2021年江苏省宿迁市中考数学必修综合测试试卷附解析
- 格式:docx
- 大小:187.03 KB
- 文档页数:8
江苏省宿迁市2021年初中暨升学考试数学试题一、选择题(本大题共8个小题,每小题3分,共24分.)1.下列各数中,比0小的数是(▲)A .-1B .1C .2D .π 【答案】A 。
【考点】数的大小比较。
【分析】利用数的大小比较,直接得出结果。
2.在平面直角坐标中,点M (-2,3)在(▲)A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B 。
【考点】平面直角坐标。
【分析】利用平面直角坐标系中各象限符号特征,直接得出结果。
3.下列所给的几何体中,主视图是三角形的是(▲)【答案】B 。
【考点】三视图。
【分析】利用几何体的三视图特征,直接得出结果。
4.计算(-a 3)2的结果是(▲)A .-a 5B .a 5C .a 6D .-a 6 【答案】C 。
【考点】幂的乘方,负数的偶次方。
【分析】利用幂的乘方和负数的偶次方运算法则,直接得出结果。
5.方程11112+=-+x x x 的解是(▲) A .-1 B .2 C .1 D .0【答案】B 。
【考点】分式方程。
【分析】利用分式方程的解法,直接得出结果。
6.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是(▲) A .1 B .21 C .31 D .41 【答案】D 。
【考点】概率。
【分析】利用概率的计算方法,直接得出结果。
7.如图,已知∠1=∠2,则不一定...能使△ABD ≌△ACD 的条件是(▲) A .AB =AC B .BD =CD C .∠B =∠C D .∠ BDA =∠CDA正面A .B .C .D .【答案】B 。
【考点】全等三角形的判定。
【分析】条件A 构成SAS ,条件C 构成AAS ,条件D 构成ASA 。
8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是(▲) A .a >0 B .当x >1时,y 随x 的增大而增大 C .c <0 D .3是方程ax 2+bx +c =0的一个根 【答案】D 。
2021年江苏省中考数学真题分类汇编:图形的变化一.选择题(共10小题)1.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.2.(2021•常州)观察如图所示脸谱图案,下列说法正确的是()A.它是轴对称图形,不是中心对称图形B.它是中心对称图形,不是轴对称图形C.它既是轴对称图形,也是中心对称图形D.它既不是轴对称图形,也不是中心对称图形3.(2021•无锡)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.5.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°6.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.7.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.8.(2021•南通)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥9.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.410.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.二.填空题(共10小题)11.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.12.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比.13.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.14.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d =.15.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为海里(结果保留根号).16.(2021•常州)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在△ABC中,分别取AB、AC的中点D、E,连接DE,过点A 作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形BCHG.若DE=3,AF=2,则△ABC 的面积是.17.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=时,△AEC′是以AE为腰的等腰三角形.18.(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD =2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.19.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.20.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.三.解答题(共10小题)21.(2021•盐城)如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.22.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)23.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)24.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)25.(2021•徐州)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:≈1.41,≈1.73,≈2.45.锐角A13°28°32°三角函数sin A0.220.470.53cos A0.970.880.85tan A0.230.530.6226.(2021•无锡)如图,四边形ABCD内接于⊙O,AC是⊙O的直径,AC与BD交于点E,PB切⊙O于点B.(1)求证:∠PBA=∠OBC;(2)若∠PBA=20°,∠ACD=40°,求证:△OAB∽△CDE.27.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).28.(2021•连云港)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)29.(2021•苏州)如图,在矩形ABCD中,线段EF、GH分别平行于AD、AB,它们相交于点P,点P1、P2分别在线段PF、PH上,PP1=PG,PP2=PE,连接P1H、P2F,P1H 与P2F相交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b.(1)四边形EBHP的面积四边形GPFD的面积(填“>”、“=”或“<”)(2)求证:△P1FQ∽△P2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求的值.30.(2021•常州)在平面直角坐标系xOy中,对于A、A′两点,若在y轴上存在点T,使得∠ATA′=90°,且TA=TA′,则称A、A′两点互相关联,把其中一个点叫做另一个点的关联点.已知点M(﹣2,0)、N(﹣1,0),点Q(m,n)在一次函数y=﹣2x+1的图象上.(1)①如图,在点B(2,0)、C(0,﹣1)、D(﹣2,﹣2)中,点M的关联点是(填“B”、“C”或“D”);②若在线段MN上存在点P(1,1)的关联点P′,则点P′的坐标是;(2)若在线段MN上存在点Q的关联点Q′,求实数m的取值范围;(3)分别以点E(4,2)、Q为圆心,1为半径作⊙E、⊙Q.若对⊙E上的任意一点G,在⊙Q上总存在点G′,使得G、G′两点互相关联,请直接写出点Q的坐标.2021年江苏省中考数学真题分类汇编:图形的变化参考答案与试题解析一.选择题(共10小题)1.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,是一列两个矩形.故选:C.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.2.(2021•常州)观察如图所示脸谱图案,下列说法正确的是()A.它是轴对称图形,不是中心对称图形B.它是中心对称图形,不是轴对称图形C.它既是轴对称图形,也是中心对称图形D.它既不是轴对称图形,也不是中心对称图形【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.据此判断即可.【解答】解:该图是轴对称图形,不是中心对称图形.故选:A.【点评】此题主要考查了中心对称图形和轴对称图形,熟记相关定义是解答本题的关键.3.(2021•无锡)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【解答】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.【考点】展开图折叠成几何体;简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据主视图的意义画出相应的图形,再进行判断即可.【解答】解:该组合体的主视图如下:故选:A.【点评】本题考查简单组合体的主视图,理解主视图的意义是正确判断的前提.5.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°【考点】平行线的性质;矩形的性质;翻折变换(折叠问题).【专题】平移、旋转与对称;推理能力.【分析】在矩形ABCD中,AD∥BC,则∠DEF=∠EFG=64°,∠EGB=∠DEG,又由折叠可知,∠GEF=∠DEF,可求出∠DEG的度数,进而得到∠EGB的度数.【解答】解:如图,在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=64°,∠EGB=∠DEG,由折叠可知∠GEF=∠DEF=64°,∴∠DEG=128°,∴∠EGB=∠DEG=128°,故选:A.【点评】本题主要考查平行线的性质,折叠的性质等,掌握折叠前后角度之间的关系是解题的基础.6.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【考点】正方形的性质;中心投影.【专题】投影与视图;空间观念;几何直观.【分析】根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,则在地面上的投影关于对角线对称,因为灯在纸板上方,所以上方投影比下方投影要长.【解答】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,∴在地面上的投影关于对角线对称,∵灯在纸板上方,∴上方投影比下方投影要长,故选:D.【点评】本题主要考查中心投影的知识,弄清题目中光源和纸板的相对位置是解题的关键.7.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt △A′O′B,则下列四个图形中正确的是()A.B.C.D.【考点】旋转的性质.【专题】平移、旋转与对称;几何直观.【分析】本题主要考查旋转的性质,旋转过程中图形形状和大小都不发生变化,根据旋转性质判断即可.【解答】解:A选项是原图形的对称图形,故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C选项旋转后的对应点错误,即形状发生了改变,故C不正确;D选项是按逆时针方向旋转90°,故D不正确;故选:B.【点评】本题主要考查旋转的性质,熟练掌握并应用旋转的性质是解题的关键,重点注意旋转的方向和角度.8.(2021•南通)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥【考点】由三视图判断几何体.【专题】投影与视图;空间观念.【分析】从正视图以及左视图都为一个长方形,俯视图三角形来看,可以确定这个几何体为一个三棱柱.【解答】解:根据三视图可以得出立体图形是三棱柱,故选:A.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.9.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.4【考点】矩形的性质;翻折变换(折叠问题).【专题】矩形菱形正方形;平移、旋转与对称;推理能力.【分析】由折叠的性质可得BM=MD,BN=DN,∠DMN=∠BMN,可证四边形BMDN 是菱形,在Rt△ADM中,利用勾股定理可求BM的长,由菱形的面积公式可求解.【解答】解:如图,连接BD,BN,∵折叠矩形纸片ABCD,使点B落在点D处,∴BM=MD,BN=DN,∠DMN=∠BMN,∵AB∥CD,∴∠BMN=∠DNM,∴∠DMN=∠DNM,∴DM=DN,∴DN=DM=BM=BN,∴四边形BMDN是菱形,∵AD2+AM2=DM2,∴16+AM2=(8﹣AM)2,∴AM=3,∴DM=BM=5,∵AB=8,AD=4,∴BD===4,∵S菱形BMDN=×BD×MN=BM×AD,∴4×MN=2×5×4,∴MN=2,故选:B.【点评】本题考查了翻折变换,矩形的性质,菱形判定和性质,勾股定理,求出BM的长是解题的关键.10.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.【考点】相似三角形的判定与性质;解直角三角形.【专题】三角形;几何直观.【分析】过点C作BD的垂线,交BD的延长线于点E,可得△ABD∽△CED,可得==,由AD=AC,AB=2,可求出CE的长,又∠ABC=150°,∠ABD=90°,则∠CBD=60°,解直角△BCE,可分别求出BE和BD的长,进而可求出△BCD的面积.【解答】解:如图,过点C作BD的垂线,交BD的延长线于点E,则∠E=90°,∵BD⊥AB,CE⊥BD,∴AB∥CE,∠ABD=90°,∴△ABD∽△CED,∴==,∵AD=AC,∴=,∴===,则CE=,∵∠ABC=150°,∠ABD=90°,∴∠CBE=60°,∴BE=CE=,∴BD=BE=,∴S△BCD=•BD•CE=×=.故选:A.【点评】本题主要考查三角形的面积,相似三角形的性质与判定,解直角三角形等,看到面积或特殊角作垂线是常见的解题思路,也是解题关键.二.填空题(共10小题)11.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.【考点】正方形的性质;相似三角形的判定与性质;解直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】连接AF,过点F作FG⊥AB于G,由四边形CDFE是边长为1的正方形可得AD=2,BE=3,根据勾股定理求出AB=5,AF=,BF=,设BG=x,利用勾股定理求出x=3,可得FG=1,即可得sin∠FBA的值.【解答】解:连接AF,过点F作FG⊥AB于G,∵四边形CDFE是边长为1的正方形,∴CD=CE=DF=EF=1,∠C=∠ADF=90°,∵AC=3,BC=4,∴AD=2,BE=3,∴AB==5,AF==,BF==,设BG=x,∵FG2=AF2﹣AG2=BF2﹣BG2,∴5﹣(5﹣x)2=10﹣x2,解得:x=3,∴FG==1,∴sin∠FBA==.故答案为:.【点评】此题综合考查了正方形、锐角三角函数的定义及勾股定理.根据勾股定理求出BG的长是解题的关键.12.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比.【考点】相似三角形的判定与性质.【专题】三角形;图形的相似;推理能力;应用意识.【分析】先由==,设AD=3m,DB=2m,CE=3k,EB=2k,证明=,又∠B=∠B,可证明△DBE~△ABC.进而可得相似比为,面积比==,从而可得S△DBE:S四边形ADEC=4:21.【解答】解:∵==,则设AD=3m,DB=2m,CE=3k,EB=2k,∴=,=,∴=,又∠B=∠B,∴△DBE~△ABC.相似比为,面积比==,设S△DBE=4a,则S△ABC=25a,∴S四边形ADEC=25a﹣4a=21a,∴S△DBE:S四边形ADEC=.故答案为:.【点评】本题考查了相似三角形的判定与性质,证明△DBE~△ABC得出相似比是解题的关键.13.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.【考点】勾股定理;翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】由折叠的性质可得AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,在Rt△EFG中,由勾股定理可求EG=3,由锐角三角函数可求EH,HF的长,在Rt△AHF 中,由勾股定理可求AF.【解答】解:如图,过点F作FH⊥AC于H,∵将四边形ABDE沿直线DE翻折,得到四边形FGDE,∴AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,∴EG===3,∵sin∠FEG=,∴,∴HF=,∵cos∠FEG=,∴,∴EH=,∴AH=AE+EH=,∴AF===,故答案为:.【点评】本题考查了翻折变换,考查了折叠的性质,勾股定理,锐角三角函数,构造直角三角形是解题的关键.14.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=.【考点】线段垂直平分线的性质;旋转的性质.【专题】综合题;推理填空题;平移、旋转与对称;应用意识.【分析】设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,由OA=8,AB=5,BC是OA的垂直平分线,可得OB=5,OC=AC =4,BC=3,cos∠BOC==,sin∠BOC==,证明∠BOC=∠B'C'D=∠C'A'E,从而在Rt△B'C'D中求出C'D=,在Rt△A'C'E中,求出C'E=,得DE=C'D+C'E =,即可得到A'到ON的距离是.【解答】解:设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,如图:∵OA=8,AB=5,BC是OA的垂直平分线,∴OB=5,OC=AC=4,BC=3,cos∠BOC==,sin∠BOC==,∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',∴B'C'=BC=3,A'C'=AC=4,∠BOC=∠B'OC',∵∠B'C'D=∠B'C'O﹣∠DC'O=90°﹣∠DC'O=∠B'OC',∴cos∠B'C'D=,Rt△B'C'D中,=,即=,∴C'D=,∵AE∥ON,∴∠B'OC'=∠C'A'E,∴sin∠C'AE=sin∠B'OC'=sin∠BOC=,Rt△A'C'E中,=,即=,∴C'E=,∴DE=C'D+C'E=,而A'H⊥ON,C'D⊥ON,A'E⊥DC',∴四边形A'EDH是矩形,∴A'H=DE,即A'到ON的距离是.故答案为:.方法二:过A作AC⊥OB于C,如图:由旋转可知:点A′到射线ON的距离d=AC,∵OB•AC=OA•BD,∴AC==.【点评】本题考查线段的垂直平分线及旋转变换,涉及三角函数及矩形等知识,解题的关键是在Rt△B'C'D中和Rt△A'C'E中,求出求出C'D=,C'E=.15.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为25海里(结果保留根号).【考点】解直角三角形的应用﹣方向角问题.【专题】解直角三角形及其应用;运算能力;推理能力.【分析】过点P作PC⊥AB,在Rt△APC中由锐角三角函数定义求出PC的长,再在Rt △BPC中由锐角三角函数定义求出PB的长即可.【解答】解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.【点评】本题考查了解直角三角形的应用﹣方向角问题以及锐角三角函数定义;熟练掌握锐角三角函数定义,求出PC的长是解题的关键.16.(2021•常州)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在△ABC中,分别取AB、AC的中点D、E,连接DE,过点A 作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形BCHG.若DE=3,AF=2,则△ABC 的面积是12.【考点】数学常识;三角形的面积;三角形中位线定理;矩形的判定;图形的剪拼.【专题】作图题;应用意识.【分析】根据图形的拼剪,求出BC以及BC边上的高即可解决问题.【解答】解:由题意,BG=CH=AF=2,DG=DF,EF=EH,∴DG+EH=DE=3,∴BC=GH=3+3=6,∴△ABC的边BC上的高为4,∴S△ABC=×6×4=12,故答案为:12.【点评】本题考查图形的拼剪,矩形的性质,全等三角形的判定和性质,三角形的面积等知识,解题的关键是读懂图象信息,属于中考常考题型.17.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=或时,△AEC′是以AE为腰的等腰三角形.【考点】等腰三角形的判定;勾股定理;矩形的性质;翻折变换(折叠问题).【专题】分类讨论;推理能力.【分析】设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x.当AE=EC′时,由勾股定理得:32+x2=(4﹣x)2;当AE=AC’时,作AH⊥EC’,由∠AEF=90°,EF平方∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即4﹣x=2x,解方程即可.【解答】解:设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x,当AE=EC′时,AE=4﹣x,∵矩形ABCD,∴∠B=90°,由勾股定理得:32+x2=(4﹣x)2,解得:,当AE=AC′时,如图,作AH⊥EC′∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△ECF,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′时,作AH⊥EC′,∴EC′=2EH,即4﹣x=2x,解得,综上所述:BE=或.故答案为:或.【点评】本题考查了矩形的性质、等腰三角形的性质、勾股定理等知识点,涉及到方程思想和分类讨论思想.当AE=AC′时如何列方程,有一定难度.18.(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD =2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.【考点】平行线分线段成比例.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】连接DE.首先证明DE∥AB,推出S△ABE=S△ABD,推出S△AEF=S△BDF,可得S=S△ABD,求出△ABD面积的最大值即可解决问题.△AEF【解答】解:连接DE.∵CD=2BD,CE=2AE,∴==2,∴DE∥AB,∴△CDE∽△CBA,∴==,∴==,∵DE∥AB,∴S△ABE=S△ABD,∴S△AEF=S△BDF,∴S△AEF=S△ABD,∵BD=BC=,∴当AB⊥BD时,△ABD的面积最大,最大值=××4=,∴△AEF的面积的最大值=×=,故答案为:【点评】本题考查相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是证明DE∥AB,推出S△AEF=S△ABD,属于中考常考题型.19.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.【考点】平行线分线段成比例.【专题】图形的相似;推理能力.【分析】过点E作EG∥DC交AD于G,可得△AGE∽△ADC,所以,得到DC=2GE;再根据△GFE∽△DFB,得==,所以,即=.【解答】解:如图,∵BE是△ABC的中线,∴点E是AC的中点,∴=,过点E作EG∥DC交AD于G,∴∠AGE=∠ADC,∠AEG=∠C,∴△AGE∽△ADC,∴,∴DC=2GE,∵BF=3FE,∴,∵GE∥BD,∴∠GEF=∠FBD,∠EGF=∠BDF,∴△GFE∽△DFB,∴==,∴,∴=,故答案为:.【点评】本题考查了相似三角形的判定与性质,过点E作EG∥DC,构造相似三角形是解题的关键.20.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.【考点】平行四边形的性质;旋转的性质;解直角三角形的应用.【专题】三角形;解直角三角形及其应用;运算能力.【分析】过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.BM=B′M=,由勾股定理可得,AM==,由等面积法可得,BN=,由勾股定理可得,AN===,由题可得,△AMB∽△EGC,△ANB∽△B′GE,则==,==,设CG=a,则EG=a,B′G=3+a,则=,解得a=.最后由勾股定理可得,EC===.【解答】解:法一、如图,过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.由旋转可知,AB=AB′=3,∠ABB′=∠AB′C′,∴∠ABB′=∠AB′B=∠AB′C′,∵BB′=1,AM⊥BB′,∴BM=B′M=,∴AM==,∵S△ABB′==,∴××1=•BN×3,则BN=,∴AN===,∵AB∥DC,∴∠ECG=∠ABC,∵∠AMB=∠EGC=90°,∴△AMB∽△EGC,∴===,设CG=a,则EG=a,∵∠ABB′+∠AB′B+∠BAB′=180°,∠AB′B+∠AB′C′+∠C′B′C=180°,又∵∠ABB′=∠AB′B=∠AB′C′,∴∠BAB′=∠C′B′C,∵∠ANB=∠EGC=90°,∴△ANB∽△B′GE,∴===,∵BC=4,BB′=1,∴B′C=3,B′G=3+a,∴=,解得a=.∴CG=,EG=,∴EC===.故答案为:.法二、如图,连接DD',由旋转可知,∠BAB′=∠DAD′,AB′=AB=3,AD′=AD=4,∴△BAB′∽△DAD′,∴AB:BB′=AD:DD′=3:1,∠AD′D=∠AB′B=∠B,∴DD′=,又∵∠D′=∠AB′C′=∠B,∠B=∠AB′B,∴∠D′=∠B,即点D′,D,C′在同一条直线上,∴DC′=,又∠C′=∠ECB′,∠DEC′=∠B′EC,∴△CEB’∽△C'ED,∴B′E:DE=CE:C′E=B′C:DC′,即B′E:DE=CE:C′E=3:,设CE=x,B'E=y,∴x:(4﹣y)=y:(3﹣x)=3:,∴x=.故答案为:.【点评】本题主要考考查平行四边形的性质,等腰三角形三线合一,相似三角形的性质与判定,解直角三角形的应用等,构造正确的辅助线是解题关键.三.解答题(共10小题)21.(2021•盐城)如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.【考点】圆周角定理;点与圆的位置关系;切线的判定与性质;相似三角形的判定与性质.【专题】与圆有关的位置关系;图形的相似;推理能力.【分析】(1)由PC2=P A•PB得,可证得△P AC∽△PCB,根据相似三角形的性质得∠PCA=∠B,根据圆周角定理得∠ACB=90°,则∠CAB+∠B=90°,由OA=OC 得∠CAB=∠OCA,等量代换可得∠PCA+∠OCA=90°,即OC⊥PC,即可得出结论;(2)由AB=3P A可得PB=4P A,OA=OC=1.5P A,根据勾股定理求出PC=2P A,根据相似三角形的性质即可得出的值.【解答】(1)证明:连接OC,∵PC2=P A•PB,∴,∵∠P=∠P,∴△P AC∽△PCB,∴∠PCA=∠B,∵∠ACB=90°,∴∠CAB+∠B=90°,∵OA=OC,∴∠CAB=∠OCA,∴∠PCA+∠OCA=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:∵AB=3P A,∴PB=4P A,OA=OC=1.5P A,PO=2.5P A,∵OC⊥PC,∴PC==2P A,∵△P AC∽△PCB,∴===.【点评】本题考查三角形相似的判定与性质,考查切线的判定,圆周角定理,解题的关键是熟练掌握圆周角定理及相似三角形的判定等知识点的综合运用.22.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)【考点】解直角三角形的应用.【专题】解直角三角形及其应用;应用意识.【分析】过B作BE⊥CD于E,过A作AF⊥BE于F,由已知△BCE是等腰直角三角形,设CE=x,则BE=x,DE=(80﹣x)m,在Rt△BDE中,可得=1.5,解得BE=CE=48m,在Rt△ACD中,解得AC=28m,根据四边形ACEF是矩形,可得AF=CE=48m,EF=AC=28m,BF=20m,即可在Rt△ABF中,求出AB==52(m)【解答】解:过B作BE⊥CD于E,过A作AF⊥BE于F,如图:∵∠BCD=45°,∴△BCE是等腰直角三角形,设CE=x,则BE=x,∵CD=80m,∴DE=(80﹣x)m,Rt△BDE中,∠BDC=56°19',∴tan56°19'=,即=1.5,解得x=48(m),∴BE=CE=48m,Rt△ACD中,∠ADC=19°17′,CD=80m,∴tan19°17'=,即=0.35,解得AC=28m,∵∠ACD=90°,BE⊥CD于E,AF⊥BE,∴四边形ACEF是矩形,∴AF=CE=48m,EF=AC=28m,∴BF=BE﹣EF=20m,Rt△ABF中,AB===52(m),答:A,B两点之间的距离是52m.【点评】本题考查解直角三角形的应用,涉及勾股定理、矩形判定及性质等知识,解题的关键是适当添加辅助线,构造直角三角形.23.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力;模型思想.【分析】通过作垂线,构造直角三角形,利用直角三角形的边角关系分别求出DE,FG 即可.【解答】解:如图,过点B、C分别作CE⊥DG,BF⊥DG垂足为E、F,延长CB交AG 于点H,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,在Rt△ABH中,∠α=30°,AB=50m,∴BH=AB=25(m)=FG,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG=59.4+30+25=114.4≈114(m),答:山顶D的高度约为114m.【点评】本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键..24.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)。
江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.实数的运算(共1小题)1.(2023•宿迁)计算:.二.分式的化简求值(共1小题)2.(2023•宿迁)先化简,再求值:,其中.三.二次函数的应用(共1小题)3.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?四.二次函数综合题(共3小题)4.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是 (填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是 、 ;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.6.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y 轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC 于点H,当△PFH为等腰三角形时,求线段PH的长.五.三角形综合题(共1小题)7.(2023•宿迁)【问题背景】由光的反射定律知:反射角等于入射角(如图①,即∠CEF=∠AEF).小军测量某建筑物高度的方法如下:在地面点E处平放一面镜子,经调整自己位置后,在点D处恰好通过镜子看到建筑物AB的顶端A.经测得,小军的眼睛离地面的距离CD=1.7m,BE=20m,DE=2m,求建筑物AB的高度;【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图②):他让小军站在点D处不动,将镜子移动至E1处,小军恰好通过镜子看到广告牌顶端G,测出DE1=2m;再将镜子移动至E2处,恰好通过镜子看到广告牌的底端A,测出DE2=3.4m.经测得,小军的眼睛离地面距离CD=1.7m,BD=10m,求这个广告牌AG的高度;【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB的高度.他们给出了如下测量步骤(如图③):①让小军站在斜坡的底端D处不动(小军眼睛离地面距离CD=1.7m),小明通过移动镜子(镜子平放在坡面上)位置至E处,让小军恰好能看到塔顶B;②测出DE=2.8m;③测出坡长AD=17m;④测出坡比为8:15(即).通过他们给出的方案,请你算出信号塔AB的高度(结果保留整数).六.四边形综合题(共1小题)8.(2021•宿迁)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN 扫过的面积.七.直线与圆的位置关系(共1小题)9.(2022•宿迁)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O与边BC 交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.八.切线的判定与性质(共1小题)10.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, .求证: ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.九.圆的综合题(共1小题)11.(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中, ,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.【拓展应用】(1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;(2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.一十.解直角三角形的应用-仰角俯角问题(共1小题)12.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).一十一.列表法与树状图法(共1小题)13.(2021•宿迁)即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”,将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀.(1)若从中任意抽取1张,抽得卡片上的图案恰好为“莲莲”的概率是 .(2)若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,求两次抽取的卡片图案相同的概率.(请用树状图或列表的方法求解)江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•宿迁)计算:.【答案】0.【解答】解:原式=,=0.二.分式的化简求值(共1小题)2.(2023•宿迁)先化简,再求值:,其中.【答案】x﹣1;.【解答】解:===x﹣1,当时,原式=.三.二次函数的应用(共1小题)3.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?【答案】(1)A种商品的销售单价为30元,B种商品的销售单价为24元;(2)m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.【解答】解:(1)设A种商品的销售单价为a元,B种商品的销售单价为b元,由题意可得:,解得,答:(2)设利润为w元,由题意可得:w=(30﹣m﹣20)(40+10m)+(24﹣20)(40+10m)=﹣10(m﹣5)2+810,∵A种商品售价不低于B种商品售价,∴30﹣m≥24,解得m≤6,∴当m=5时,w取得最大值,此时w=810,答:m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.四.二次函数综合题(共3小题)4.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是 ② (填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是 、 ;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.【答案】(1)②;(2)①2;②,;(3)>16.【解答】解:(1)如图:由图可知,与二次函数y=2x2﹣4x﹣3有3个交点的是y=﹣,∴与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是②,故答案为:②;(2)①把x=1代入得y=﹣1,把x=1,y=﹣1代入函数得,a=2;②∵2x2﹣5x+2=﹣,∴2x3﹣5x2+2x+1=0,∴2x3﹣2x2﹣2x2+2x﹣x2+1=0,∴(2x3﹣2x2)﹣(2x2﹣2x)﹣(x2﹣1)=0,∴2x2(x﹣1)﹣2x(x﹣1)﹣(x+1)(x﹣1)=0,∴(x﹣1)(2x2﹣2x﹣x﹣1)=0,∴2x2﹣3x﹣1=0,∴x=或x=.故答案为:,.(3)x1满足方程﹣x+m=﹣,即﹣mx1=2,x2,x3满足方程x﹣m=﹣,即x2,x3是方程x2﹣mx+2=0的两个根,∴Δ=m2﹣8>0,即m2>8,x2+x3=m,∴=(m﹣2x1)2=m2﹣4mx1+4=m2+4(﹣mx1)=m2+8>16.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.【答案】(1)y=x2﹣2x;(2)①证明见解答;②;(3).【解答】(1)解:∵二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,∴二次函数的解析式为:y=(x﹣0)(x﹣4)=x2﹣2x;(2)①证明:如图1,由翻折得:∠OAC=∠A',由对称得:OC=AC,∴∠AOC=∠OAC,∴∠COA=∠A',∵∠A'DB=∠ODC,∴△OCD∽△A′BD;②解:∵△OCD∽△A′BD,∴=,∵AB=A'B,∴=,∴的最小值就是的最小值,y=x2﹣2x=(x﹣2)2﹣2,∴C(2,﹣2),∴OC=2,∴当CD⊥OA时,CD最小,的值最小,当CD=2时,的最小值为=;(3)解法一:∵S△OCD=8S△A'BD,∴S△OCD:S△A'BD=8,∵△OCD∽△A′BD,∴=()2=8,∴=2,∵OC=2,∴A'B=AB=1,∴BF=2﹣1=1,如图2,连接AA',过点A'作A'G⊥OA于G,延长CB交AA'于H,设抛物线的对称轴与x 轴交于点F,由翻折得:AA'⊥CH,∵∠AHB=∠BFC=90°,∠ABH=∠CBD,∴∠BCF=∠BAH,tan∠BCF=tan∠GAA',∴==,设A'G=a,则AG=2a,BG=2a﹣1,在Rt△A'GB中,由勾股定理得:BG2+A'G2=A'B2,∴a2+(2a﹣1)2=12,∴a1=0(舍),a2=,∴BG=2a﹣1=﹣1=,∵A'G∥OQ,∴△A'GB∽△QOB,∴=,即=,∴OQ=4,∴Q(0,4),设直线A'B的解析式为:y=kx+m,∴,解得:,∴直线A'B的解析式为:y=﹣x+4,∴﹣x+4=x2﹣2x,3x2﹣4x﹣24=0,解得:x=,∴直线A′B与二次函数的交点横坐标是.(3)解法二:如图3,过点M作MH⊥OA于H,∵△OCD∽△A′BD,∴===2,∵OC=2,∴A'B=AB=1,设BD=t,则CD=2t,∴A'D=2﹣2t,OD=2A'D=8﹣8t,∵OB=OD+BD=4﹣1=3,∴8﹣8t+t=3,∴t=,∴A'D=2﹣=,∵A'B=AB,∠A'=∠OAC,∠A'BD=∠ABN,∴△A'BD≌△ABM(ASA),∴AM=A'D=,∵△AHM是等腰直角三角形,∴AH=MH=,∴M(,﹣),易得BM的解析式为:y=﹣x+4,∴﹣x+4=x2﹣2x,解得:3x2﹣4x﹣24=0,解得:x=,∴直线A′B与二次函数的交点横坐标是.6.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y 轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC 于点H,当△PFH为等腰三角形时,求线段PH的长.【答案】(1)y=;(2)P的坐标是(6,﹣7);(3)当FP=FH时,PH=;当PF=PH时,PH=;当HF=HP时,PH=;【解答】解:(1)∵A(﹣1,0),B(4,0)是抛物线y=﹣x2+bx+c与x轴的两个交点,且二次项系数a=,∴根据抛物线的两点式知,y=.(2)根据抛物线表达式可求C(0,2),即OC=2.∴==2,∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠ACO=∠CBO,∴∠QAB=∠QAC+∠CAO=∠CBA+45°+∠CAO=∠ACO+∠CAO+45°=135°,∴∠BAP=180°﹣∠QAB=45°,设P(m,n),且过点P作PD⊥x轴于D,则△ADP是等腰直角三角形,∴AD=PD,即m+1=﹣n①,又∵P在抛物线上,∴②,联立①②两式,解得m=6(﹣1舍去),此时n=﹣7,∴点P的坐标是(6,﹣7).(3)设PH与x轴的交点为Q1,P(a,),则H(a,),PH=,若FP=FH,则∠FPH=∠FHP=∠BHQ1=∠BCO,∴tan∠APQ1=tan∠BCO=2,∴AQ1=2PQ1,即a+1=2(),解得a=3(﹣1舍去),此时PH=.若PF=PH,过点F作FM⊥y轴于点M,∴∠PFH=∠PHF,∵∠CFA=∠PFH,∠Q1HB=∠PHF,∴∠CFA=∠Q1HB,又∵∠ACF=∠BQ1H=90°,∴△ACF∽△BQ1H,∴CF=AC=,在Rt△CMF中,MF=1,CM=,F(1,),∴AF:,将上式和抛物线解析式联立并解得x=(﹣1舍去),此时PH=.若HF=HP,过点C作CE∥AB交AP于点E(见上图),∵∠CAF+∠CFA=90°,∠PAQ+∠HPF=90°,∠CFA=∠HFP=∠HPF,∴∠CAF=∠PAQ1,即AP平分∠CAB,∴CE=CA=,∴E(,2),∴AE:,联立抛物线解析式,解得x=5﹣(﹣1舍去).此时PH=.∴当FP=FH时,PH=;当PF=PH时,PH=;当HF=HP时,PH=;五.三角形综合题(共1小题)7.(2023•宿迁)【问题背景】由光的反射定律知:反射角等于入射角(如图①,即∠CEF=∠AEF).小军测量某建筑物高度的方法如下:在地面点E处平放一面镜子,经调整自己位置后,在点D处恰好通过镜子看到建筑物AB的顶端A.经测得,小军的眼睛离地面的距离CD=1.7m,BE=20m,DE=2m,求建筑物AB的高度;【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图②):他让小军站在点D处不动,将镜子移动至E1处,小军恰好通过镜子看到广告牌顶端G,测出DE1=2m;再将镜子移动至E2处,恰好通过镜子看到广告牌的底端A,测出DE2=3.4m.经测得,小军的眼睛离地面距离CD=1.7m,BD=10m,求这个广告牌AG的高度;【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB的高度.他们给出了如下测量步骤(如图③):①让小军站在斜坡的底端D处不动(小军眼睛离地面距离CD=1.7m),小明通过移动镜子(镜子平放在坡面上)位置至E处,让小军恰好能看到塔顶B;②测出DE=2.8m;③测出坡长AD=17m;④测出坡比为8:15(即).通过他们给出的方案,请你算出信号塔AB的高度(结果保留整数).【答案】【问题背景】17m;【活动探究】3.5m;【应用拓展】信号塔AB的高度约为20m.【解答】解:【问题背景】由题意得:AB⊥BD,CD⊥BD,EF⊥BD,∴∠ABE=∠CDE=∠FEB=∠FED=90°,∵∠CEF=∠AEF,∴∠FEB﹣∠AEF=∠FED﹣∠CEF,即∠AEB=∠CED,∴△AEB∽△CED,∴=,∴AB===17(m),答:建筑物AB的高度为17m;【活动探究】如图②,过点E1作E1F⊥BD,过点E2作E2H⊥BD,由题意得:GB⊥BD,CD⊥BD,∴∠GBE1=∠CDE1=∠ABE2=∠CDE2=∠FE1B=∠FE1D=∠HE2B=∠HE2D=90°,∵∠CE2H=∠AE2H,∠CE1F=∠GE1F,∴∠FE1B﹣∠GE1F=∠FE1D﹣∠CE1F,∠HE2B﹣∠AE2H=∠HE2D﹣∠CE2H,即∠GE1B=∠CE1D,∠AE2B=∠CE2D,∴△GE1B∽△CE1D,△AE2B∽△CE2D,∴=,=,∴BE1=BD﹣DE1=10﹣2=8(m),BE2=BD﹣DE2=10﹣3.4=6.6(m),∴GB===6.8(m),AB===3.3(m),∴AG=GB﹣AB=6.8﹣3.3=3.5(m),答:这个广告牌AG的高度为3.5m;【应用拓展】如图,过点B作BM⊥AD于点M,过点C作CN⊥AD于点N,由题意得:BG⊥DG,CD⊥DG,∴∠AGD=∠CDG=∠BMA=∠CND=90°,∵∠BAM=∠GAD,∴90°﹣∠BAM=90°﹣∠GAD,即∠ABM=∠ADG,∵∠ADG+∠DAG=90°,∠ADG+∠CDN=90°,∴∠CDN=∠DAG,∴90°﹣∠CDN=90°﹣∠DAG,即∠DCN=∠ADG,∴∠DCN=∠ADG=∠ABM,∴△DCN∽△ABM,∴=,由题意得:AE=AD﹣DE=17﹣2.8=14.2(m),∵tan∠ADG=,∴tan∠DCN==,tan∠ABM==,设DN=am,AM=bm,则CN=,BM=,∵CN2+DN2=CD2,∴()2+a2=1.72,解得:a=0.8(m)(负值已舍去),∴EN=DE﹣DN=2.8﹣0.8=2(m),CN==1.5(m),∴=,∴AB=,同【问题背景】得:△BME∽△CNE,∴=,∴=,解得:b=(m),∴AB=×≈20(m),答:信号塔AB的高度约为20m.六.四边形综合题(共1小题)8.(2021•宿迁)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN 扫过的面积.【答案】(1)=;(2)BE=2MN,MN⊥BE,理由见解析过程;(3)9π.【解答】解:(1)如图①,连接AF,AC,∵四边形ABCD和四边形AEFG都是正方形,∴AC=AB,AF=AG,∠CAB=∠GAF=45°,∠BAD=90°,∴∠CAF=∠BAG,,∴△CAF∽△BAG,∴=;(2)BE=2MN,MN⊥BE,理由如下:如图②,连接ME,过点C作CH∥EF,交直线ME于H,连接BH,设CF 与AD交点为P,CF与AG交点为R,∵CH∥EF,∴∠FCH=∠CFE,∵点M是CF的中点,∴CM=MF,又∵∠CMH=∠FME,∴△CMH≌△FME(ASA),∴CH=EF,ME=HM,∴AE=CH,∵CH∥EF,AG∥EF,∴CH∥AG,∴∠HCF=∠CRA,∵AD∥BC,∴∠BCF=∠APR,∴∠BCH=∠BCF+∠HCF=∠APR+∠ARC,∵∠DAG+∠APR+∠ARC=180°,∠BAE+∠DAG=180°,∴∠BAE=∠BCH,又∵BC=AB,CH=AE,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∴∠HBE=∠CBA=90°,∵MH=ME,点N是BE中点,∴BH=2MN,MN∥BH,∴BE=2MN,MN⊥BE;(3)如图③,取AB中点O,连接ON,OQ,AF,∵AE=6,∴AF=6,∵点N是BE的中点,点Q是BF的中点,点O是AB的中点,∴OQ=AF=3,ON=AE=3,∴点Q在以点O为圆心,3为半径的圆上运动,点N在以点O为圆心,3为半径的圆上运动,∴线段QN扫过的面积=π×(3)2﹣π×32=9π.七.直线与圆的位置关系(共1小题)9.(2022•宿迁)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O与边BC 交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.【答案】(1)直线AC与⊙O相切,理由见解答;(2)6﹣π.【解答】解:(1)直线AC与⊙O相切,理由如下:∵∠ABC=45°,AB=AC,∴∠ABC=∠C=45°,∴∠BAC=180°﹣2×45°=90°,∴BA⊥AC,∵AB是⊙O的直径,∴直线AC与⊙O相切;(2)连接OD,AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=45°,∴△ABD是等腰直角三角形,∠AOD=90°,∵AO=OB,AB=4,∴S△ABD=•AB•OD=×4×2=4,∴图中阴影部分的面积=S△ABC﹣S△BOD﹣S扇形OAD=×4×4﹣×4﹣=8﹣2﹣π=6﹣π.八.切线的判定与性质(共1小题)10.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, ①(答案不唯一) .求证: ②(答案不唯一) ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.【答案】(1)①(答案不唯一);②(答案不唯一);证明过程见解答;(2)阴影部分的面积为.【解答】解:(1)若选择:①作为条件,②作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE与⊙O相切,求证:DE⊥AC,证明:连接OD,∵DE与⊙O相切于点D,∴∠ODE=90°,∵AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠AED=180°﹣∠ODE=90°,∴DE⊥AC;若选择:②作为条件,①作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE⊥AC,求证:DE与⊙O相切,证明:连接OD,∵DE⊥AC,∴∠AED=90°,AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠ODE=180°﹣∠AED=90°,∵OD是⊙O的半径,∴DE与⊙O相切;故答案为:①(答案不唯一);②(答案不唯一);(2)连接OF,DF,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=6,∠BAD=30°,∴BD=AB=3,AD=BD=3,∵AD平分∠BAC,∴∠EAD=∠DAB=30°,在Rt△AED中,DE=AD=,AE=DE=,∵∠EAD=∠DAB=30°,∴∠DOB=2∠DAB=60°,∠DOF=2∠EAD=60°,∵OD=OF,∴△DOF都是等边三角形,∴∠ODF=60°,∴∠DOB=∠ODF=60°,∴DF∥AB,∴△ADF的面积=△ODF的面积,∴阴影部分的面积=△AED的面积﹣扇形DOF的面积=AE•DE﹣=××﹣=﹣=,∴阴影部分的面积为.九.圆的综合题(共1小题)11.(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中, tan∠DCE= ,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.【拓展应用】(1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;(2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.【答案】【操作探究】tan∠DCE=;【拓展应用】(1)见解析部分;(2)见解析部分.【解答】解:【操作探究】在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中,tan∠DCE=,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.故答案为:tan∠DCE=;【拓展应用】(1)如图②中,点P即为所求.作法:取格点T,连接AT交⊙O于点P,点P即为所求;证明:由作图可知,OM⊥AP,OM是半径,∴=;(2)如图③中,点P即为所求.作法:取格点J,K,连接JK交AB于点P,点P即为所求.一十.解直角三角形的应用-仰角俯角问题(共1小题)12.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).【答案】约为14米.【解答】解:过A作AC⊥PQ,交PQ的延长线于C,如图所示:设AC=x米,由题意得:PQ=5米,∠APC=30°,∠BQC=45°,在Rt△APC中,tan∠APC==tan30°=,∴PC=AC=x(米),在Rt△BCQ中,tan∠BQC==tan45°=1,∴QC=BC=AC+AB=(x+3)米,∵PC﹣QC=PQ=5米,∴x﹣(x+3)=5,解得:x=4(+1),∴BC=4(+1)+3=4+7≈14(米),答:无人机飞行的高度约为14米.一十一.列表法与树状图法(共1小题)13.(2021•宿迁)即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”,将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀.(1)若从中任意抽取1张,抽得卡片上的图案恰好为“莲莲”的概率是 .(2)若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,求两次抽取的卡片图案相同的概率.(请用树状图或列表的方法求解)【答案】见试题解答内容【解答】解:(1)从中任意抽取1张,抽得卡片上的图案恰好为“莲莲”的概率是,故答案为:;(2)把吉祥物“宸宸”、“琮琮”、“莲莲”三张卡片分别记为A、B、C,画树状图如图:共有9种等可能的结果,两次抽取的卡片图案相同的结果有3种,∴两次抽取的卡片图案相同的概率为=.。
江苏省 中考数学试卷( 考试时间120分钟 试卷总分150分 考试形式:闭卷 )一、选择题(本大题共8小题,每小题3分,共计24分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡相应的位置上) 1.如果收入50元记作+50元,那么支出30元记作(▲)A .+30元B .-30元C .+80元D .-80元 2.下列运算正确的是 A .x 2+ x 3= x 5 B .x 4·x 2 = x 6 C .x 6÷x 2= x 3 D .( x 2)3 = x 8 3.下面四个几何体中,俯视图为四边形的是(▲)4.若式子x 3-在实数范围内有意义,则x 的取值范围是(▲) A .x≥3 B .x≤3 C .x >3 D .x <35.对于反比例函数y = 1x,下列说法正确的是(▲)A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大6.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是(▲)工资(元)2000 2200 2400 2600 人数(人)1 3 42 A .2400元、2400元 B .2400元、2300元 C .2200元、2200元 D .2200元、2300元 7.如图,直线a ∥b ,∠1=120°,∠2=40°,则∠3等于(▲)A .600B .700C .800D .9008.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为( ▲ )A 、0B 、-1C 、 1D 、 2 二、填空题 (本大题共有10小题,每空3分,共30分.不需写出解答过程,请把答案直接填写在答题..卡相应位置.....上) 9.在实数227,π, 0.333…中,无理数是 ▲ 。
中考全真模拟测试数学试卷一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×1092. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=13. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°6. 估计7+1的值( ) A. 在1和2之间B. 在2和3之间C. 3和4之间D. 在4和5之间7. 在平面直角坐标系中,点(-1,2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知一次函数y =kx -k ,y 随x 的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 计算8-2的结果是( )A. 6B. 6C. 2D. 210. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A . 415B. 13C. 25D. 35 11. 如图,1l ∥2l ∥3l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知32AB BC ,则DE DF 的值为( )A. 32B. 23C. 25D. 3512. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD 最大面积是( )A. 60 m2B. 63 m2C. 64 m2D. 66 m2二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.14. 函数y=12 -x的自变量x的取值范围是_____.15. 化简221(1)11x x-÷+-的结果是.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为.17. 如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.三、计算题:19. 解方程组:3(1)4(4)05(1)3(5)x yy x---=⎧⎨-=+⎩20. 解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24. 对于某一函数给出如下定义:若存在实数p,当其自变量值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .答案与解析一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×109【答案】C【解析】试题解析:将812000000用科学记数法表示为:8.12×108.故选C.考点:科学记数法—表示较大的数.2. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1【答案】D【解析】试题分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解:A、原式=8a2,故A选项错误;B、原式=a8,故B选项错误;C、原式=a2+b2+2ab,故C选项错误;D、原式=1,故D选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.3. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【详解】试题分析:四个标志中是轴对称图形的有:,所以共有3个.故应选C.考点:轴对称图形4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m【答案】D【解析】试题分析:根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,故选D.考点:三角形三边关系.5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°【答案】B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.6. 7+1的值()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】∵7,∴7,7在在3和4之间.故选C.7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵一次函数y=kx﹣k的图象y随x的增大而减小,∴k<0.即该函数图象经过第二、四象限,∵k<0,∴﹣k>0,即该函数图象与y轴交于正半轴.综上所述:该函数图象经过第一、二、四象限,不经过第三象限.故选C.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9. 的结果是( )A. 6 C. 2【答案】D【解析】-==D.考点:二次根式的加减法.10. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()A.415B.13C.25D.35【答案】D【解析】1231305-=,故选D.11. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC=,则DEDF的值为()A. 32B.23C.25D.35【答案】D 【解析】试题分析:∵1l∥2l∥3l,32ABBC=,∴DEDF=ABAC=332+=35,故选D.考点:平行线分线段成比例.12. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()A. 60 m2B. 63 m2C. 64 m2D. 66 m2【答案】C【解析】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,y max=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.考点:二次函数的应用.二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.【答案】xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 14. 函数y=12-x x 的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 15. 化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .【答案】10.【解析】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为10. 17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .【答案】14.【解析】试题解析:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.【答案】5.【解析】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.三、计算题:19. 解方程组:3(1)4(4)0 5(1)3(5)x yy x---=⎧⎨-=+⎩【答案】x=5,y=7.【解析】试题分析:先把组中的方程化简后,再求方程组的解.试题解析:解:原方程化简得:3413 5320x yy x-=-⎧⎨-=⎩①②①+②,得:y=7,把y=7代入①,得:x=5,所以原方程组的解为:57 xy=⎧⎨=⎩.20. 解不等式组210 23 23xx x+>⎧⎪-+⎨≥⎪⎩.【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323xx x+>⎧⎪⎨-+≥⎪⎩①②由①得:x>﹣0.5,由②得:x≤0,则不等式组的解集是﹣0.5<x≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【答案】(1)见解析;(2)2或35【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD是等腰三角形①若BD=BC=3 在Rt△ABD中,AB=229122BD AD-=-=∴四边形BDFC的面积为S=22×3=62;②若BC=DC=3 过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,2222325CG CD DG=-=-=∴四边形BDFC的面积为S=35③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是2或35【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3)6 5 .【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴CG FCOE FO=,即2323CG=+,解得:CG=65.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】【分析】(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x 的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.24. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .【答案】详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(2)①首先由函数y=2x2﹣bx=x,求得x(2x﹣b﹣1)=0,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=2.∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0.∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x 1=0,x 2=12b +.∵1≤b ≤3,∴1≤x 2≤2,∴1﹣0≤q ≤2﹣0,∴1≤q ≤2; (3)∵记函数y =x 2﹣2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2,∴函数G 的图象关于x =m 对称,∴G :y =22)22()(2(2)()m x x x x m m x x m -⎧-≥⎨--<⎩ .∵当x 2﹣2x =x 时,x 3=0,x 4=3; 当(2m ﹣x )2﹣2(2m ﹣x )=x 时,△=1+8m ,当△<0,即m <﹣18时,q =x 4﹣x 3=3;当△≥0,即m ≥﹣18时,x 5x 6 ①当﹣18≤m ≤0时,x 3=0,x 4=3,∴x 6<0,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m =1,当x 6=x 3时,m =3;当0<m <1时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6<0,q =x 4﹣x 6>3(舍去);当1≤m ≤3时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6>0,q =x 4﹣x 6<3;当m >3时,x 3=0(舍去),x 4=3(舍去),此时x 5>3,x 6<0,q =x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m ≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。
2021年江苏省宿迁市中考数学试卷(附答案详解)一、选择题1.正确答案为B,即−(−3)=3.2.正确答案为A,即B图形关于O点对称。
3.正确答案为A,即2a-a=a。
4.正确答案为C,即中位数为4.5.正确答案为B,根据角平分线定理可得∠BDE=∠BDC=40°,再根据平行线性质可得∠BDE=∠CED,因此∠BDE=20°,故∠BDE+∠BED=60°。
6.正确答案为C,根据双曲线的对称性可得y1>y2>y3.7.正确答案为B,根据折痕的性质可得MN=2AB/5=2×8/5=16/5=3√5/5.8.正确答案为C,①正确,因为开口向上;②正确,因为判别式为负数;③错误,因为4a+b=0;④正确,因为抛物线在x=1和x=3处与x轴相交。
二、填空题9.x≥0.10.完整的句子应该是“该电站建成后,将仅次于三峡水电站成为我国第二大水电站,每年可减少二氧化碳排放xxxxxxxx吨,对促进我市实现减排目标、推进绿色发展、保护生态环境等方面发挥重要作用。
”XXX。
xxxxxxxx XXX 5.16 x 10^7.11.Factorize: aa^2 − a = a(a− 1)(a + 1)12.XXX a^2 − 4a− 1 = 0 is a = 2 ± √513.Given that the radius of the circular base of a cone is 4 and the central angle of the XXX is 120°。
the area of the lateral surface is 8√3π.14.If one root of the quadratic n a^2 + aa− 6 = 0 is 3.thena = -2.15.In the problem "引葭赴岸" from the book "Nine Chapters on the Mathematical Art"。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。
2021年江苏省中考数学真题分类汇编:函数一.选择题(共10小题)1.(2021•南通)如图,四边形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,垂足分别为E,F,且AE=EF=FB=5cm,DE=12cm.动点P,Q均以1cm/s的速度同时从点A出发,其中点P沿折线AD﹣DC﹣CB运动到点B停止,点Q沿AB运动到点B停止,设运动时间为t(s),△APQ的面积为y(cm2),则y与t对应关系的图象大致是()A.B.C.D.2.(2021•徐州)在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.(2021•常州)为规范市场秩序、保障民生工程,监管部门对某一商品的价格持续监控.该商品的价格y1(元/件)随时间t(天)的变化如图所示,设y2(元/件)表示从第1天到第t天该商品的平均价格,则y2随t变化的图象大致是()A.B.C.D.4.(2021•苏州)已知点A(,m),B(,n)在一次函数y=2x+1的图象上,则m与n 的大小关系是()A.m>n B.m=n C.m<n D.无法确定5.(2021•常州)已知二次函数y=(a﹣1)x2,当x>0时,y随x增大而增大,则实数a 的取值范围是()A.a>0B.a>1C.a≠1D.a<1 6.(2021•宿迁)已知双曲线过点(3,y1)、(1,y2)、(﹣2,y3),则下列结论正确的是()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1 7.(2021•宿迁)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a>0;②b2﹣4ac>0;③4a+b=1;④不等式ax2+(b﹣1)x+c<0的解集为1<x<3,正确的结论个数是()A.1B.2C.3D.4 8.(2021•苏州)已知抛物线y=x2+kx﹣k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.﹣5或2B.﹣5C.2D.﹣2 9.(2021•南通)平面直角坐标系xOy中,直线y=2x与双曲线y=(k>2)相交于A,B两点,其中点A在第一象限.设M(m,2)为双曲线y=(k>2)上一点,直线AM,BM分别交y轴于C,D两点,则OC﹣OD的值为()A.2B.4C.6D.8 10.(2021•无锡)设P(x,y1),Q(x,y2)分别是函数C1,C2图象上的点,当a≤x≤b 时,总有﹣1≤y1﹣y2≤1恒成立,则称函数C1,C2在a≤x≤b上是“逼近函数”,a≤x ≤b为“逼近区间”.则下列结论:①函数y=x﹣5,y=3x+2在1≤x≤2上是“逼近函数”;②函数y=x﹣5,y=x2﹣4x在3≤x≤4上是“逼近函数”;③0≤x≤1是函数y=x2﹣1,y=2x2﹣x的“逼近区间”;④2≤x≤3是函数y=x﹣5,y=x2﹣4x的“逼近区间”.其中,正确的有()A.②③B.①④C.①③D.②④二.填空题(共10小题)11.(2021•南京)如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是.12.(2021•扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为.13.(2021•连云港)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是元.14.(2021•南通)下表中记录了一次试验中时间和温度的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则14分钟时的温度是℃.15.(2021•徐州)如图,点A、D分别在函数y=、y=的图象上,点B、C在x轴上.若四边形ABCD为正方形,点D在第一象限,则点D的坐标是.16.(2021•无锡)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称:.17.(2021•无锡)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB 的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:.18.(2021•泰州)在函数y=(x﹣1)2中,当x>1时,y随x的增大而.(填“增大”或“减小”)19.(2021•南京)如图,正比例函数y=kx与函数y=的图象交于A,B两点,BC∥x轴,AC∥y轴,则S△ABC=.20.(2021•宿迁)如图,点A、B在反比例函数y =(x>0)的图象上,延长AB交x轴于C点,若△AOC的面积是12,且点B是AC的中点,则k=.三.解答题(共10小题)21.(2021•盐城)为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到图表:该地区每周接种疫苗人数统计表周次第1周第2周第3周第4周第5周第6周第7周第8周710121825293742接种人数(万人)根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为y=6x﹣6),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为万人;该地区的总人口约为万人;(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.①估计第9周的接种人数约为万人;②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少a(a>0)万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果a=1.8,那么该地区的建议接种人群最早将于第几周全部完成接种?22.(2021•南通)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:300×0.9+(500﹣300)×0.7=410(元);去B超市的购物金额为:100+(500﹣100)×0.8=420(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.23.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=x+的图象的“等值点”.(1)分别判断函数y=x+2,y=x2﹣x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数y=(x>0),y=﹣x+b的图象的“等值点”分别为点A,B,过点B作BC ⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;(3)若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.24.(2021•盐城)学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.【初步感知】如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).(1)点P1旋转后,得到的点P1′的坐标为;(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.【深入感悟】如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.【灵活运用】如图3,设A(1,﹣),α=60°,点P是二次函数y=x2+2x+7图象上的动点,已知点B(2,0)、C(3,0),试探究△BCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.25.(2021•南京)已知二次函数y=ax2+bx+c的图象经过(﹣2,1),(2,﹣3)两点.(1)求b的值;(2)当c>﹣1时,该函数的图象的顶点的纵坐标的最小值是.(3)设(m,0)是该函数的图象与x轴的一个公共点.当﹣1<m<3时,结合函数的图象,直接写出a的取值范围.26.(2021•扬州)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A (﹣1,0)、B(3,0),与y轴交于点C.(1)b=,c=;(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.27.(2021•无锡)在平面直角坐标系中,O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,二次函数y=ax2+2x+c的图象过B、C两点,且与x轴交于另一点A,点M为线段OB上的一个动点,过点M作直线l平行于y轴交BC于点F,交二次函数y =ax2+2x+c的图象于点E.(1)求二次函数的表达式;(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;(3)已知点N是y轴上的点,若点N、F关于直线EC对称,求点N的坐标.28.(2021•常州)【阅读】通过构造恰当的图形,可以对线段长度......等进行比较,直观地得到一些不....、图形面积大小等关系或最值,这是“数形结合”思想的典型应用.【理解】(1)如图1,AC⊥BC,CD⊥AB,垂足分别为C、D,E是AB的中点,连接CE.已知AD=a,BD=b(0<a<b).①分别求线段CE、CD的长(用含a、b的代数式表示);②比较大小:CE CD(填“<”、“=”或“>”),并用含a、b的代数式表示该大小关系.【应用】(2)如图2,在平面直角坐标系xOy中,点M、N在反比例函数y=(x>0)的图象上,横坐标分别为m、n.设p=m+n,q=,记l=pq.①当m=1,n=2时,l=;当m=3,n=3时,l=;②通过归纳猜想,可得l的最小值是.请利用图...2.构造恰当的图形,并说明你的猜想成立.29.(2021•常州)如图,在平面直角坐标系xOy中,正比例函数y=kx(k≠0)和二次函数y=﹣x2+bx+3的图象都经过点A(4,3)和点B,过点A作OA的垂线交x轴于点C.D 是线段AB上一点(点D与点A、O、B不重合),E是射线AC上一点,且AE=OD,连接DE,过点D作x轴的垂线交抛物线于点F,以DE、DF为邻边作▱DEGF.(1)填空:k=,b=;(2)设点D的横坐标是t(t>0),连接EF.若∠FGE=∠DFE,求t的值;(3)过点F作AB的垂线交线段DE于点P若S△DFP=S▱DEGF,求OD的长.30.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在P A的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC 于点H,当△PFH为等腰三角形时,求线段PH的长.2021年江苏省中考数学真题分类汇编:函数参考答案与试题解析一.选择题(共10小题)1.(2021•南通)如图,四边形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,垂足分别为E,F,且AE=EF=FB=5cm,DE=12cm.动点P,Q均以1cm/s的速度同时从点A出发,其中点P沿折线AD﹣DC﹣CB运动到点B停止,点Q沿AB运动到点B停止,设运动时间为t(s),△APQ的面积为y(cm2),则y与t对应关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】函数及其图象;推理能力.【分析】根据点P在AD,DC,BC上分三种情况,将面积表示成t的函数,即可确定对应的函数图象.【解答】解:∵AD=,∴AB>AD,∴点P先到D,当0≤t<13时,过点P作PH⊥AB于H,则,∴PH=,∴,∴图象开口向上,∴A,B不符合题意,当18<t<31时,点P在BC上,∴,只有D选项符合题意,故选:D.【点评】本题主要考查动点问题求面积,关键是要根据动点在不同的线段上分情况讨论,依次来确定对应的分段的函数的图象.2.(2021•徐州)在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质;平移、旋转与对称;推理能力.【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【解答】解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.【点评】此题主要考查二次函数图象与几何变换,正解掌握平移规律是解题的关键.3.(2021•常州)为规范市场秩序、保障民生工程,监管部门对某一商品的价格持续监控.该商品的价格y1(元/件)随时间t(天)的变化如图所示,设y2(元/件)表示从第1天到第t天该商品的平均价格,则y2随t变化的图象大致是()A.B.C.D.【考点】函数的图象.【专题】函数及其图象;应用意识.【分析】根据商品的价格y1(元/件)随时间t(天)的变化图分析得出y2随t变化的规律即可求出答案.【解答】解:由商品的价格y1(元/件)随时间t(天)的变化图得:商品的价格从5增长到15,然后保持15不变,一段时间后又下降到5,∴第1天到第t天该商品的平均价格变化的规律是先快后慢的增长,最后又短时间下降,但是平均价格始终小于15.故选:A.【点评】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.(2021•苏州)已知点A(,m),B(,n)在一次函数y=2x+1的图象上,则m与n 的大小关系是()A.m>n B.m=n C.m<n D.无法确定【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;运算能力;应用意识.【分析】根据点A(,m),B(,n)在一次函数y=2x+1的图象上,可以求得m、n的值,然后即可比较出m、n的大小,本题得以解决.【解答】解:∵点A(,m),B(,n)在一次函数y=2x+1的图象上,∴m=2+1,n=2×+1=3+1=4,∵2+1<4,∴m<n,故选:C.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是求出m、n的值.5.(2021•常州)已知二次函数y=(a﹣1)x2,当x>0时,y随x增大而增大,则实数a 的取值范围是()A.a>0B.a>1C.a≠1D.a<1【考点】二次函数图象与系数的关系.【专题】二次函数图象及其性质;推理能力.【分析】由二次函数的性质得a﹣1>0,即可求解.【解答】解:∵二次函数y=(a﹣1)x2,当x>0时,y随x增大而增大,∴a﹣1>0,∴a>1,故选:B.【点评】本题考查了二次函数的图象与性质,熟记二次函数的性质是解题的关键.6.(2021•宿迁)已知双曲线过点(3,y1)、(1,y2)、(﹣2,y3),则下列结论正确的是()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【专题】反比例函数及其应用;推理能力.【分析】根据k的符号确定反比例函数图象所在的象限,根据反比例函数的性质即可得出答案.【解答】解:∵k<0,∴反比例函数的图象在第二、四象限,∵反比例函数的图象过点(3,y1)、(1,y2)、(﹣2,y3),∴点(3,y1)、(1,y2)在第四象限,(﹣2,y3)在第二象限,∴y2<y1<0,y3>0,∴y2<y1<y3.故选:A.【点评】本题考查了反比例函数的图象和性质的应用,注意:当k<0时,反比例函数图象在第二、四象限,在每个象限内y随x的增大而增大.7.(2021•宿迁)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a>0;②b2﹣4ac>0;③4a+b=1;④不等式ax2+(b﹣1)x+c<0的解集为1<x<3,正确的结论个数是()A.1B.2C.3D.4【考点】二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).【专题】二次函数图象及其性质;几何直观;应用意识.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴无交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线开口向上,则a>0,故正确;②由图象可知:抛物线与x轴无交点,即△<0∴△=b2﹣4ac<0,故错误;③由图象可知:抛物线过点(1,1),(3,3),即当x=1时,y=a+b+c=1,当x=3时,ax2+bx+c=9a+3b+c=3,∴8a+2b=2,即b=1﹣4a,∴4a+b=1,故正确;④∵点(1,1),(3,3)在直线y=x上,由图象可知,当1<x<3时,抛物线在直线y=x的下方,∴ax2+(b﹣1)x+c<0的解集为1<x<3,故正确;故选:C.【点评】此题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2021•苏州)已知抛物线y=x2+kx﹣k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.﹣5或2B.﹣5C.2D.﹣2【考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换.【专题】二次函数图象及其性质;运算能力.【分析】根据抛物线平移规律写出新抛物线解析式,然后将(0,0)代入,求得k的值.【解答】解:∵抛物线y=x2+kx﹣k2的对称轴在y轴右侧,∴x=﹣>0,∴k<0.∵抛物线y=x2+kx﹣k2=(x+)²﹣.∴将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线的表达式是:y=(x+﹣3)²﹣+1,∴将(0,0)代入,得0=(0+﹣3)²﹣+1,解得k1=2(舍去),k2=﹣5.故选:B.【点评】本题主要考查了二次函数图象与几何变换,二次函数的性质以及二次函数图象上点的坐标特征,解题的关键是写出平移后抛物线解析式.9.(2021•南通)平面直角坐标系xOy中,直线y=2x与双曲线y=(k>2)相交于A,B 两点,其中点A在第一象限.设M(m,2)为双曲线y=(k>2)上一点,直线AM,BM分别交y轴于C,D两点,则OC﹣OD的值为()A.2B.4C.6D.8【考点】反比例函数与一次函数的交点问题;相似三角形的判定与性质.【专题】一次函数及其应用;反比例函数及其应用;运算能力;应用意识.【分析】解法一:设A(a,2a),M(m,2),则B(﹣a,﹣2a),分别计算直线AM和BM的解析式,令x=0可得OC和OD的长,相减可得结论;解法二:作辅助线,构建相似三角形,先根据两个函数的解析式计算交点A和B的坐标,根据M(m,2)为双曲线y=(k>2)上一点,将点M的坐标代入反比例函数的解析式可得M的坐标,证明△EMD∽△FDB和△CP A∽△CEM,列比例式分别计算OC和OD的长,可得结论.【解答】解:解法一:设A(a,2a),M(m,2),则B(﹣a,﹣2a),设直线BM的解析式为:y=nx+b,则,解得:,∴直线BM的解析式为:y=x+,∴OD=,同理得:直线AM的解析式为:y=x+,∴OC=,∵a•2a=2m,∴m=a2,∴OC﹣OD=﹣=4;解法二:由题意得:,解得:,,∵点A在第一象限,∴A(,),B(﹣,﹣),∵M(m,2)为双曲线y=(k>2)上一点,∴2m=k,∴m=,∴M(,2),如图,过点A作AP⊥y轴于P,过点M作ME⊥y轴于E,过点B作BF⊥y轴于F,∴∠MED=∠BFD=90°,∵∠EDM=∠BDF,∴△EMD∽△FBD,∴,即==,∴OD==﹣2,∵∠CP A=∠CEM=90°,∠ACP=∠ECM,∴△CP A∽△CEM,∴,即==,∴OC===+2,∴OC﹣OD=+2﹣(﹣2)=4.故选:B.【点评】本题考查反比例函数的综合问题,解题关键是构造相似三角形求解.10.(2021•无锡)设P(x,y1),Q(x,y2)分别是函数C1,C2图象上的点,当a≤x≤b 时,总有﹣1≤y1﹣y2≤1恒成立,则称函数C1,C2在a≤x≤b上是“逼近函数”,a≤x ≤b为“逼近区间”.则下列结论:①函数y=x﹣5,y=3x+2在1≤x≤2上是“逼近函数”;②函数y=x﹣5,y=x2﹣4x在3≤x≤4上是“逼近函数”;③0≤x≤1是函数y=x2﹣1,y=2x2﹣x的“逼近区间”;④2≤x≤3是函数y=x﹣5,y=x2﹣4x的“逼近区间”.其中,正确的有()A.②③B.①④C.①③D.②④【考点】一次函数的性质;一次函数图象上点的坐标特征;二次函数的性质;二次函数图象上点的坐标特征.【专题】新定义;一次函数及其应用;二次函数的应用;应用意识.【分析】根据当a≤x≤b时,总有﹣1≤y1﹣y2≤1恒成立,则称函数C1,C2在a≤x≤b 上是“逼近函数”,a≤x≤b为“逼近区间”,逐项进行判断即可.【解答】解:①y1﹣y2=﹣2x﹣7,在1≤x≤2上,当x=1时,y1﹣y2最大值为﹣9,当x =2时,y1﹣y2最小值为﹣11,即﹣11≤y1﹣y2≤﹣9,故函数y=x﹣5,y=3x+2在1≤x ≤2上是“逼近函数”不正确;②y1﹣y2=﹣x2+5x﹣5,在3≤x≤4上,当x=3时,y1﹣y2最大值为1,当x=4时,y1﹣y2最小值为﹣1,即﹣1≤y1﹣y2≤1,故函数y=x﹣5,y=x2﹣4x在3≤x≤4上是“逼近函数”正确;③y1﹣y2=﹣x2+x﹣1,在0≤x≤1上,当x=时,y1﹣y2最大值为﹣,当x=0或x=1时,y1﹣y2最小值为﹣1,即﹣1≤y1﹣y2≤﹣,当然﹣1≤y1﹣y2≤1也成立,故0≤x ≤1是函数y=x2﹣1,y=2x2﹣x的“逼近区间”正确;④y1﹣y2=﹣x2+5x﹣5,在2≤x≤3上,当x=时,y1﹣y2最大值为,当x=2或x=3时,y1﹣y2最小值为1,即1≤y1﹣y2≤,故2≤x≤3是函数y=x﹣5,y=x2﹣4x的“逼近区间”不正确;∴正确的有②③,故选:A.【点评】本题考查一次函数、二次函数的综合应用,解题的关键是读懂“逼近函数”和“逼近区间”的含义,会求函数在某个范围内的最大、最小值.二.填空题(共10小题)11.(2021•南京)如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是6.【考点】坐标与图形性质.【专题】几何图形问题;应用意识.【分析】由C、D的横坐标求出线段CD的长度,结合中位线的定义和性质,得出OB的长度,从而得到B点的横坐标.【解答】解:∵边AO,AB的中点为点C、D,∴CD是△OAB的中位线,CD∥OB,∵点C,D的横坐标分别是1,4,∴CD=3,∴OB=2CD=6,∴点B的横坐标为6.故答案为:6.【点评】本题主要考查了中位线定义和性质应用,解题的关键是由点C、D的横坐标求出线段CD的长度.12.(2021•扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为2.【考点】解一元一次不等式组;坐标确定位置.【专题】平面直角坐标系;运算能力.【分析】根据第二象限的点的横坐标小于0,纵坐标大于0列出不等式组,然后求解即可.【解答】解:由题意得:,解得:,∴整数m的值为2,故答案为:2.【点评】本题考查了点的坐标及解一元一次不等式组,记住各象限内点的坐标的符号是解决的关键.13.(2021•连云港)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是1264元.【考点】二次函数的应用.【专题】二次函数的应用;应用意识.【分析】设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b元,则每天卖出(80﹣2b)份,由于这两种快餐每天销售总份数不变,可得出等式,求得a =b,用a表达出W,结合二次函数的性质得到结论.【解答】解:设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b 元,则每天卖出(80﹣2b)份,由题意可得,40+2a+80﹣2b=40+80,解a=b,∴总利润W=(12﹣a)(40+2a)+(8+a)(80﹣2a)=﹣4a2+48a+1120=﹣4(a﹣6)2+1264,∵﹣4<0,∴当a=6时,W取得最大值1264,即两种快餐一天的总利润最多为1264元.故答案为:1264.【点评】本题属于经济问题,主要考查二次函数的性质,设出未知数,根据“这两种快餐每天销售总份数不变”列出等式,找到量之间的关系是解题关键.14.(2021•南通)下表中记录了一次试验中时间和温度的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则14分钟时的温度是52℃.【考点】一次函数的应用.【专题】一次函数及其应用;应用意识.【分析】根据表格中的数据可知温度随时间的增加而上升,且每分钟上升3℃,写出函数关系式,进而把t=14min代入计算即可.【解答】解:根据表格中的数据可知温度T随时间t的增加而上升,且每分钟上升3℃,则关系式为:T=3t+10,当t=14min时,T=3×14+10=52(℃).故14min时的温度是52℃.故答案为:52.【点评】本题考查了一次函数的应用,解题的关键是分析表格得出温度T与时间t的关系式.15.(2021•徐州)如图,点A、D分别在函数y=、y=的图象上,点B、C在x轴上.若四边形ABCD为正方形,点D在第一象限,则点D的坐标是(2,3).【考点】反比例函数的性质;反比例函数图象上点的坐标特征;正方形的性质.【专题】反比例函数及其应用;运算能力.【分析】根据题意设出A、D的纵坐标为n,即可得出A(﹣,n),D(,n),根据正方形的性质得出+=n,求得n=3,即可求得D的坐标为(2,3).【解答】解:设A的纵坐标为n,则D的纵坐标为n,∵点A、D分别在函数y=、y=的图像上,∴A(﹣,n),D(,n),∵四边形ABCD为正方形,\∴+=n,解得n=3(负数舍去),∴D(2,3),故答案为(2,3).【点评】本题考查了反比例函数图象上点的坐标特征,正方形的性质,表示出A、D的坐标是解题的关键.16.(2021•无锡)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称:y =﹣答案不唯一.【考点】一次函数的性质;正比例函数的性质;反比例函数的性质;二次函数的性质;关于原点对称的点的坐标.【专题】反比例函数及其应用;推理能力.【分析】根据反比例函数的性质得到k<0,然后取k=﹣1即可得到满足条件的函数解析式.【解答】解:若反比例函数y=(k是常数,且k≠0)的图象在第二、四象限,则k<0,故k可取﹣1,此时反比例函数解析式为y=﹣.故答案为:y=﹣答案不唯一.【点评】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限;当k<0,双曲线的两支分别位于第二、第四象限.17.(2021•无锡)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB 的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:y=x2.【考点】一次函数图象上点的坐标特征;二次函数图象上点的坐标特征;待定系数法求二次函数解析式.【专题】函数的综合应用;图形的相似;应用意识.【分析】过A作AD⊥y轴于D,过B作BE⊥y轴于E,又CB=3AC,得CE=3CD,BE =3AD,设AD=m,则BE=3m,A(﹣m,m2),B(3m,9m2),可得C(0,3m2),而P为CB的中点,故P(m,6m2),即可得y=x2.【解答】解:过A作AD⊥y轴于D,过B作BE⊥y轴于E,如图:∵AD⊥y轴,BE⊥y轴,∴AD∥BE,∴==,∵CB=3AC,∴CE=3CD,BE=3AD,设AD=m,则BE=3m,∵A、B两点在二次函数y=x2的图象上,∴A(﹣m,m2),B(3m,9m2),∴OD=m2,OE=9m2,∴ED=8m2,而CE=3CD,∴CD=2m2,OC=3m2,∴C(0,3m2),∵P为CB的中点,∴P(m,6m2),又已知P(x,y),∴,∴y=x2;故答案为:y=x2.【点评】本题考查二次函数图象上点坐标的特征,涉及相似三角形的判定与性质等知识,解题的关键是用含字母的代数式表示C的坐标.18.(2021•泰州)在函数y=(x﹣1)2中,当x>1时,y随x的增大而增大.(填“增大”或“减小”)【考点】二次函数的性质.【专题】二次函数图象及其性质;推理能力.【分析】直接利用二次函数的增减性进而分析得出答案.【解答】解:∵函数y=(x﹣1)2,∴a=1>0,抛物线开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故答案为:增大.【点评】此题主要考查了二次函数的性质,正确把握二次函数的增减性是以对称轴为界是解题关键.19.(2021•南京)如图,正比例函数y=kx与函数y=的图象交于A,B两点,BC∥x轴,AC∥y轴,则S△ABC=12.【考点】反比例函数与一次函数的交点问题.【专题】反比例函数及其应用;应用意识.【分析】方法一:根据反比例函数的性质可判断点A与点B关于原点对称,则S△AON=S,由BC∥x轴,AC∥y轴可得S△AON=S△CON,S△OBM=S△OCM,再根据S△AON=x A △OBM•y A=3,即可得出三角形ABC的面积.方法二:设出A点坐标,根据题意得出B、C点的坐标,再根据面积公式刚好消掉未知数求出面积的值.【解答】解:方法一:连接OC,设AC交x轴于点N,BC交y轴于M点,。
宿迁市2021年中考数学试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项填涂在答题卡相应位置上)1.的绝对值是A .B .C .D . 2.下列运算的结果为的是A .B .C .D .3.下图是由六个棱长为的正方体组成的几何体,其俯视图的面积是A . B . C .D .4.如图,将放置在的正方形网格中,则的值是A . B. C D 5.下列选项中,能够反映一组数据离散程度的统计量是A .平均数 B .中位数 C .众数D .方差 6.方程的解是A . B . C . D .7.下列三个函数:①。
②。
③.其图象既是轴对称图形,又是中心对称图形的个数有A .B .C .D .8.在等腰中,,且.过点作直线∥,为直线上一点,且.则点到所在直线的距离是A .B .C .D二、填空题(本大题共10小题,每小题3分,共30分. )9.如右图,数轴所表示的不等式的解集是 .10.已知⊙O 1与⊙O 2相切,两圆半径分别为和,则圆心距的值是 .11.如图,为测量位于一水塘旁的两点、间的距离,在地面上确定点,分别取、的中点、,量得,则、之间的距离是 .2-21212-2-6a 33a a +33()a 33a a ⋅122a a÷13456AOB ∠55⨯tan AOB ∠233221111x x x =+--1x =-0x =1x =2x =1y x =+1y x =21y x x =-+0123ABC ∆90ACB ∠= 1AC =C l AB P l AP AB =P BC 1113512O O A B O OA OB C D 20CD =m A B m 第4题图AO B第3题图12.如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则 也随之变化,两条对角线长度也在发生改变.当为 度时,两条对角线长度相等.13.计算2(2-3)+6的值是 .14.已知圆锥的底面周长是,其侧面展开后所得扇形的圆心角为,则该圆锥的母线长是 .15.在平面直角坐标系中,已知点,,点在轴上运动,当点 到、两点距离之差的绝对值最大时,点的坐标是 .16.若函数的图象与轴只有一个公共点,则常数的值是 .17.如图,是半圆的直径,且,点C 为半圆上的一点.将此半圆沿所在的直线折叠,若圆弧恰好过圆心,则图中阴影部分的面积是 .(结果保留)18.在平面直角坐标系中,一次函数与反比例函数的图象交点的横坐标为.若,则整数的值是 .三、解答题(本大题共10题,共96分.)19.(本题满分8分)计算:.20.(本题满分8分)先化简,再求值:,其中.21.(本题满分8分)某景区为方便游客参观,在每个景点均设置两条通道,即楼梯和无障碍通道.如图,已知在某景点处,供游客上下的楼梯倾斜角为(即),长度为(即),无障碍通道的倾斜角为(即).求无障碍通道的长度.(结果精确到,参考数据:,)α∠α∠10π90 xOy (01)A ,(1,2)B P x P A B P 221y mx x =++x m AB O 8AB =BC BC O πxOy 123y x =+5(0)y x x =>0x 01k x k <<+k 1011)2cos 602-⎛⎫--+ ⎪⎝⎭22144(1)11x x x x -+-÷--=3x P 30 30PBA ∠=4m 4PB =m PA 15 15PAB ∠= 0.1m sin150.21≈ cos150.98≈ A B 第17题图22.(本题满分8分)某校为了解“阳光体育”活动的开展情况,从全校名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有 人,并补全条形统计图。
宿迁市2021年初中毕业暨升学考试试卷数 学一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.3)2(-等于A .-6B .6C .-8D .8 2.外切两圆的半径分别为2 cm 和3cm ,则两圆的圆心距是A .1cmB .2cmC .3cmD .5cm3.有理数a 、b 在数轴上的位置如图所示,则b a +的值A .大于0B .小于0C .小于aD .大于b 4.下列运算中,正确的是A .325=-m mB .222)(n m n m +=+C .n m nm =22 D .222)(mn n m =⋅5.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的A .众数B .中位数C .平均数D .极差 6.小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了A .5200mB .500mC .3500mD .1000m 7.如图,∆ABC 是一个圆锥的左视图,其中AB =AC =5,BC =8,则这个圆(第3题)锥的侧面积是A π12B .π16C .π20D .π368.如图,在矩形ABCD 中, AB =4,BC =6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ =y ,那么y 与x 之间的函数图象大致是 二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.因式分解:12-a = ▲ .10.已知5是关于x 的方程723=-a x 的解,则a 的值为 ▲ . 11.审计署发布公告:截止2021年5月20日,全国共接收玉树地震救灾捐赠款物70.44亿元.将70.44亿元用科学记数法表示为 ▲ 元. 12.若22=-b a ,则b a 486-+= ▲ .13.如图,平面上两个正方形与正五边形都有一条公共边,则α∠等于 ▲ °.14.在平面直角坐标系中,线段AB 的端点A 的坐标为(-3,BAC(第7题)MQ DCPNA(第8题) ADCB(第13题)α2),将其先向右平移4个单位,再向下平移3个单位,得到线段A ′B ′,则点A 对应点A ′的坐标为 ▲ .15.直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ▲ 个点.16.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为 ▲ .17.如图,在Rt △ABC 中,∠C =90°, AM 是BC 边上的中线,53sin =∠CAM ,则B ∠tan 的值为 ▲ . 18.数学活动课上,老师在黑板上画直线平行于射线AN (如图),让同学们在直线l 和射线AN 上各找一点B 和C ,使得以A 、B 、C 为顶点的三角形是等腰直角三角形.这样的三角形最多能画 ▲ 个.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:01)2(3)31(5---+--π.20.(本题满分8分)解方程:0322=--xx . 21.(本题满分8分)如图,在□ABCD 中,点E 、F 是对角线AC 上两点,且AE =CF .求证:∠EBF =∠FDE .22.(本题满分8分)一家公司招考员工,每位考AC BM (第17题)BD CBAC ′F E ③ ② ①④ (第16题)• AlN(第18题)生要在A 、B 、C 、D 、E 这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A 、B 两题,试求这位考生合格的概率.23.(本题满分10分)如图,已知一次函数2-=x y 与反比例函数xy 3=的图象交于A 、B 两点. (1)求A 、B 两点的坐标;(2)观察图象,可知一次函数值小于反比例函数值的x 的取值范围是 ▲ .(把答案直接写在答题卡相应位置上)24.(本题满分10分)为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:组别(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数; (3)如果该校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师?25.(本题满分10分)如图,在平面直角坐标系中,O 为原点,每个小方格的边长为1个单位长度.在第一象限内有横、纵坐标均为整数的A 、B 两点,且OA = OB(1)写出A 、B 两点的坐标; (2)画出线段AB 绕点O 旋转一周所形成的图形,并求其面积(结果保留π).26.(本题满分10分)如图,AB 是⊙O 的直径, P 为AB 延长线上任意一点,C 为半圆ACB 的中点,PD 切⊙O 于点D ,连结CD 交AB 于点E . 求证:(1)PD =PE ;(2)PB PA PE ⋅=2.27.(本题满分12分)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.•PBAEOCD(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?28.(本题满分12分)已知抛物线2y x bx c =++交x 轴于A (1,0)、B (3,0)两点,交y 轴于点C ,其顶点为D . (1)求b 、c 的值并写出抛物线的对称轴;(2)连接BC ,过点O 作直线OE ⊥BC 交抛物线的对称轴于点E .求证:四边形ODBE 是等腰梯形;(3)抛物线上是否存在点Q ,使得△OBQ 的面积等于四边形ODBE 的面积的31?若存在,求点Q 的坐标;若不存在,请说明理由.江苏省宿迁市2021年初中毕业暨升学考试数学参考答案及评分建议说明:本评分建议每题给出了一种解法供参考,如果考生的解法与本解法不同,请参照本评分标准的精神给分.一、选择题(本大题共8小题,每小题3分,共24分)1.C 2.D 3.A 4.D 5.B 6.A 7.C 8.D二、填空题(本大题共10小题,每小题3分,共30分)9.(a+1)(a-1) 10.4 11.910044.7 12.14 13.72 14.(1,-1) 15.16073 16.32 17.32 18.3 三、解答题(本大题共10小题,共96分, 解答时应写出必要的文字说明、证明过程或演算步骤) 19.解:原式=5-3+3-1 …………………………………… 6分=4 ……………………………………… 8分 20.解:去分母,得2x-3(x-2)=0 ……………………………………… 3分解这个方程,得 x=6 ………………………………… 6分检验:把=6代入x(x-2)=24≠0 ………………………………………7分所以x =6为这个方程的解. …………………………………… 8分 21、证明:连接BD 交AC 于O 点 ……………………………………… 1分∵四边形ABCD 是平行四边形∴OA=OC ,OB=OD ………………3分又∵AE=CF ∴OE=OF∴四边形BEDF 是平行四边形 …… 6分∴∠EBF=∠EDF …………… 8分 22、解:树状图为:A B C D EBC DE A C D E A B D E A B C E A B C D……………………5分从树状图看出,所有可能出现的结果共有20个,其中合格的结果有14个.所以,P(这位考生合格)= 710. 答:这位考生合格的概率是710……………………8分 23、解:(1)由题意得:⎪⎩⎪⎨⎧=-=x y x y 32 ………………………………………2分 解之得:⎩⎨⎧==1311y x 或⎩⎨⎧-=-=3122y x ………………………………………4分 ∴A 、B两点坐标分别为A()1,3、B ()3,1-- ……………………6分 (2)x的取值范围是:1-<x 或30<<x ……………………………10分 24、解:(1)200%4590=÷………2分(2)画图(如下) …………4分 书法部分的圆心角为:3636020020=⨯………6分 组别(3)绘画需辅导教师235.2220%451000≈=÷⨯(名)…………………………7分书法需辅导教师520%101000=÷⨯(名)……………………………………8分舞蹈需辅导教师85.720%151000≈=÷⨯(名) ……………………………9分乐器需辅导教师1520%301000=÷⨯(名)…………………………………10分25、解:(1)A 、B 两点坐标分别为A ()1,3、B ()3,1或A ()3,1、B ()1,3……………4分 (2)画图(如图), ……7分 由题意得:大圆半径10=OA ,小圆半径22=OC∴πππ2221022=-=)()(圆环S…………………………10分26、证明:(1)连接OC 、OD ………………1分∴OD ⊥PD ,OC ⊥AB ∴∠PDE=90—∠ODE , ∠PED=∠CEO=90—∠C又∵∠C=∠ODE ∴∠PDE=∠PED …………………………………………4分∴•PBAEOCDCOBPE=PD …………………………………………5分 (2) 连接AD 、BD ………………………………………6分∴∠ADB=90∵∠BDP=90—∠ODB ,∠A=90—∠OBD 又∵∠OBD=∠ODB ∴∠BDP=∠A ∴∆PDB∽∆PAD …………………………………………………8分∴ PDPA PB PD =∴PB PA PD ⋅=2∴PB PA PE ⋅=2 …………………………………………………10分27、(1)解:(1)设甲、乙两种花木的成本价分别为x 元和y 元. ………1分由题意得:⎩⎨⎧=+=+15003170032y x y x …………………………………………3分解得:⎩⎨⎧==300400y x …………………………………………5分(2)设种植甲种花木为a 株,则种植乙种花木为(3a+10)株. ………6分 则有:⎩⎨⎧≥+-+-≤++21600)103)(300540()400760(30000)103(300400a a a a ………………8分 解得:132709160≤≤a ……………………………………10分由于a 为整数,∴a 可取18或19或20, ………………………………11分所以有三种具体方案:①种植甲种花木18株,种植乙种花木3a+10=64株;②种植甲种花木19株,种植乙种花木3a+10=67株;③种植甲种花木20株,种植乙种花木3a+10=70株. ………………12分28、(1)求出:4-=b ,3=c ,抛物线的对称轴为:x=2 ………………3分(2) 抛物线的解析式为342+-=x x y ,易得C 点坐标为(0,3),D 点坐标为(2,-1)设抛物线的对称轴DE 交x 轴于点F ,易得F 点坐标为(2,0),连接OD ,DB ,BE∵∆OBC 是等腰直角三角形,∆DFB 也是等腰直角三角形,E 点坐标为(2,2),∴∠BOE= ∠OBD= 45 ∴OE ∥BD∴四边形ODBE是梯形 ………………5分在ODF Rt ∆和EBF Rt ∆中, OD=5122222=+=+DF OF ,BE=5122222=+=+FB EF ∴OD= BE∴四边形ODBE 是等腰梯形 ………………7分(3) 存在, ………………8分由题意得:29332121=⨯⨯=⋅=DE OB S ODBE 四边形 ………………9分设点Q 坐标为(x ,y),由题意得:y y OB S OBQ 2321=⋅=三角形=23293131=⨯=ODBE S 四边形 ∴1±=y当y=1时,即1342=+-x x ,∴ 221+=x , 222-=x ,∴Q 点坐标为(2+2,1)或(2-2,1) ………………11分当y=-1时,即1342-=+-x x , ∴x=2,∴Q 点坐标为(2,-1)综上所述,抛物线上存在三点Q 1(2+2,1),Q 2 (2-2,1) ,Q 3(2,-1) 使得OBQ S 三角形=ODBE S 四边形31. ………………12分E F Q 1 Q 3 Q 2。
2021年江苏省宿迁市中考数学测评试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知⊙O 的半径为5,点P 在直线l 上,且5OP =,直线l 与⊙O 的位置关系是( )A .相切B .相交C .相离D .相切或相交2.如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数()10y x x =>的图象上,则点E 的坐标是( ) A .5151,22⎛⎫+- ⎪ ⎪⎝⎭ B .3535,22⎛⎫+- ⎪ ⎪⎝⎭ C .5151,22⎛⎫-+ ⎪ ⎪⎝⎭ D .3535,22⎛⎫-+ ⎪ ⎪⎝⎭3.一个扇形的弧长是20πcm,面积是240πcm 2,那么扇形的圆心角是( )A .120°B .150°C .210°D .240°4.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD ,BC 于E ,F 点,连结CE ,则△CDE 的周长为( )A .5cmB .8cmC .9cmD .10cm5.不等式34x x -<的解集在数轴上的正确表示是( )A .B .C .D . 6.已知0)5(2=+-++y x y x ,那么x 和y 的值分别是( )A .25-,25B .25,25-C .25,25D .25-, 25-7. 已知222220a a b b ++++=,则1b a+的值是( ) A .2B .1C .0D .-18.若0a b +>,0a b >,则( ) A .0a >,0b >B .0a <,0b <C .a 、b 中一正一负,且正的绝对值较大D .a 、b 中一正一负,且负的绝对值较大9. 一个数的绝对值比本身大,那么这个数必定是( )A .正数B .负数C .整数D . 0二、填空题10.已知⊙O 的直径为 12 cm ,如果圆心 0到直线l 的距离为 5.5 cm ,那么直线l 与⊙O 有 公共点. 11.如图,矩形 ABCD 的周长为 40,设矩形的一边 AB 长为x ,矩形ABCD 的面积为 y ,试写出 y 关于x 的函数关系式 ,其中自变量 x 的取值范围是 .12.函数22y x x =+-的图象如图所示,当 y>0时,x 的取值范围是 当 y<0 时,x 的取值范围是 .13.已知 (x l ,y, )、(x 2,y 2)、(x 3,y 3)是反比例函数1y x=-图象上的三个点,且230l y y y >>>,,则 x 1、x 2、x 3 的大小关系是 .14.四边形的内角和等于 .15.有一边长为3的等腰三角形, 它的两边长是方程x 2-4x +k =0的两根,则k 的值为 .16.四边形的四边依次为a ,b ,c ,d ,且满足a 2+b 2+c 2+d 2-ab-bc-ad-cd=0,问它是什么四边形?答: .17. 若8855x x x x --=--成立,则x 的取值范围是 . 18.点P(2,-3)到x 轴的距离是 ,到y 轴的距离是 .19.如图,在△ABC 中,点D 是BC 上一点,∠BAD=80°,AB=AD=DC ,则∠C= .20.小明去姑姑家做客,姑姑拿出一盒糖果(糖果形状完全相同,并且在果盒外面无法看到任何糖果),其中有20块巧克力糖、15块芝麻酥糖、4块夹心软糖,小明任意取出一块糖是 糖的可能性最大.21.如图,△ABO 按逆时针旋转变换到△CDO ,在这个变换中,旋转中心是_____,•BO 变换到了_______,∠C 是由______旋转变换得到的.22.在△ABC 中,∠A=60°, ∠C=52°, 则与∠B 相邻的一个外角为 °.23.若分式||4()(4)x x l x -+-的值为零,则x 的值是 .24.积的乘方等于积中各个因式分别,再把所得的.三、解答题25.已知等腰三角形的底角为50°26′,底边长28. 4㎝,求这个等腰三角形的腰长和三角形的面积(结果保留 3 个有效数字).26.如图,点D、E分别在 AB、AC 上,且AD AEDB EC=,AD = 15,AB = 40,AC = 28,求 AE 的长.27.如图所示,□ABCD中,以BC,CD为边分别向外作两个正三角形BCE和CDF.求证:△AFF是等边三角形.28.若不等式2123x ax b-<⎧⎨->⎩的解集为11x-<<,求(1)(1)a b+-的值.29.将两块三角尺的直角顶点重合成如图的形状,若∠AOD=127°,则∠BOC度数是多少?30.如图,已知DE∥ BC,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC的度数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.B4.D5.C6.A7.A8.A9.B二、填空题10.两11.220y x x =-+,0<x<2012.x<-2 或 x>1,-2<x<1.13.123x x x >>14.360°15.3或416.菱形17.58x <≤18.3,219.25°20.巧克力21.点O ,DO, ∠A22.11223.-424.乘方,幂相乘三、解答题25.如图所示,在△ABC 中,AB=AC ,∠B=∠C=50°26′,过A 画 AD ⊥BC,14.22BC BD CD ===(cm) 在△ABD 中,∵cos BD B AB =,∴014.222.3cos cos5026BD AB B ⋅==≈'(cm) ∵tan AD B BD =,∴tan 17.2AD BD B =⋅≈(cm),面积=12442AC S AD BC ∆=⋅≈(cm 2 26.设 AE 为x ,则 EC 为 28 一x .由题意得15401528x x=--,x=10.5. ∴AE 的长为10. 5. 27.只要证△ABE ≌△FDA ≌△FCE 得AE=AF=EF 即可28.-629.53°30.∠EDC=25°,∠BDC=85°。
2021年江苏省宿迁市中考数学测评考试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图1的俯视图的是( ) 2. 下列不等式中能成立的是( )A . cos10<cosl00<cos200B .tan15O >tan250>tan350C . coslO O <tan700<tan600D . sin8O O >sin550>sin3003.一种花边是由如图的弓形组成的,弧 ACB 的半径为 5,弦AB=8,则弓高 CD 为( )AA .8B .152C .7D .1434.有下列四个命题:⑴对顶角相等;⑵内错角相等;⑶有两边和其中一边的对角对应相等的两个三角形全等;⑷在同一平面内,如果两条直线都垂直于第三条直线 ,那么这两条直线平行.其中真命题有( ) A .1个B .2个C .3个D .4个5.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( ) A .32 B .33 C .34 D .36.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( ) A .4 B .6C .16D .55 7.在 =3.1415926535897中,频数最大的数字是( ) A .1B . 3C .5D .98.如图,将平行四边形AEFG 变换到平行四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是( ) A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍9.赵强同学借了一本书,共 280 页,要在两周借期内读完. 当他读了一半时,发现平均每天要FADE BC多读 21 页才能在借期内读完. 他读前一半时,平均每天读多少页?如果设读前一 半时,平均每天读x 页,则下列方程中,正确的是( ) A .1401401421x x +=- B .2802801421x x +=+ C .1401401421x x +=+ D .1010121x x +=+ 10.在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( ) A .+B .-C .×D .÷二、填空题11.如图所示,CD 直角△ABC 斜边上的高线,且 AC = 10 cm ,若sin ∠ACD=35,则CD= cm .12.如图,以△ABC 两边AB ,AC 向外作正三角形△ABD ,△ACE ,四边形ADFE 是平行四边形,当∠BAC= 时,□ADFE 是矩形.13.质检部门对200件产品进行检查,将所得数据整理后,分成五组,已知其中四个小组的频率分别为0.04,0.12,0.16,0.4.则还有一组的频数为 .14.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA,ED ⊥OB,垂足分别是C 、D ,若OE=4,∠AOB=60°,则DE=_______.15.一个印有“祝你学习愉快”字样的立方体纸盒有面展开图如图所示,则与“你”字面相 对的面上是“ ”字.16.如图,在长方形 ABCD 中,AB=3,BC=7,则AB ,CD 间的距离是 .17.判断下列各组图形分别是哪种变换?A OECD三、解答题18.已知一次函数23y x=-的图象与反比例函数2kyx+=的图象相交,其中有一个交点的纵坐标为 3,求k的值和反比例函数的解析式.19.某市市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至l28元,求这种药品平均每次降价的百分率是多少?20.把汽油以均匀的速度注入容积为60 L的桶里,注入的时间和注入的油量如下表:注入的时间t(min)123456注入的油量q(L) 1.53 4.567.59(1)求q与t的函数解析式,并判断q是否是t的正比例函数;(2)求变量t的取值范围;(3)求t=1.5,4.5时,q的对应值.21.将两块三角尺的直角顶点重合成如图的形状,若∠AOD=127°,则∠BOC度数是多少?22.一个长方体的体积为810cm,高为210cm,求长方体的表面积.10cm3,宽为323.如图甲,正方形被划分成l6个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.如图乙是一种涂法,请在图①~③中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图乙与图丙)24.一班36个学生的期末考试与取得各等成绩的人数如条形统计图所示,请据此画出相应的扇形统计图,并在扇形统计图上标明各等学生在全班学生中所占的百分比.25.如图①表示某地区2003年12个月中每月的平均气温,图②表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):26.25(精确到0.001 ).27.22|1|(3)0a b c-+++=,求2a b c+-的值.28.2002年5月15日,我国发射的海洋1号气象卫星,进入预定轨道后,若绕地球运行的速度为每秒7.9×103m,则运行2×102 s,走过的路程是多少(用科学记数法表示)?29.画一条数轴,在数轴上分别标出绝对值是4,0,122的各数.30.如图是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点0顺时针依次旋转90°,l80°,270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!(方格纸中的小正方形的边长为1个单位长度)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.A4.B5.B6.C7.C8.D9.C10.C二、填空题812.150°13.5614.215.愉16.7.17.轴对称,平移,旋转,相似三、解答题18.y=3代入23y x=-,得x=3,∴交点为(3,3)把x= 3,y=3代入2kyx+=,得k=7,故反比例函数的解析式是9yx=19.20%20.(1)q=1.5t,是;(2)0≤t≤40;(3)2.25,6.75 21.53°22.62.40l⨯cm223.略24.略25.不唯一,如:气温高或低的月份用电量最大12,-=≈12)10.178 27.628.1.58×lO6m29.略30.略。
2021年江苏省宿迁市中考数学综合检测试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题把Rt △ABC 各边的长度都扩大3倍得Rt △A ˊB ˊC ˊ,那么锐角A 、A ˊ的余弦值的关系为( )A .cosA =cosA ˊB .cosA =3cosA ˊC .3cosA =cosA ˊD .不能确定 2.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是( )A .45°B .60°C .90°D .180° 3.某电视机厂计划用两年的时间把某种型号的电视机成本降低36%,若每年下降的百分比相同,则这个百分比为( )A .16%B .18%C .20%D .22%4.如图,为了测出湖两岸A 、B 间的距离.一个观测者在在C 处设桩,使三角形ABC 恰为直角三角形,通过测量得到AC 的长为160 m ,BC 长为l28 m ,那么从点A 穿过湖到点B 的距离为( )A .86 mB .90 mC .96 mD .l00 m5.结果为2a 的式子是( )A .63a a ÷B .24-⋅a aC .12()a -D .42a a -6.A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨.若经过x 个月后,两厂库存钢材相等,则x =( )A .3B .5C .2D .47.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A .yx B .x+y C .100x+y D .100y+x8. 用代数式表示“a 、b 两数和的平方的 2倍”,正确的表示是( )A .222a b +B .22()a b +C .222a b +D .222()a b + 9.1纳米相当于1根头发丝直径的六万分之一,用科学记数法表示头发丝的半径是 ( )A .6×103纳米B .6×104纳米C .3×103纳米D .3×104纳米10.432()()()7143-÷-÷-=( ) A .169- B .449- C .4 D .-411.当 a=-3,b= 0,c=-4,d=9时,(a-b )×(c+d )的值是( )A .10B .13C .-14D .-15二、填空题12. 如图是置于水平地面上的一个球形储油罐,小明想测量它的半径. 在阳光下,他测 得球的影子的最远点 A 到球罐与地面接触点B 的距离是 10 m(如示意图,AB =10 m). 同一时刻,他又测得竖直立在地面上长为 lm 的竹竿的影子长为 2 m ,那么,球的半径是m .13. 如图,已知⊙O 的半径为 4,点C 在⊙O 上,∠ACB=45°,求弦AB 的长.14.一条弦把一条直径分成2 cm 和6 cm 两部分,若此弦与直径相交成 30°,则该弦的弦心距为 cm .15.现有一批救灾货物要从A 市运往B 市,若两城市的路程为400km ,车的平均速度为x (km/h ),从A 市到B 市所需的时间y (h ),则则y 关于x 的函数解析式为 ,若平均车速为50(km/h ),则从A 市到B 市所需的时间为 h .16.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请 个球队参加比赛.17.如图,在等腰三角形ABC 中,AB=AC ,BC=2cm ,∠A=120°,将△ABC 绕着点A 旋转,当点B 落在点C 的位置时,点C 落在点D 处,则BD 的长为 cm .18.下图的几何体由若干个棱长为数1的正方体堆放而成,则这个几何体的体积为__________.19.某风景点,上山有 A ,B 两条路,下山有 C ,D ,E 三条路,某人任选一条上、下山的路线,共有 种走法. 20.如图,0D ⊥AB ,垂足为点O ,∠DOC :∠AOC=2:1,则∠BOC= .21.如图,B 、C 是AD 的三等分点,E 是CD 的中点,根据图形填空.(1)AE= +AB=AD- =AD- ; (2)CE= =12 =12 =16. 22.已知142n a b --与21n a b +是同类项,则2n m -= .三、解答题23.将图中的△ABC 依次做下列变换,画出相应的图形.(1)沿y 轴正向平移1个单位;(2)以B 点为位似中心,放大到2倍.24.在梯形ABCD 中,DC ∥AB ,E 是DC 延长线上一点,BE ∥AD ,BE=BC ,∠E=50o ,试求梯形ABCD 的各角的度数.请问此时梯形ABCD 是等腰梯形吗?为什么?25.如图,等腰梯形ABCD 中,上底AD=24 cm ,下底BC=28 cm ,动点P 从A 开始沿AD 边向D 以1 cm /s 的速度运动,动点Q 从点C 开始沿CB 边向B 以3 cm /s 的速度运动,P ,Q 分别从点A ,C 同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t(s).(1)t 取何值时,四边形PQCD 为平行四边形?(2)t 取何值时,四边形PQCD 为等腰梯形?26.作一个任意的三角形ABC ,以A 为对称中心,画出它的对称三角形.27.已知正比例函数1y k x =(1k 为常数,且10k ≠)的图象与一次函数23y k x =+(2k 为常数,且20k ≠)的图象交于点P (-3,6).(1)求1k 、2k 的值;(2)如果一次函数与x 轴交于点M ,求点M 的坐标.28.已知点P (2,2)在反比例函数xk y =(0≠k )的图象上. (1)当3-=x 时,求y 的值;(2)当31<<x 时,求y 的取值范围.29.先阅读下列材料,再分解因式:(1)要把多项式am an bm bn +++分解因式,可以先把它的前两项分成一组,提取公因式a ,再把它的后两项分成一组,并提出公因式b ,从而得到()()a m n b m n +++.这时,由于()a m n +与()b m n +又有公因式m n +,于是可提出公因式m n +,从而得()()m n a b ++.因此,有 am an bm bn ÷++()()am an bm bn =+++()()a m n b m n =+++()()m n a b =++这种因式分解的方法叫做分组分解法. 如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(2)请用(1)中给出的方法分解因式:①2a ab ac bc -+-;②255m n mn m +--.30.(1)如图①,小明想剪一块面积为 25cm 2 的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为 3cm 的正方形纸板沿对角线剪开,拼成如图②所示的一个大正方形,你能带他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间?图① 图②【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.C4.C5.B6.A7.D8.B9.D10.D11.D二、填空题12.2.513.4214.l15.400,8yx16.717.218.619.620.150°21.(1)EB,ED,CE (2)ED,AB,BC,AD22.3三、解答题23.如图所示.24.思路:梯形ABCD的各角的度数分别为50o,130o,130o,50o,梯形ABCD是等腰梯形,证明略.25.(1) t 取6 s 时,四边形PQCD 为平行四边形;(2)t 取7s 时,四边形PQCD 为等腰梯形 26.略27.(1)根据题意.得163k =-,∴12k =-;2633k =-+,21k =-.(2)由(1),得3y x =-+.令0y =,得30x -+=,∴3x =.∴点M 的坐标为(3,0) .28.解 (1)∵点P (2,2)在反比例函数x k y =的图象上,∴22k =.即4=k . ∴反比例函数的解析式为x y 4=. ∴当3-=x 时,34-=y . (2)∵当1=x 时,4=y ;当3=x 时,34=y , 又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为434<<y . 29.(2))①()()a b a c -+,②()(5)m n m --30.(1)5cm (2)在 4 和 5 之间。
2021年江苏省宿迁市中考数学必修综合测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是 .( )2.下面几何体的俯视图正确的是( )A .B .C .D .3.用反证法证明“a b <”时,一般应先假设( ) A .a b > B .a b < C .a b = D .a b ≥ 4.如图,点D ,E ,F 分别是△ABC 三边的中点,且S △DEF =3,则△ABC 的面积等于( ) A .6B .9C .12D .155.20n n 为( ) A .2B .3C .4D .56.鲁老师乘车从学校到省城去参加会议,学校距省城200千米,车行驶的平均速度为80千米/时.x 小时后鲁老师距省城y 千米,则y 与x 之间的函数关系式为( ) A .80200y x =-B .80200y x =--C .80200y x =+D .80200y x =-+7.如果关于x 的不等式(1)1a x a +>+的解集为1x <,那么 a 的取值范围是( ) A .0a > B .0a < C .1a >-D .1a <-8.满足下列条件的△ABC ,不是直角三角形的是( ) A .222b a c =-B .∠C=∠A 一∠BC .∠A :∠B :∠C=3:4:5D .a :b: c=12:13:5 9.如图,在△ABC 中,∠BAC=90°,点D 是AB 的中点,BC=14 cm ,则AD 的长是( )A .6 cmB .7 cmC .8 cmD .9 cm10.下列运动是属于旋转的是( ) A .滾动过程中的篮球的滚动 B .钟表的钟摆的摆动 C .气球升空的运动D .一个图形沿某直线对折过程11.不解方程判断方程21230111x xx -+=+--的解是( ) A .OB .1C .2D .1312.李大伯承包一个果园,种植了l00棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了l0棵树的樱桃,分别称得每棵树所产樱桃的质量如下表: 序号 1 2 3 4 5 6 7 8 9 10 质量(kg )14 21 27 17 18 20 19 23 19 22据调查,市场上今年樱桃的批发价格为每千克l5元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收人分别为( ) A .200 kg ,3000元B .1900 kg ,28500元C .2000 kg ,30000元D .1850 kg ,27750元 13.下列方程中,解是2x =的是( ) A . 360x += B . 11042x -+= C .223x =D .531x -=14.+8 比 -5 大( ) A .13B .-13C .8D .5.15.数轴上A 、B 两点分别是-8. 2,365,则A 、B 两点间的距离为( )A .4145B .2145C .-1.6D .1.6二、填空题16.如图,AB 是半圆O 的直径,AC = AD ,OC =2,∠CAB= 30°,则点O 到CD 的距离OE= .17. 已知反比例函数y =-8x的图象经过点P (a+1,4),则a=_____.-318.如图所示,在四边形ABCD 中.对角线AC ,BD 互相平分且交于点0,MN 经过点O ,若AB=8 cm ,AD=6 cm ,ON=4 cm ,则四边形BCMN 的周长是 cm .19.若x=0是方程0823)2(22=-+++-m m x x m 的解,则m= .20.为了缓解旱情,某市发射增雨火箭,实施增雨作业.在一场降雨中,某县测得l0个面积相等区域的降雨量如下表: 区域12 3 4 5 6 7 8 9 10 降雨量(mm) 10121313201514151414则该县这l0个区域降雨量的众数为 mm ,平均降雨量为 mm . 21.已知(x-3)2+│2x-3y+7│=0,则x=________,y=_________. 3,13322.因式分解:xy y x 22-= .23.如图所示,已知在Rt △ABC 中,∠C=90°,AD 是△ABC 的角平分线,BC=5,CD :BD=2:3,则点D 到AB 的距离为 .三、解答题24.为测量河宽 AB ,从B 出发,沿河岸走 40 m 到 C 处打一木桩,再沿BC 继续往前走 10 m 到D 处,然后转过 90°沿 DE 方向再走 5 m 到 E 处,看见河对岸的A 处和C 、E 在一条直线上,且AB ⊥DB(如图),求河宽.25.如图所示的两组图形中,各有两个三角形相似,求图中 x、y的值.26.已知y+n与x+m(m,n是常数)成正比例关系.(1)试判断y是否是x的一次函数,并说明理由;(2)若x=2,y=3;x=-2,y=1,求y与x之间的函数解析式.27.如图,∠1 =∠2,∠1+∠3 =180,问CD、EF平行吗?为什么?28.化简:(1)249 ()77a a aa a a--⋅-+(2)12() 11b bbb b +÷---.EB D CA21 EDCBA29.如图,AD 平分∠BAC ,交BC 于点D ,∠ADB=105°,∠ACB=65°,CE 是AB 边上的高.求∠BAC ,∠BCE 的度数.30. 如图,已知在△ABC 中,BE 和CD 分别为∠ABC 和∠ACB 的平分线,且BD=CE ,∠1=∠2.说明BE=CD的理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.2.B3.D4.C5.D6.D7.D8.C9.B10.B11.A12.C13.B14.A15.A二、填空题 16.17.18. 22 cm19.-420.14,1421.22.)2(-x xy 23.2三、解答题 24.∵∠ACB=∠ECD,∠CDE=∠CBA=90°,∴△ABC ∽△EDC. ∴DE DC BA BC =,即51040BA =,∴BA=20 m 答:河宽 20 m .25.302820x =,42x =. 152535y=,21y =. 26.(1)是,理由略;(2)122y x=+27.平行,说明∠CDF+∠3=180°28.(1)14;(2)1b-29.80°、55°30.BE和CD分别为∠ABC和∠ACB的平分线,可得∠ABC=2∠1,∠ACB=2∠2, 由于∠1=∠2,∴∠ABC=∠ACB,△BCD≌△CBE(AAS),∴BE=CD.。
2021年江苏省宿迁市中考数学精编试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.晚上,小浩出去散步,经过一盏路灯时,他发现自己的身影是( )A . 变长B . 先变长后变短 C. 变短 D . 先变短后变长2.如图,矩形()ABCG AB BC 与矩形CDEF 全等,点B C D ,,在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是( )A .0B .1C .2D .33.如图,点A ,D ,G ,M 在半圆O 上,四边形ABOC ,OFDE ,HMNO•都是矩形,•设BC=a ,EF=b ,NH=c ,则下列各式正确的是( ).A .a>b>cB .a=b=cC .c>a>bD .b>c>aE GO M N F HD C BA4.如图,点O 是两个同心圆的圆心,大圆半径OA 、OB 交小圆于点C 、D ,下列结论中正确的个数有( )(1)⌒AB =⌒CD ;(2 )AB= CD ;(3)∠OCD=∠OABA .0 个B .1个C .2 个D .3 个5.如图所示,已知AB ∥CD 且与MN 、PQ 相交,那么有 ( )A .∠l=∠2B .∠2=∠3C .∠l=∠4D .∠3=∠46.对于任意实数a,点P(a,(6)a a+)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限7.如果2m,m,1m-这三个实数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是()A.0m<B.12m>C.0m>D.12m<<8.把m2(m-n)+m(n-m)因式分解等于()A.(m-n)(m2-m) B.m(m-n)(m+1) C.m(n-m)(m+1) D.m(m-n)(m-1)9.下列几对数中,既是方程230x y+=的解,又是方程2x y=-+的解的是()A.82xy=⎧⎨=⎩B.64xy=⎧⎨=-⎩C.42xy=⎧⎨=⎩D.28xy=⎧⎨=⎩10.如图,点P是直线MN外一点,PD⊥MN,垂足为D,A、B是直线MN上的两点,连结PA、PB,已知PA=4cm,PB=5cm,PD=3cm,则点P到直线MN的距离是()A.4cm B.5cm C.3cm D.无法确定11.如图,从A地到B地,最短的路线是()A.A→G→E→B B.A→C→E→B C.A→D→G→E→B D.A→F→E→B12.关于一条线段,下列判断正确的是()A.只有一个端点B.有两个端点C.有两个以上端点 D.没有端点二、填空题13.在Rt△ABC中,已知∠C=90°,若∠A=30°,a=43,则∠B=______, b=______,c=______.14.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径是_______cm.15.某集团公司计划生产化肥 500t,则每天生产化肥 y(t)与生产天数 x(天)之间的函数.16.有甲、乙两家出租车公司提供租车服务,收费都与汽车行驶的路程有关.设租车行驶x(km),甲公司收y1(元),乙公司收y2(元),若y1、y2关于x的函数图象如图所示,请完成下列填空:(1)当行驶路程为 km 时,两家公司的租车费用相同; (2)当行驶路程在 km 以内时,租甲公司的车,费用较省. 17.请指出下列问题哪些是普查,哪些是抽样调查.(1)为了解你所在学校的八年级所有学生完成作业的情况,对你全班所有学生进行调查;(2)为了解你所在班级学生的家庭收入情况,对你全班所有女生进行调查;(3)为了解你所在班级学生的体重情况,对你全班所有学生进行调查.18.如图,△ABC 可看作是△DEC 通过 变换得到的.19.如图,把五边形ABCDO 变换到五边形CDEFO ,应用了哪种图形变换?请完整地叙述这个变换:20.如图,已知直线上四点A 、B 、C 、D .那么,AD=BC+ + =AB+ =AC+ ;BC=AC- = -CD=AD- - .三、解答题21. 如图,在△ABC 中, AB=AC ,AD ⊥BC 垂足为D , AD=BC, BE=4.求(1) tanC 的值; (2)AD 的长.22.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23y=x 3x 15-++的一部分,如图. (1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.23.今有一机器人接到指令:在4×4的正方形(每个小正方形边长均为1)网格的格点..上跳跃,每次跳跃的距离只能为1或2或2或5,机器人从A 点出发连续跳跃4次恰好跳回A 点,且跳跃的路线(A B C D A →→→→)所成的封闭图形为多边形.例如图①机器人跳跃四次的路线图形是四边形ABCD .仿照图①操作:(1)请你在网格图②中画出机器人跳跃的路线图形是直角梯形ABCD (只画一个图即可);(2)请在网格图③中画出机器人跳跃的路线图形是面积为2的平行四边形ABCD (只画一个图即可).24.在长度为3的线段上取一点,使此点到线段两端点的距离的乘积为2,求此点所分得的两线段长.A B C人 梯25.下图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)26.如图,在△DEF 中,已知DE=17cm ,EF=30 cm ,EF 边上的中线DG=8 cm ,试说明△DEF 是等腰三角形.27.如图 ,已知 AB ∥DE ,∠B =∠E ,试说明 BC ∥EF.28. 阅读理解,回答问题.在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的一种方法:若0a b ->,则a b >; 0a b -=,则a b =;若0a b -<,则a b <.例如:在比较21m +与2m 的大小时,小东同学的解法是:∵2222(1)110m m m m +-=+-=>,∴221m m +>. 请你参考小东同学的解法,解决如下问题:(1)已知a ,b 为实数,且1ab =,设111111a b M N a b a b =+=+++++,,试比较M ,N 的大小; (2)一天,小明爸爸的男同事来家做客,已知爸爸的年龄比小明年龄的平方大5岁,爸爸 同事的年龄是小明年龄的 4倍,请你帮忙算一算,小明该称呼爸爸的这位同事为“叔叔”还是“大伯”?29.如图所示,有一条小船,(1)若把小船平移,使点A 平移到点B ,请你在图中画出平移后的小船;(2)若该小船先从点A 航行到达岸边l 的点P 处补给后再航行到点B ,但要求航程最短,试在图中画出点P 的位置.30.(1)计算21(3)62--+⨯;(2)给出三个多项式2122x x -+、2312x x +-、212x x +,请你选择其中的两个多项式进行加法或减法运算.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.B5.B6.D7.A8.A9.B10.C11.DB二、填空题13.60°,12,3814.515.500y x=16. (1)1000;(2)100017.(1)抽样调查;(2)抽样调查;(3)普查18.轴对称19.应用了旋转变换,五边形 CDBFO 是由五边形ABCDO 绕点 0接顺时针方向旋转 90°得到的.20.AB ,CD ,BD ,CD ;AB ,BD ,AB ,CD三、解答题21.(1)2; (2)52.22.解:(1)23y=x 3x 15-++=23519x 524⎛⎫ ⎪⎝⎭--+,∵305-< ∴函数的最大值是194. 答:演员弹跳的最大高度是194米. (2)当x =4时,23y=43415⨯⨯-++=3.4=BC ,所以这次表演成功.(1) (2)1,2 25.圆柱体,250π.26. 说明DG 是EF 是中垂线27.∵AB ∥DE ,∴∠B=∠DGC ,∵∠B=∠E,∴∠DGC=∠E ,∴BC ∥EF . 28.(1)M=N (2)设小明的年龄x 岁,则254x x +-2(2)10x =-+>,∴小明称呼爸爸的这位同事为“叔叔” 29.略30.(1) 12;(2)答案不唯一. 如22213(2)(1)2122x x x x x x -+++-=++; 2213(2)(1)2322x x x x x -+-+-=-+; 22211(2)()2222x x x x x -+++=+; 2211(2)()222x x x x x -+-+=-+; 22231(1)()22122x x x x x x +-++=+-; 2231(1)()122x x x x x +--+=- A B C D 24.A B C D。
2021年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2的绝对值是()A.﹣2 B.C.2 D.±22.下列运算正确的是()A.m2•m3=m6B.m8÷m4=m2C.3m+2n=5mn D.(m3)2=m6 3.已知一组数据5,4,4,6,则这组数据的众数是()A.4 B.5 C.6 D.84.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.130°D.150°5.若a>b,则下列等式一定成立的是()A.a>b+2 B.a+1>b+1 C.﹣a>﹣b D.|a|>|b| 6.将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为()A.y=(x+2)2﹣2 B.y=(x﹣4)2+2 C.y=(x﹣1)2﹣1 D.y=(x﹣1)2+57.在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2 B.4 C.5 D.68.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)9.分解因式:a2+a=.10.若代数式有意义,则x的取值范围是.11.2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为.12.不等式组的解集是.13.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为.14.已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x1 x2(填“>”“<”或“=”).15.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB 的中点,若BC=12,AD=8,则DE的长为.16.已知a+b=3,a2+b2=5,则ab=.17.如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为.18.如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A 运动到点D时,线段PQ在平面内扫过的面积为.三、解答题(本大题共10小题,共96分.解答时应写出必要的计算过程、推演步骤或文字说明)19.计算:(﹣2)0+()﹣1﹣.20.先化简,再求值:÷(x﹣),其中x=﹣2.21.某校计划成立下列学生社团.社团名称文学社动漫创作社合唱团生物实验小英语俱乐部组社团代号A B C D E为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必需选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?22.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.23.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).24.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.25.如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.26.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元55 60 65 70/千克)70 60 50 40销售量y(千克)(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?27.【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:=.【探究】如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且=,连接BG交CD 于点H.求证:BH=GH.【拓展】如图③,点E在四边形ABCD内,∠AEB十∠DEC=180°,且=,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG =CG.28.二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.参考答案与试题解析一.选择题(共8小题)1.2的绝对值是()A.﹣2 B.C.2 D.±2【分析】利用绝对值的意义进行求解即可.【解答】解:2的绝对值就是在数轴上表示2的点到原点的距离,即|2|=2,故选:C.2.下列运算正确的是()A.m2•m3=m6B.m8÷m4=m2C.3m+2n=5mn D.(m3)2=m6【分析】根据同底数幂的乘除法、幂的乘方的计算法则进行计算即可.【解答】解:m2•m3=m2+3=m5,因此选项A不正确;m8÷m4=m8﹣4=m4,因此选项B不正确;3m与2n不是同类项,因此选项C不正确;(m3)2=m3×2=m6,因此选项D正确;故选:D.3.已知一组数据5,4,4,6,则这组数据的众数是()A.4 B.5 C.6 D.8【分析】根据题目中的数据和众数的含义,可以得到这组数据的众数,本题得以解决.【解答】解:∵一组数据5,4,4,6,∴这组数据的众数是4,故选:A.4.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.130°D.150°【分析】由a∥b,利用“两直线平行,同位角相等”可求出∠2的度数.【解答】解:∵a∥b,∴∠2=∠1=50°.故选:B.5.若a>b,则下列等式一定成立的是()A.a>b+2 B.a+1>b+1 C.﹣a>﹣b D.|a|>|b|【分析】利用不等式的基本性质判断即可.【解答】解:A.由a>b不一定能得出a>b+2,故本选项不合题意;B.若a>b,则a+1>b+1,故本选项符合题意;C..若a>b,则﹣a<﹣b,故本选项不合题意;D.由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.6.将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为()A.y=(x+2)2﹣2 B.y=(x﹣4)2+2 C.y=(x﹣1)2﹣1 D.y=(x﹣1)2+5【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,所得抛物线的解析式为:y=(x﹣1)2+2+3,即y=(x﹣1)2+5;故选:D.7.在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2 B.4 C.5 D.6【分析】根据三角形三边关系,两边之差小于第三边,两边之和大于第三边,可以得到AC的长度可以取得的数值的取值范围,从而可以解答本题.【解答】解:∵在△ABC中,AB=1,BC=,∴﹣1<AC<+1,∵﹣1<2<+1,4>+1,5>+1,6>+1,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.8.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.B.C.D.【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【解答】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,﹣),则PM=m﹣1,QM=﹣m+2,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N在△PQM和△Q′PN中,∴△PQM≌△Q′PN(AAS),∴PN=QM=﹣m+2,Q′N=PM=m﹣1,∴ON=1+PN=2﹣m,∴Q′(3﹣m,1﹣m),∴OQ′2=(3﹣m)2+(1﹣m)2=m2﹣5m+10=(m﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′的最小值为,故选:B.二.填空题(共10小题)9.分解因式:a2+a=a(a+1).【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).10.若代数式有意义,则x的取值范围是x≠﹣1 .【分析】分式有意义,分母不等于零,即x﹣1≠0,由此求得x的取值范围.【解答】解:依题意得:x﹣1≠0,解得x≠﹣1,故答案为:x≠﹣1.11.2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为 3.6×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于36000有5位,所以可以确定n=5﹣1=4.【解答】解:36000=3.6×104.故答案为:3.6×104.12.不等式组的解集是x>1 .【分析】解不等式x+2>0得x>﹣2,结合x>1,利用口诀“同大取大”可得答案.【解答】解:解不等式x+2>0,得:x>﹣2,又x>1,∴不等式组的解集为x>1,故答案为:x>1.13.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为 1 .【分析】设这个圆锥的底面圆半径为r,利用弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:设这个圆锥的底面圆半径为r,根据题意得2πr=,解得r=1,所以这个圆锥的底面圆半径为1.故答案为1.14.已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x1<x2(填“>”“<”或“=”).【分析】(解法一)由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2;(解法二)利用一次函数图象上点的坐标特征,求出x1,x2的值,比较后即可得出结论.【解答】解:(解法一)∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.(解法二)当y=1时,2x1﹣1=1,解得:x1=1;当y=3时,2x2﹣1=3,解得:x2=2.又∵1<2,∴x1<x2.故答案为:<.15.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB 的中点,若BC=12,AD=8,则DE的长为 5 .【分析】利用勾股定理求出AB,再利用直角三角形斜边中线的性质求解即可.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=6,∴∠ADB=90°,∴AB===10,∵AE=EB,∴DE=AB=5,故答案为5.16.已知a+b=3,a2+b2=5,则ab= 2 .【分析】根据完全平方公式变形求解即可.【解答】解:∵a+b=3,a2+b2=5,∴(a+b)2﹣(a2+b2)=2ab=32﹣5=4,∴ab=2.故答案为:217.如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为 6 .【分析】过点A作AD⊥y轴于D,则△ADC∽△BOC,由线段的比例关系求得△AOC和△ACD的面积,再根据反比例函数的k的几何意义得结果.【解答】解:过点A作AD⊥y轴于D,则△ADC∽△BOC,∴,∵=,△AOB的面积为6,∴=2,∴=1,∴△AOD的面积=3,根据反比例函数k的几何意义得,,∴|k|=6,∵k>0,∴k=6.故答案为:6.18.如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A 运动到点D时,线段PQ在平面内扫过的面积为.【分析】由矩形的性质求出∠ABQ=120°,由矩形的性质和轴对称性可知,△BOQ≌△DOC,根据S阴影部分=S四边形ABQD﹣S扇形ABQ=S四边形ABOD+S△BOQ﹣S 扇形ABQ可求出答案.【解答】解:∵当点P从点A运动到点D时,线段PQ的长度不变,∴点Q运动轨迹是圆弧,如图,阴影部分的面积即为线段PQ在平面内扫过的面积,∵矩形ABCD中,AB=1,AD=,∴∠ABC=∠BAC=∠C=∠Q=90°.∴∠ADB=∠DBC=∠ODB=∠OBQ=30°,∴∠ABQ=120°,由矩形的性质和轴对称性可知,△BOQ≌△DOC,∴S阴影部分=S四边形ABQD﹣S扇形ABQ=S四边形ABOD+S△BOQ﹣S扇形ABQ,=S四边形ABOD+S△COD﹣S扇形ABQ,=S 矩形ABCD﹣S△ABQ=1×﹣.故答案为:﹣.三.解答题19.计算:(﹣2)0+()﹣1﹣.【分析】根据负整数指数幂、零次幂以及二次根式的化简方法进行计算即可.【解答】解:(﹣2)0+()﹣1﹣,=1+3﹣3,=1.20.先化简,再求值:÷(x﹣),其中x=﹣2.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣2时,原式===.21.某校计划成立下列学生社团.英语俱乐部社团名称文学社动漫创作社合唱团生物实验小组社团代号A B C D E为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必需选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了50 名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】54:统计与概率;65:数据分析观念.【分析】(1)根据喜爱D的人数和所占的百分比,可以求得本次调查的学生人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出喜爱C的人数,然后即可将条形统计图补充完整;(3)根据统计图中的数据,可以计算出该校有多少名学生喜爱英语俱乐部.【解答】解:(1)该校此次共抽查了12÷24%=50名学生,故答案为:50;(2)喜爱C的学生有:50﹣8﹣10﹣12﹣14=6(人),补全的条形统计图如右图所示;(3)1000×=280(名),答:该校有280名学生喜爱英语俱乐部.22.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.【考点】KD:全等三角形的判定与性质;L9:菱形的判定;LE:正方形的性质.【专题】553:图形的全等;556:矩形菱形正方形;67:推理能力.【分析】由正方形的性质可得AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,由“SAS”可证△ABE≌△ADE,△BFC≌△DFC,△ABE≌△CBF,可得BE=BF=DE=DF,可得结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,同理可得△BFC≌△DFC,可得BF=DF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴BE=BF,∴BE=BF=DE=DF,∴四边形BEDF是菱形.23.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).【考点】X4:概率公式;X6:列表法与树状图法.【专题】543:概率及其应用;65:数据分析观念.【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【解答】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,故答案为:;(2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为.24.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.【考点】TB:解直角三角形的应用﹣方向角问题.【专题】12:应用题;55E:解直角三角形及其应用;66:运算能力;67:推理能力.【分析】如图,过点C作CD⊥AB于点D,从而把斜三角形转化为两个直角三角形,然后在两个直角三角形中利用直角三角形的边角关系列出方程求解即可.【解答】解:如图,过点C作CD⊥AB于点D,则∠CAD=∠ACD=45°,∴AD=CD,设AD=x,则AC=x,∴BD=AB﹣AD=2﹣x,∵∠CBD=60°,在Rt△BCD中,∵tan∠CBD=,∴=,解得x=3﹣.经检验,x=3﹣是原方程的根.∴AC=x=(3﹣)=(3﹣)km.答:船C离观测站A的距离为(3﹣)km.25.如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.【考点】M5:圆周角定理;ME:切线的判定与性质.【专题】559:圆的有关概念及性质;55A:与圆有关的位置关系;67:推理能力.【分析】(1)如图,连接OA,由圆周角定理可得∠BAD=90°=∠OAB+∠OAD,由等腰三角形的性质可得∠OAB=∠CAD=∠ABC,可得∠OAC=90°,可得结论;(2)由勾股定理可求OA=OD=3,由面积法可求AE的长,由勾股定理可求AB的长.【解答】解:(1)直线AC是⊙O的切线,理由如下:如图,连接OA,∵BD为⊙O的直径,∴∠BAD=90°=∠OAB+∠OAD,∵OA=OB,∴∠OAB=∠ABC,又∵∠CAD=∠ABC,∴∠OAB=∠CAD=∠ABC,∴∠OAD+∠CAD=90°=∠OAC,∴AC⊥OA,又∵OA是半径,∴直线AC是⊙O的切线;(2)过点A作AE⊥BD于E,∵OC2=AC2+AO2,∴(OA+2)2=16+OA2,∴OA=3,∴OC=5,BC=8,∵S△OAC=×OA×AC=×OC×AE,∴AE==,∴OE===,∴BE=BO+OE=,∴AB ===.26.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:55 60 65 70销售单价x(元/千克)销售量y(千70 60 50 40克)(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【考点】AD:一元二次方程的应用;HE:二次函数的应用.【专题】124:销售问题;41:待定系数法;523:一元二次方程及应用;533:一次函数及其应用;535:二次函数图象及其性质;536:二次函数的应用;66:运算能力;67:推理能力;69:应用意识.【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【解答】解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:,解得:.∴y与x之间的函数表达式为y=﹣2x+180.(2)由题意得:(x﹣50)(﹣2x+180)=600,整理得:x2﹣140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x﹣50)(﹣2x+180)=﹣2(x﹣70)2+800,∵﹣2<0,∴当x=70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.27.【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:=.【探究】如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且=,连接BG交CD 于点H.求证:BH=GH.【拓展】如图③,点E在四边形ABCD内,∠AEB十∠DEC=180°,且=,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG =CG.【考点】SO:相似形综合题.【专题】152:几何综合题;55D:图形的相似;67:推理能力.【分析】【感知】证得∠BEC=∠EAD,证明Rt△AED∽Rt△EBC,由相似三角形的性质得出,则可得出结论;【探究】过点G作GM⊥CD于点M,由(1)可知,证得BC=GM,证明△BCH≌△GMH(AAS),可得出结论;【拓展】在EG上取点M,使∠BME=∠AFE,过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG,证明△AEF∽△EBM,由相似三角形的性质得出,证明△DEF∽△ECN,则,得出,则BM=CN,证明△BGM≌△CGN(AAS),由全等三角形的性质可得出结论.【解答】【感知】证明:∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD,∴Rt△AED∽Rt△EBC,∴.【探究】证明:如图1,过点G作GM⊥CD于点M,由(1)可知,∵,∴,∴BC=GM,又∵∠C=∠GMH=90°,∠CHB=∠MHG,∴△BCH≌△GMH(AAS),∴BH=GH,【拓展】证明:如图2,在EG上取点M,使∠BME=∠AFE,过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴,∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴,又∵,∴,∴BM=CN,又∵∠N=∠BMG,∠BGM=∠CGN,∴△BGM≌△CGN(AAS),∴BG=CG.28.二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;536:二次函数的应用;66:运算能力;67:推理能力.【分析】(1)由于二次函数的图象与x轴交于A(2,0)、B(6,0)两点,把A,B两点坐标代入y=ax2+bx+3,计算出a的值即可求出抛物线解析式,由配方法求出E点坐标;(2)由线段垂直平分线的性质可得出CB=CD,设D(4,m),由勾股定理可得42+(m﹣3)2=62+32.解方程可得出答案;(3)设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q (),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,求出M(4,n﹣5﹣),ME=n ﹣4﹣.由面积公式可求出n的值.则可得出答案.【解答】解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,得,解得∴二次函数的解析式为y=﹣2x+3.∵y=﹣1,∴E(4,﹣1).(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.设D(4,m),∵C(0,3),由勾股定理可得:42+(m﹣3)2=62+32.解得m=3±.∴满足条件的点D的坐标为(4,3+)或.(3)如图3,设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q(),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,于是CQ:y=()x+3,当x=4时,y=4()+3=n﹣5﹣,∴M(4,n﹣5﹣),ME=n﹣4﹣.∵S△CQE=S△CEM+S△QEM=.∴n2﹣4n﹣60=0,解得n=10或n=﹣6,当n=10时,P(10,8),当n=﹣6时,P(﹣6,24).综合以上可得,满足条件的点P的坐标为(10,8)或(﹣6,24).。
2021年江苏省宿迁市中考数学必修综合测试试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
一、选择题
1.如图,PB 为⊙O 的切线,B 为切点,连结 PO 交⊙O 于点 A ,PA =2,PO= 5,则 PB 的长为( )
A .4
B .10
C .26
D .43
2.如图,已知 Rt △AEC 中,∠C= 90°,BC=a ,AC=b ,以斜边 AB 上一点0为圆心,作⊙O 使⊙O 与直角边 AC 、BC 都相切,则⊙O 的半径r 为( ) A .ab
B .
2
ab C .
ab
a b
+ D .
a b
ab
+
3.圆的半径为13cm ,两弦AB CD ∥,24cm AB =,10cm CD =,则两弦AB CD ,的距离是( ) A .7cm B .17cm C .12cm D .7cm 或17cm 4. 如图,已知圆锥形烛台的侧面积是底面积的 2 倍,则两条母线所夹的∠AOB 为( )
A .30°
B .45°
C .60°
D .120°
5.方程2
9x =的解是( )
A .9x =
B .19x =,29x =-
C .3x =
D .13x =,23x =- 6.一梯形两底为10和16,一腰长为8,则另一腰长a 的取值范围是( ) A .2<a<14
B .2<a<26
C .6<a<18
D .6<a<26
7.如图,在Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( ) A .∠ACD=∠B
B . CH=CE=EF
C .AC=AF
D .CH=HD
8.小王只带2元和 5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式有( ) A . 1种
B . 2种
C .3种
D .4种
9.下列运动是属于旋转的是( ) A .滾动过程中的篮球的滚动 B .钟表的钟摆的摆动 C .气球升空的运动
D .一个图形沿某直线对折过程
10.计算(2)(3)x x -+的结果是( )
A .26x -
B .26x +
C . 26x x +-
D .26x x --
11.某校对学生到校方式进行了一次抽样调查,如图4根据此次调查结果所绘制的尚未完成的扇形统计图,已知该校共有学生2560人,被调查的学生中骑车的有21 人,则下列四种说法中,错误的是( ) A .被调查的学生有60人
B .被调查的学生中,步行的有27人
C .估计全校骑车上学的学生有1152人
D . 扇形图中,乘车部分所对应的圆心角为54°
12.a 的3
2大1的数”用代数式表示是( ) A .3
2
a +1
B .2
3
a +1
C .52
a
D .3
2
a -1 13.用x -代替各式中的x ,分式的值不变的是( ) A .
3
2x B .3x
-
C .
2
1
x
x + D .2
1
1
x -
+ 二、填空题
14.如图,在方格纸上有一个三角形ABC ,则这个三角形是________三角形. 15.根据图中的程序,当输入x =3时,输出的结果y = .
16.用价值120元的甲种涂料与价值260元的乙种涂料配制成一种新涂料,其每千克售价比甲种涂料每千克售价少 4元,比乙种涂料每千克的售价多 2元,求这种新涂料每千克的售价是多少元?若设这种新涂料每千克的售价为x元,则根据题意,可列方程为 .
解答题
△中,∠C=90°,AD为△ABC角平分线,BC=40,AB=50,若
17.在ABC
BD∶DC=5∶3,则△ADB的面积为_______.
解答题
18.观察你生活中的各处,举出三个平移的现象:.
19.为了解决A、B、C、D四个村庄的用电问题,政府投资在电厂与四个村庄之间架设输电线路. 已知这四个村庄与电厂之间的距离(单位:km)如图所示,则能把电力输送到这四个村庄的输电线的总长度最短为 .
解答题
20.如图,已知直线上四点A、B、C、D.那么,
AD=BC+ + =AB+ =AC+ ;
BC=AC- = -CD=AD- - .
21.罗马数字共有 7个:I(表示 1),V(表示5),X(表示10),L(表示 50),C(表示 100),D(表示500),M(表示 1000),这些数字不论位置怎样变化,所表示的数目都是不变的,计数时用“累积符号”和“前减后加”的原则来计数:
如IX = 10 -1=9 , VI=5+1=6 , CD=500-100=400. 则XL= ,XI= .
22.1-(+2)的相反数是.
三、解答题
23.如图所示,在□ABCD中,对角线AC,BD交于点0,BD=2AD,E,F,G分别是OA,OB,DC的中点.求证:
(1)DE ⊥AC;(2)EF=EG.
24.如图所示,□ABCD中,E,F分别为AD,BC的中点,AF与BE交于点G,DF与CE交于点H,则四边形EGFH是平行四边形吗?请说明理由.
25.点M,N分别是正八边形相邻的边AB,BC上的点,且AM=BN,点0是正八边形的中心,求∠MON的度数.
26.试一试:
(1)你能把一个梯形纸片裁剪拼成一个三角形、一个平行四边形、一个矩形吗(分别在图①、
②、③中画出)?
(2)请你用不同的方法把一个上底等于2,下底等于4的等腰梯形纸片裁成面积相等的三块(在图④中画出).
27.如图是由若干个小立方体搭成的几何体的俯视图,小立方体中的数字表示的是在该位置上的小立方体的个数,请画出这个几何体的主视图和左视图.
28.如图所示,画出把圆0的半径缩小到原来的3
5
后的图形.
29.如图所示,已知△ABC.画出AC边上的中线BM和∠BAC的平分线AD.
30.小惠的牡丹卡上还有余款 260 元,小惠想买一件衬衣和一件连衣裙,衬衣价格为 98 元/件,连衣裙价格为 180 元/件,小惠用牡丹卡购买这两件商品会透支吗?用有理数加法说明理由.
【参考答案】
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题
1.
A
2.
C
3.
D
4.
C
5.
D
6.
A
7.
D
8.
C
9.
B
10.
C
11.
C
A
13.
D
二、填空题 14. 等腰
15.
2
16.
120260120260
42x x x
++=
+-17. 625
18.
答案不唯一,例如:电梯移动;火车移动;汉字中“晶”可以由“日”平移得到
19.
20.5(提示:输电线路如图所示)
20.
AB ,CD ,BD ,CD ;AB ,BD ,AB ,CD
21.
40, 11
22.
1
三、解答题 23.
(1)证明DO=AD ,E 是OA 的中点,则DE ⊥AC ;(2)由EF=1
2
AB ,EG=12
CD ,证明EF=EG
24.
证明四边形AFCE ,EBFD 是平行四边形,得AF ∥CE ,BE ∥DF ,即四边形EGFH 是平行四边形
25.
26.略27.略28.略29.略30.会透支。