1,0)B .(0,1]C .(0,1)D .(-1,0)∪(0,1)10.lgx -x1=0有解的区域是( ). A .(0,1]B .[1,10]C .(10,100]D .(100,+∞)11.已知函数f (x )=⎩⎨⎧≥<+-221)21x a x x a x ,,-(,在(-∞,+∞)上对任意的x 1≠x 2,都有2121)()x (x x x f f -->0成立,则实数a 的取值范围是( ).A .(0,+∞)B .(1,53]C .(1,2)D .[53,2) 12.已知函数f (x )=2log a (3-x )(a≠0且a≠±1)在[0,2]上是减函数,则实数a 的取值范围为( ).A .(-∞,1)⋃(1,23) B .(-∞,23) C .(-1,0)⋃(1,23) D .(23,+∞)二、填空题(本大题共4小题,每小题4分,共16分)13.计算:91log 81log 251log 532⋅⋅的值为 .14.函数f (x )=x x 2232-的单调递减区间是 .15.函数y =log a (2x —3)+22的图象恒过定点P ,P 在幂函数f (x )的图象上,则f (9)= . 16.已知偶函数f (x )满足f (x )=x 3-8(x≥0),则f (x -2)>0的解集为 .三、解答题(本大题共6小题,共74分,解答时应写出文字说明,证明过程或演算步骤)17.(12分)已知集合A ={x|-1<x <3},集合B ={y|y =x1,x ∈(-3,0)⋃(0,1)},集合C ={x|2x 2+mx -8<0}.(1)求 A ⋂B ,A ⋃(C R B );(2)若(A ⋂B )⊆C ,求m 的取值范围.18.(12分)已知二次函数f (x )满足条件f (0)=1,及 f (x +1)-f (x )=2x .(1)求函数f (x )的解析式;(2)在区间[-1,1]上,y =f (x )的图象恒在y =2x +m 的图象上方,试确定实数m 的取值范围.19.(12分)某企业生产的新产品必须先靠广告打开销路,该产品广告效应应该是产品的销售额与广告费之间的差,如果销售额与广告费的平方根成正比,根据对市场的抽样调査:每付出100元的广告费,所得的销售额是1 000元.问该企业投人多少广告费,才能获得最大的广告效应?是不是广告做的越大越好?【知识点】二次函数型模型及其应用:D 【/知识点】【关键词】必修一 综合测试 二次函数型模型及其应用 二次函数的图象与性质【/关键词】【难度】较困难【/难度】【题型】应用题【/题型】20.(12分)已知函数f (x )=ba x x+⨯+221是奇函数,并且函数f (x )的图象经过点(1,3).(1)求实数a ,b 的值;(2)求函数f (x )在x <0时的值域.21.(12分)某企业实行裁员增效.已知现有员工a 人,每人每年可创纯收益(已扣工资等)1万元,据评估在生产条件不变的条件下,每裁员一人,则留岗员工每人每年可多创收0.01万,但每年需付给每位下岗工人0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的34.设该企业裁员x 人后年纯收益为y 万元. (1)写出y 关于x 的函数关系式,并指出x 的取值范围;(2)当140<a≤280时,问该企业应裁员多少人,才能获得最大的经济效益?(注:在保证能取得最大经济效益的情况下,能少裁员,应尽量少裁)22.(14分)已知函数f (x )的定义域为R ,且对任意的 a ,b ∈R ,都有 f (a +b )=f (a )+f (b ),且当 x >0 时,f (x )<0 恒成立.(1)求f (0);(2)证明:函数y =f (x )是奇函数;(3)证明:函数y =f (x )是R 上的减函数.1.【答案】C【解析】对于①,f (x )=32x -=x 2--,不是同一函数;对于②,g (x )=|x|,不是同一函数.故选:C .2.【答案】D【解析】A ※B 的子集的个数为4.故选:D .3.【答案】D【解析】如图,U =A ⋃B 中有m 个元素.∵(C U A )⋃(C U B )中有n 个元素,∴A ⋂B 中有(m —n )个元素.故选:D .4.【答案】D【解析】由奇函数的定义及性质,可得f (x )在[-7,-3]上是增函数且最大值是-5.故选:D .5.【答案】D【解析】令x 6=8,x =216168=,∴f (8)= log 2212=21. 故选:D .6.【答案】C【解析】g (x )=11log 1+x a =log a (x +1). 因为函数f (x )=a x (a >0,a≠1)为增函数,故函数g (x ) = log a (x +1)的图象是由函数y =log a x (a >1)的图象向左平移1个单位得到.故选:C .7.【答案】A【解析】log 34>051⎪⎭⎫ ⎝⎛>10log 31. 故选:A .8.【答案】A【解析】根据偶函数性质,有f (-π)=f (π)>f (3)>f (2)=f (-2). 故选:A .9.【答案】B 【解析】由题意,得⎩⎨⎧>+≤111a a , 解得0<a≤1.故选:B .10.【答案】B【解析】f (1)=-1<0,f (10)=109>0. 故选:B .11.【答案】D【解析】由题意知,f (x )在(-∞,+∞)上递增, 所以()⎪⎩⎪⎨⎧+⨯-≥>≥--12210212a a a a , 解得35≤a <2. 故选:D .12.【答案】C【解析】由题意,知,⎩⎨⎧>->0231a a 或⎩⎨⎧><<-0301a ,解得1<a <23或-1<a <0. 故选:C . 13.【答案】-12【解析】原式= log 25-2 log 32-3 log 53-2 =-2log 25•(-3)log 32 • (-2)log 53 =-12log 25•log 32•log 53 =125lg 3lg 3lg 2lg 2lg 5lg 12-=⋅⋅⋅-. 故答案为:-12.14.【答案】[1,+∞) 【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解.因为函数y =(32)u 是关于u 的减函数, 所以函数y =x 2-2x 的递增区间就是函数f (x )的递减区间.令u =x 2-2x ,其递增区间为[1,+∞),所以函数y =x 2-2x 的递减区间就是[1,+∞).故答案为:[1,+∞).15.【答案】31 【解析】当x =2时,y =22,即P (2,22). 设f (x )=x a ,则2a =22,a =-21, 所以f (x )=21-x,f (9)=31. 故答案为:31. 16.【答案】(-∞,0)⋃(4,+∞)【解析】因为f (x )为偶函数,且当x≥0时,f (x )=x 3-8为增函数,则当x≤0时,f (x )为减函数.f (x -2)>0=f (2),所以可得,|x -2|>2,解得x <0或x >4.故答案为:(-∞,0)⋃(4,+∞).17.【答案】(1)A∩B =(-1,-31)∪(1,3),(C R B )∪A =(-1,3); (2)-6≤m≤-310. 【解析】(1)∵B =(-∞,-31)∪(1,+∞), ∴A∩B =(-1,-31)∪(1,3), (C R B )∪A =(-1,3);(2)令f (x )=2x 2 +mx -8.由题意,可得()()⎩⎨⎧≤≤-0301f f , 解得-6≤m≤-310. 18.【答案】(1)f (x )=x 2-x +1;(2)m <-1.【解析】(1)令x =0,则f (1)-f (0)=0,∴f (1)=f (0)=1.∴二次函数图象的对称轴为x =21. 令二次函数的解析式为y =a (x -21)2+h . 由f (0)=1,又可知f (-1)=3,得a =1,h =43, ∴二次函数的解析式为f (x )=(x -21)2+43=x 2-x +1. (2)∵x 2-x +1>2x +m 在[-1,1]上恒成立,∴x 2-3x +1>m 在[-1,1]上恒成立.∴令g (x )=x 2 -3x +1,则 g (x )在[-1,1]上单调递减,∴g (x )min =g (1)=-1,∴m <-1.19.【答案】该企业投入2 500元广告费时,能获得最大的广告效应,显然并非广告做的越大越好.【解析】设广告费为x ,广告效应为y ,销售额为t .由题意知,t =k·x ,又当x =100 时,t =1000,.,1001001000=⋅=∴k k .x x t -=∴100 令,m x =则2m x =∴2100m m y -==-(m -50)2+2500.∴当m =50,即x =2 500时,y 有最大值2 500.所以,该企业投入2 500元广告费时,能获得最大的广告效应,显然并非广告做的越大越好.20.【答案】(1)a =1,b =-1;(2)f (x )的值域为(-∞,-1).【解析】(1)解:∵f (x )是奇函数,∴f (-x )=-f (x ), 即0221221=+⨯+++⨯+--ba b a x xx x , 得(ab +1)22x +2(a +b )2x +ab +1=0.所以,⎩⎨⎧=+=+001b a ab 得⎩⎨⎧-==11b a 或⎩⎨⎧=-=11b a .又f (1) = 3, 所以b a ++221=3,即2a -3b =5. 所以a =1,b =-1.(2)f (x )=12211221-+=-+x x x . ∵x <0,∴0<2x <1,可得f (x )的值域为(-∞,-1).21.【答案】(1)y =a x a x +⎪⎭⎫ ⎝⎛-+-1001401001002,x 的取值范围是(0,41]中的自然数; (2)当员工人数为偶数时,裁员(2a -70)人,才能获得最大的经济效益, 当员工人数为奇数时,裁员(21-a -70)人,才能获得最大的经济效益. 【解析】(1)由题意,可得y =(a -x )(1+0.01x )-0.4x =a x a x +⎪⎭⎫ ⎝⎛-+-1001401001002. ∵a -x≥43a , ∴x≤41a , 即x 的取值范围是(0,41]中的自然数. (2)∵y =2270210017021001⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---a a x ,且 140<a≤280. 当a 为偶数时,x =2a -70,y 取最大值; 当a 为奇数时,x =21-a -70,y 取最大值. ∵尽可能少裁人,∴舍去x =21-a -70. 当员工人数为偶数时,裁员(2a -70)人,才能获得最大的经济效益, 当员工人数为奇数时,裁员(21-a -70)人,才能获得最大的经济效益. 22.【答案】(1)f (0)=0;(2)证明见解析;(3)证明见解析.【解析】(1)令 a =b =0 ,得f (0)=0;(2)证明:由 f (a +b )=f (a )+f (b ),得f (x -x )=f (x )+f (-x ),即f (x )+f (-x )=0,而f (0)=0,∴f (x )=-f (-x ),即函数 y =f (x )是奇函数(3)证明:设x1>x2,则x1-x2>0.而f(a+b)=f(a)+f(b),∴f(x1)=f(x1-x2+x2)=f(x1-x2)+f(x2)<f(x2),∴函数y=f(x)是R上的减函数.。