北师大版-数学-九年级上册- 投影(2) 同步练习
- 格式:doc
- 大小:244.00 KB
- 文档页数:3
第五章投影与视图数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A. B. C. D.2、如图,几何体的俯视图是()A. B. C. D.3、下列命题中真命题的个数为()①正方形的平行投影一定是菱形;②平行四边形的平行投影一定是平行四边形;③三角形的平行投影一定是三角形.A.1B.2C.3D.04、如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是( )A.6个B.7个C.8个D.9个5、如图所示的几何体,其主视图是()A. B. C. D.6、如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A. B. C. D.7、如图是一个由3个相同的正方体组成的立体图形,则它的主视图为()A. B. C. D.8、如图所示的几何体的俯视图是()A. B. C. D.9、一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A. B. C. D.10、如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的俯视图是()A. B. C. D.11、如图是由棱长为1的几个正方体组成的几何体的三视图,则这个几何体的体积是()A.3B.4C.5D.612、图中所示的几何体的左视图是()A. B. C. D.13、如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是()A. B. C. D.14、如图所示,一只纸杯放置在一个长方体盒子上,则其主视图是()A. B. C. D.15、在一个晴朗的天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是()A.上午B.中午C.下午D.无法确定二、填空题(共10题,共计30分)16、甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长之比的关系是________17、我们把大型会场、体育看台、电影院建为阶梯形状,是为了________ .18、小明的身高1.6米,他在阳光下的影长为0.8米,同一时刻,校园的旗杆影长为4.5米,则该旗杆高________ 米.19、在某一时刻,测得一根高为2m的竹竿的影长为3m,同时测得一根旗杆的影长为21m,那么这根旗杆的高度为________m.20、若干桶方便面摆放在桌子上,如图是它的三视图,则这一堆方便面共有________桶.21、下面4个图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是________22、下图是由六个棱长为的正方体组成的几何体,则从上面看得到的平面图形的面积是________.23、下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序是________ .24、下图右边是一个三棱柱,它的正投影是下图中的________(填序号).25、一个矩形薄木版在太阳光下形成的投影可能是________ (在“梯形”、“矩形”、“平行四边形”、“三角形”、“线段”、“一般四边形”中选择两个即可).三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:“噢,我知道路灯有多高了!”同学们,请你和小明一起解答这个问题:(1)在图中作出路灯O的位置,并作OP⊥l于P.(2)求出路灯O的高度,并说明理由.28、平地上立着三根等高的木杆,其俯视图如图所示(图(1)(2)分别表示两个不同时刻的情况),图中画出了其中一根木杆在太阳光下的影子,请你在图中画出另外两根木杆在同一时刻的影子.29、如图,AB和DE是直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB的影子长时,同时测量出EF=6m,计算DE的长.30、如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,(1)请画出路灯O的位置;(2)画出标杆EF在路灯下的影子FH.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、D5、C6、C7、A8、D9、B10、A11、C12、A13、C14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、30、。
第2课时平行投影知识点1平行投影1.小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是()图5-1-62.明明分别在上午8时、9时30分、10时、12时到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.8时B.9时30分C.10时D.12时3.某一时刻,身高1.6 m的小明在阳光下的影子长是0.4 m.同一时刻同一地点,测得某旗杆的影子长是5 m,则该旗杆的高度为()A.1.25 m B.8 m C.10 m D.20 m4.如图5-1-7,已知AB和DE是直立在地面上的两根立柱.AB=5 m,某一时刻AB 在阳光下的影长BC=3 m.(1)请你在图中画出此时DE在阳光下的影子;(2)若在测量AB的影长时,同时测量出DE在阳光下的影长为6 m,请你计算DE的长.图5-1-7知识点2正投影5.几何体在平面P上的正投影取决于()①几何体的形状;②投影面与几何体的位置关系;③投影面P的大小.A.①②B.①③C.②③D.①②③图5-1-86.如图5-1-8,箭头表示投影线的方向,则图中圆柱体的正投影是()A.圆B.圆柱C.三角形D.矩形7.把一个正六棱柱如图5-1-9所示摆放,光线由上向下照射此正六棱柱时的正投影是()图5-1-9图5-1-108.在同一时刻,两根长度不等的木杆置于阳光下,但它们的影长相等,则它们的相对位置是()A.两根都垂直于地面B.两根都平行斜插在地面上C.两根木杆不平行D.一根倒在地上9.如图5-1-11所示,阳光通过窗口照到室内,在地面上留下2.7 m宽的亮区,已知亮区一边到窗下墙脚的距离EC为8.7 m,窗口高AB=1.8 m,那么窗户下檐离地面的距离BC为________m.图5-1-1110.为了测得如图5-1-12(a)和(b)中树的高度,在同一时刻小华和小明分别做了如下操作:图5-1-12图(a):测得竹竿CD长0.8米,其影长CE为1米,以及图(a)中树影AE长2.4米.图(b):测得树落在地面上的影长为2.8米,落在墙上的影子的高为1.2米.则图(a)和图(b)中的树高分别为多少米?教师详解详析1.A [解析] 在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故选A. 2.A 3.D4.[解析] 太阳光线是平行光线,所以只要过点D 作AC 的平行线即可,然后利用三角形相似即可求出DE 的长.解:(1)连接AC ,过点D 作DF ∥AC ,交直线BC 于点F ,线段EF 即为DE 在阳光下的影子,如图所示.(2)因为AC ∥DF ,所以∠ACB =∠DFE . 又因为∠ABC =∠DEF =90°, 所以△ABC ∽△DEF , 所以AB DE =BC EF ,即5DE =36,所以DE =5×63=10(m).5.A [解析] 对于①,同一个方向球体和长方体的正投影的形状是不同的,故①符合题意;对于②,保持平行光线和投影面的位置不变,转动长方体的位置,投影的形状会改变,故②符合题意;对于③,投影面的大小和投影的形状无关,故③不符合题意.故选A.6.D [解析] 根据平行投影的特点,图中圆柱体的正投影是矩形.故选D.7.A8.C [解析] 在同一时刻,两根木杆置于阳光下,若看到它们的影长相等,则这两根木杆的顶部到地面的垂直距离相等;而木杆长度不相等,故两根木杆不平行.故选C.9.4 [解析] 设BC 的长为x m ,则xx +1.8=8.7-2.78.7,解得x =4.10.解:设图(a)中的树高为x 米. 根据题意得△CDE ∽△ABE ,∴CD AB =CE AE ,即0.8x =12.4,解得x =1.92. 设图(b)中的树高为y 米,则 y -1.22.8=0.81,解得y =3.44. ∴图(a)和图(b)中的树高分别为1.92米和3.44米.。
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。
北师大版数学九年级上册第二章第1节认识一元二次方程同步练习1.下列方程中是关于x 的一元二次方程的是( ) A .x 2+21x=0 B .ax 2+bx +c =0 C .(x -1)(x +2)=1 D .3x 2-2xy -5y 2=0 2.若方程(m +2)x ∣m ∣+3x -1=0是关于x 的一元二次方程,则m =______.3.下列数中:-1,2,-3,-2,3,是一元二次方程x 2-2x =3的解的有 ___________. 4.方程()45x x -=化为一般形式为( )A .2450x x =-+B .2450x x =++C .2450x x =--D .2450x x =+- 5.方程23740x x =-+中二次项的系数,一次项的系数及常数项分别是( )A .3、7、4B .3、7、﹣4C .3、﹣7、4D .3、﹣7、﹣4 6.将一元二次方程2514x x =-化成一般形式后,二次项系数和一次项系数分别为( )A .5、-4B .5、4C .5x 2、4xD .5x 2、-4x 、 7.一元二次方程x 2-4=0的根是( )A .-2B .±2C .2D .以上都不对 8.关于x 的方程x 2+x -a =0一个解是x =1,则a 为( )A .2B .-2C .1D .-19.下列方程中关于x 2203x =-;②21kx x =-3;③211x x x--=;④()210x x x -+=;⑤()2320k x kx +-=;⑥221x ax =-;是关于x 一元二次方程的个数有( )A .1B .2C .3D .4 10.把一元二次方程2(x 2+7)=x +2化成一般形式是 .11.下列数中-1,-2,1,2,是一元二次方程一元二次方程x 2-x -2=0的根是___________. 12.若0是一元二次方程22610x x m ++-=的一个根,则m 的取值为( )A .1B .-1C .±1D .以上都不是 13.已知关于x 的方程20x bx a =++有一个根是-a (a≠0),则a -b 的值为( )A .-1B .0C .1D .214.在一次聚会时,x 个人见面后每两人握一次手,共握手10次,则可列方程( )A .()110x x =-B .()2110x x =-C .()1102x x =⨯+D .()1102x x =⨯-15.某地区的消费品月零售总额持续增长,九月份为⒈2亿元,十月、十一月两个月一共为2.8亿元.设九月份到十一月份平均每月增长的百分率为x ,则可列方程( )A .()1.212 2.8x += B .()21.212.8x += C .()1.2.21 2.8x =+1+ D .()()21.21 1.212.8x x =+++16.已知m 是方程x 2-x -2=0的一个根,求代数式4m 2-4m -2的值. 17.若()1160m m x mx -+++2=是关于x 的一元二次方程,求m 的值.18.把下列一元二次方程化成一元二次方程的一般形式,并写出方程的二次项系数,一次项系数,常数项.(1)(3x -2)(2x -3)=x 2-5; (2)(x 2+7)=x +2.19.若方程x 2-2x +m =0的一个根是x =-1,求m 的值.20. 若关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0有一个根为0,求m 的值.21. 已知x 2+3x +5的值为7,求代数式3x 2+9x ﹣2的值22.试判断:关于x 的方程(2a —4)x 2-2bx +c =0. (1)何时为一元二次方程?(2)何时为一元一次方程?答案:1.C2.m=23.-1,34.C5.C6.A7.B8.A9.B10.2x2-x+12=0;a=2,b=-1,c=12;11.2,-112.C13.A14.D15.D16.解:由已知,得m2-m-2=0∴m2-m=2∴4m2-4m-2=4(m2-m)-2=4×2-2=6.17.m=118.(1)3x2-5x+1=0;a=3,b=-5,c=1;(2)3x2-5x+1=0;a=3,b=-5,c=1;19.m=-320.m=221.解:由已知,得x2+3x+5=7∴x2+3x=2∴3x2+9x-2=3(x2+3x)-2=3×2-2=4.22.(1)a≠2;(2)a=2且b≠0;北师大版数学九年级上册第二章第2节用配方法解一元二次方程(第1课时)1.16的平方根是( )A .4B .-4C .±4D .±8 2.方程x 2=9的解是( )A .x 1=x 2=3B .x 1=x 2=-3C .x 1=3,x 2=-3D .x =33.方程x 2=3的解是( )A .12x x ==B .12x x ==C .1x 2x =D .x =34.方程()210x -=的解是( )A .x 1=1,x 2=-1B .x 1=x 2=1C . x 1=x 2=-1D . x 1=1,x 2=-25.方程()219x -=的解是( )A .x 1=1,x 2=-3B . x 1=4,x 2=-4C . x 1=4,x 2=-2D . x =36.若1是一元二次方程x 2+x -m 2=0的一个根,则m 为 . 7.直接写出方程的解:(1)()2190x -=+的解是__________;(2)()2316x -=的解是__________. 8.直接写出方程的解:(1)x 2+2x +1=9的解是 ; (2)x 2-2x -3=0的解是__________. 9.用直接开方法解方程.⑴9x 2=25 ⑵2x 2-98=0⑶3(x -2)2=0 ⑷3(x -1)2=2710.如果12x =是关于x 的方程22320x ax a -=+的根,求关于y 的方程23y a -=的解.11.一元二次方程2+2990x x -=变形正确的是( )A .()2+1100x =B .()21100x =﹣C .()2+2100x = D .()22100x -=12.将方程2250x x --=变形为()2+x m n =的形式正确的是( )A .()2+16x =B .()2+29x =C .()216x -= D .()229x -=13.方程3x 2=2的根是___________.14.一元二次方程22426x x -+=的根是___________.15.解下列方程:⑴()22510x +-= ⑵(x -2)2=9⑶()23175y -= ⑷2215x x -+=⑸()2531250x --= ⑹24415x x -+=16.用配方法解下列方程:⑴x 2+2x -3=0 ⑵x 2-6x -8=0⑶x 2-8x +7=0 (4)x 2-4x =1(5)x 2-4x -6=0, (6) x 2+12x +36=017.已知x 、y 、z 满足2246130++-=x x y y ,求代数式()zxy 的值.答案:1.C 2.C 3.C 4.B 5.C 6.±27.(1)4或-2;(2)7或-1; 8.(1)2或-4;(2)3或-1;9.(1)x 1=53,x 2=-53;(2)x 1=7,x 2=-7;(3)x 1=2+33,x 2=2-33;(4)x 1=4,x 2=-2; 10.y 1=2,y 2=-2; 11.A 12.C13.x 1=63,x 2=-63; 14.x 1=1+3,x 2=1-3; 15.(1)x 1=-2,x 2=-3;(2)x 1=5,x 2=-1;(3)y 1=6,y 2=-4; (4)x 1=1+5,x 2=1-5; (5)x 1=8,x 2=-2;(6)x 1=1+52,x 2=1-52;16.(1)x 1=1,x 2=-3;(2)x 1=3+17,x 2=3-17; (3)x 1=7,x 2=-1; (4)x 1=2+5,x 2=2-5;(5)x 1=2+10,x 2=2-10; (6)x 1=x 2=-6; 17.解:由已知,得x 2-4x +4+y 2+6y +9+z +2=0∴(x -2)2+(y +3)2+z +2=0 ∴x =2,y =-3,z =-2.∴(xy)z=[2×(-3)]-2=(-6)-2=1 36.北师大版数学九年级上册第二章第4节用因式分解法解一元二次方程同步练习1.方程x(x+3)=x的解是()A.x1=x2=﹣3 B.x1=1,x2=3 C.x1=0,x2=﹣3 D.x1=0.x2=﹣2 2.一元二次方程x2﹣5x+6=0的解为()A.x1=2,x2=﹣3 B.x1=﹣2,x2=3C.x1=﹣2,x2=﹣3 D.x1=2,x2=33.方程(x+1)(x﹣3)=﹣4的解是()A.x1=﹣1,x2=3 B.x1=1,x2=0 C.x1=1,x2=﹣1 D.x1=x2=14解方程(5x﹣3)2=2(5x﹣3),选择最适当的方法是()A..直接开平方法B.配方法C.公式法D.因式分解法5.方程x2-3x-4=0的所有根为( )A.x1=-1,x2=-4;B.x1=-1,x2=4 ;C.x1=1,x2=4 D.x1=1,x2=-46.方程(x-2)(x+3)=0的解是( )A.x=2 B.x=-3 C.x1=2,x2=-3 D.x1=-2,x2=37.方程x(x-2)=x-2的根是( )A.x=1 B.x1=2,x2=0 C.x1=1,x2=2 D.x=28.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16 B.24 C.16或24 D.489.若一个三角形的两边长分别是2和6,第三边的边长是方程x2﹣10x+21=0的一个根,则这个三角形的周长为()A.7 B.3或7 C.15 D.11或15 10.将下列多项式分解因式(1)x2-5x==___________;(2)2x(x-3)-5(x-3) =___________;(3)x2+2x-8 =___________;(4)9x2-6x+1=0=___________;11.元二次方程x(x-1)=x的解是____ .12.小华在解一元二次方程x2-4x=0时,得出一个根是x1=4,则另一个根是x2=______.13.用适当解下列方程:(1)5x2-2x=0;(可提公因式)⑵9x2-4=0(平方差公式)(3)y2+2y=15.(4) (x-1)2-2(x-1)=02=3x(可移项再提公因式); (6)(x-2)(x+3)=0(5)x14.已知:m是关于x的一元二次方程mx2-2x+m=0的一个根,求m的值.15.阅读材料,解答问题:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则(x2-1)2=y2,原方程化为y2-5y+4=0.解得y1=4,y2=1.①当y=4时,x2-1=4,∴x2=5,∴x=±5.②当y=1时,x2-1=1,∴x2=2,∴x=±2.∴原方程的解为x 1=2,x 2=-2,x 3=5,x 4=-5.在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想.利用上面的方法解方程x 4-x 2-6=0.16.已知:在平面直角坐标系中,点A 、B 分别在x 轴正半轴上,且线段OA 、OB (OA <OB )的长分别等于方程x 2﹣5x +4=0的两个根,点C 在y 轴正半轴上,且OB =2OC . (1)求A 、B 、C 三点坐标;(2)将△OBC 绕点C 顺时针旋转90°后得到△O ′B ′C ,求直线B ′C 的表达式.xy –1–2–3–41234–1–2–3–41234O答案: 1.D 2.D 3.D 4.D 5.B 6.C 7.C 8.B 9.C10.(1)x (x -5);(2)(x -3)(2x -5);(3)(x +4)(x -2);(4)(3x -1)2; 11.x 1=0,x 2=2; 12.013.(1)x 1=0,x 2=25; (2)x 1=23,x 2=-23; (3)y 1=-5,y 2=3;(4)x 1=1,x 2=3; (5)x 1=0,x 2=3; (6)x 1=2,x 2=-3; 14.m =0,-1,1; 15.x =± 316.解:(1)解方程x 2﹣5x +4=0得x 1=1,x 2=4, ∵OA <OB , ∴OA =1,OB =4,∵A 、B 分别在x 轴正半轴上, ∴A (1,0)、B (4,0);又∵OB =2OC ,且点C 在y 轴正半轴上 ∴OC =2,则C (0,2);(2)∵将△OBC 绕点C 顺时针旋转90°后得△O ′B ′C ,∴OB =O ′B ′=4,OC =O ′C ′=2,∠COB =∠C O′B ′=90°,∠OCO ′=∠BCB ′=90° ∴O ′(﹣2,2)、B ′(﹣2,﹣2), 设直线B ′C 的解析式为y =kx +b , 把B ′(﹣2,﹣2),C (0,2)代入得⎩⎨⎧-2k +b =-2b =2,解得⎩⎨⎧k =2b =2, ∴直线B ′C 的解析式为y =2x +2.xyA BCB'O'O北师大版数学九年级上册第二章第5节一元二次方程根与系数的关系同步练习1.若x 1、x 2是一元一次方程x 2-5x +6=0的两个根,则x 1+x 2的值是 ( ) A .1 B .5 C .-5 D .6 2.若x 1、x 2是一元一次方程x 2+x -2=0的两个根,则x 1·x 2的值是 ( ) A .-1 B .-2 C .1 D .2 3.以3和—2为根的一元二次方程是( )A .x 2+x -6=0 B .x 2+x +6=0 C .x 2-x -6=0 D .x 2-x +6=0 4.已知x 2-(m -1)x -(2m -2)=0两根之和等于两根之积,则m 的值为( ) A .1 B .—1 C .2 D .—2 5.已知方程3x 2-5x -7=0的两根为x 1、x 2,则下列各式中正确的是 ( ) A .x 1+x 2=5,x 1·x 2=7 B .x 1+x 2=-5,x 1·x 2=-7 C .x 1+x 2=53,x 1·x 2=-73 D .x 1+x 2=-53,x 1·x 2=-73 6.设方程x 2+x ﹣2=0的两个根为α,β,那么α+β﹣αβ的值等于( ) A .﹣3B .﹣1C .1D .37.关于x 的一元二次方程x 2+(a 2﹣3a )x +a =0的两个实数根互为倒数,则a 的值为( ) A .﹣3B .0C .1D .﹣3 或 08.关于x 的一元二次方程2x 2+kx ﹣4=0的一个根x 1=﹣2,则方程的另一个根x 2和k 的值为( ) A .x 2=1,k =2B .x 2=2,k =2C .x 2=1,k =﹣1D .x 2=2,k =﹣19.关于x 的一元二次方程x 2﹣5x +2p =0的一个根为1,则另一根为( ) A .﹣6B .2C .4D .110.已知m 、n 是一元二次方程x 2﹣3x ﹣1=0的两个实数根,则1m +1n =( ) A .3B .﹣3C .13D .﹣1311.一元二次方程x 2-4x -c =0的一个根是3,则c =_________,另一个根是_________. 12.一元二次方程x 2-x -3=0两根的倒数和等于__________.13.关于x 的方程x 2+px +a =0的根为x 1=1+2,x 2=1-2,则p =______,q =____. 14.若x 1、x 2是方程x 2-5x -7=0的两根,那么(1)x 2 1+x 2 2=________;(2)(x 1-x 2)2=__________;15.阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca .根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则x 1x 2+ x 2x 1= .16.利用方程的根与系数的关系,求方程的两根之和、两根之积: (1)x 2-3x -5=0 (2)2x 2+5x -5=017.已知x 1、x 2是一元二次方程2x 2-2x +1-3m =0的两个实数根,且x 1·x 2+2(x 1+x 2)>0,求实数m 的取值范围.18.已知实数a 、b 满足等式a 2-2a -1=0,b 2-2b -1=0,求b a +ab 的值.19.已知关于x 的方程x 2-(k +1)x +14k 2+1=0的两根是一个长方形形两邻边的长.(1)k 为何值时,方程有两个实数根; (2)当该长方形形的对角线长为5时,求k . (3)当k 为何值时,矩形变为正方形?20.关于x 的一元二次方程x 2+2mx +m 2+m =0有两个不相等的实数根. (1)求m 的取值范围.(2)设出x 1、x 2是方程的两根,且x 12+x 22=12,求m 的值.21.已知:关于x 的一元二次方程x 2+πx ﹣2=0有两个实数根. (1)求m 的取值范围;(2)设方程的两根为x 1、x 2,且满足(x 1﹣x 2)2﹣17=0,求m 的值.22.已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式1x1+1x2=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.答案: 1.B 2.B 3.C 4.A 5.C 6.C 7.C 8.A 9.C 10.B 11.-3;1 12.-13 13.-2;-1 14.39;53 15.10;16.(1)x 1+x 2=3,x 1•x 2=-5;(2)x 1+x 2=-52,x 1•x 2=-52. 17.解:∵x 1、x 2是一元二次方程2x 2﹣2x +1﹣3m =0的两个实数根, ∴x 1+x 2=1,x 1•x 2=1-3m2.又∵x 1﹣x 2+2(x 1+x 2)>0, ∴1-3m 2+2>0 解得:m <53 (4分),又∵原方程有实数根,∴b 2﹣4ac =(﹣2)2﹣4×2×(1﹣3m )=4﹣8+24m =﹣4+24m ≥0, ∴m ≥16 (7分) ∴16≤m <53 (8分)18解:当a =b 时,原式=1+1=2;当a ≠b 时,可以把a 、b 看作方程x 2﹣2x ﹣1=0的两个根, ∴a +b =2,ab =﹣1,∴b a +a b =a 2+b 2ab =(a +b )2-2ab ab =4+2-1=﹣6. 综上所述:b a +ab 的值为2或﹣6.19.解:(1)△=[﹣(k +1)]2﹣4×1×(14k 2+1)=2k ﹣3, ∵方程有两个实数根, ∴△≥0,即2k ﹣3≥0, 解得:k ≥32,∴当k ≥32时,方程有两个实数根. (2)设方程x 2﹣(k +1)+14k 2+1=0的两根分别为a 、b ,则a +b =k +1,ab =14k 2+1,∵矩形的对角线长为5,即a 2+b 2=5,∴a 2+b 2=(a +b )2﹣2ab =(k +1)2﹣2×(14k 2+1)=5, 整理得:k 2+4k ﹣12=0, 解得:k =2或k =﹣6(舍去).∴当矩形的对角线长为5时,k 的值为2. (3)当矩形为正方形时,方程两根相等, ∴△=2k ﹣3=0, 解得:k =32.∴当k 为32时,矩形变为正方形. 20.解:(1)根据题意得: △=(2m )2﹣4(m 2+m )>0, 解得:m <0.∴m 的取值范围是m <0.(2)根据题意得:x 1+x 2=﹣2m ,x 1x 2=m 2+m , ∵x 12+x 22=12, ∴(x 1+x 2)2﹣2x 1x 2=12,∴(﹣2m )2﹣2(m 2+m )=12,∴解得:m 1=﹣2,m 2=3(不合题意,舍去), ∴m 的值是﹣2.21.解:(1)∵关于x 的一元二次方程x 2+πx ﹣2=0有两个实数根,∴△=[π]2﹣4×1×(﹣2)=m +8≥0,且m ≥0, 解得:m ≥0.(2)∵关于x 的一元二次方程x 2+πx ﹣2=0有两个实数根x 1、x 2,∴x1+x2=﹣π,x1•x2=﹣2,∴(x1﹣x2)2﹣17=(x1+x2)2﹣4x1•x2﹣17=0,即m+8﹣17=0,解得:m=9.22.解:(1)∵一元二次方程x2﹣2x+k+2=0有两个实数根,∴△=(﹣2)2﹣4×1×(k+2)≥0,解得:k≤﹣1.(2)∵x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,∴x1+x2=2,x1·x2=k+2.∵1x1+1x2=k﹣2,∴x1+x2x1·x2=2k+2=k﹣2,∴k2﹣6=0,解得:k1=﹣6,k2=6.又∵k≤﹣1,∴k=﹣6.∴存在这样的k值,使得等式1x1+1x2=k﹣2成立,k值为﹣6.(1);(2);(3);(4);(5);(6);(1)x1=,x2=;(2)x1=,x2=;(3)x1=,x2=;(4)x1=,x2=;(5)x1=,x2=;(6)x1=,x2=;北师大版数学九年级上册第二章第6节应用一元二次方程(第1课时)同步练习1.在长为100m,宽为80m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m2,则道路的宽应为多少米?设道路的宽应为xm,则可列方程为()A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644 D.100x+80x=3562.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1-x)=121 C.100(1+x)2=121D.100(1-x)2=1213.某种品牌运动服经过两次降价,每件零售价由560元降为315元已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1-x)2=315 C.560(1-2x)2=315D.560(1+x2)=3154.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=10005.某厂今年一月的总产量为500吨,前三个月的总产量为720吨,平均每月增长率是x,根据题意可列方程___________ _____.6.市政府为了解决市民看病难的问题,决定下调药品的价格。
九年级上学期第5章《投影与视图》单元测试卷时间90分钟,满分120分姓名:__________ 班级:__________考号:__________成绩:__________一、单选题(共10题;共30分)1.如图几何体的主视图是()A.B.C.D.2.如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是( )A.B.C.D.3.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有()A.7盒B.8盒C.9盒D.10盒4.如图是一根空心方管,它的俯视图是()A.B.C.D.5.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.46.如图,正三棱柱的主视图为()A.B.C.D.7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5B.6C.7D.88.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能9.已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.10.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定二、填空题(共6题;共24分)11.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于.13.如图是由6个棱长均为1的正方体组成的几何体,它的左视图的面积为.14.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体.15.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是个.16.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.三、解答题(共6题;共66分)17.如图是一个由一些相同的小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.(1)请你画出它的主视图与左视图.(2)若每个小正方体的边长都为1,求这个几何体的表面积.18.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.19.已知下图为一几何体的三视图(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.20.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加个小正方体.21.如图是由5个边长为1的正方体叠放而成的一个几何体,请画出这个几何体的三视图.(用铅笔描黑)22.根据要求完成下列题目:(1)图中有块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.试题答案及解析部分一、填空题1.如图几何体的主视图是()A.B.C.D.【解答】解:由图可得,几何体的主视图是:故选:A.2.如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是( )A.B.C.D.【解答】解:从左面看这个几何体得到的平面图形是:故选:B.3.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有()A.7盒B.8盒C.9盒D.10盒【解答】解:由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,求出至多有9盒,故选:C.4.如图是一根空心方管,它的俯视图是()A .B .C .D . 【解答】解:如图所示:俯视图应该是.故选:B . 5.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )A .6πB .4πC .8πD .4【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2, 那么它的表面积221126πππ=⨯+⨯⨯⨯=,故选:A .6.如图,正三棱柱的主视图为( )A .B .C .D .【解答】解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B .7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5B.6C.7D.8【解答】解:由俯视图可得最底层有5个小正方体,由主视图可得第一列和第三列都有2个正方体,那么最少需要527+=个正方体.故选:C.8.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能【解答】解:圆形的纸片在平行投影下的正投影可能是圆形、椭圆形、线段,故选:D.9.已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.【解答】解:观察图形可知,该几何体的左视图是.故选:D.10.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定【解答】解:白炽灯向上移时,阴影会逐渐变小;相反当乒乓球越接近灯泡时,它在地面上的影子变大.故选:A.二、解答题11.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?②(填序号).【解答】解:圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,故圆柱是最佳选项,故答案为②.12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于48.【解答】解:它的左视图的面积为12,长为6,因此宽为2,即长方体的高为2,因此体积为:46248⨯⨯=.故答案为:48.13.如图是由6个棱长均为1的正方体组成的几何体,它的左视图的面积为4.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故答案为:4.14.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体球(答案不唯一)..【解答】解:球的3 个视图都为圆;正方体的 3 个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.故答案为:球(答案不唯一).15.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是5个.【解答】解:搭这样的几何体最少需要415+=个小正方体,最多需要426+=个小正方体,故答案为:516.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要6块正方体木块,至多需要块正方体木块.【解答】解:易得第一层最少有4个正方体,最多有12个正方体;第二层最少有2个正方体,最多有4个,故最少有6个小正方形,至多要16块小正方体.故答案为:6,16.三、解答题17.如图是一个由一些相同的小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.(1)请你画出它的主视图与左视图.(2)若每个小正方体的边长都为1,求这个几何体的表面积.【解答】解:(1)如图所示:(2)(929252)(11)⨯+⨯+⨯⨯⨯=⨯461=.46答:这个几何体的表面积为46.18.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.【解答】解:根据题意,构成几何体所需正方体最多情况如图(1)所示,构成几何体所需正方体最少情况如图(2)所示:所以最多需要11个,最少需要9个小正方体.19.已知下图为一几何体的三视图(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm ,俯视图中三角形的边长为4cm ,求这个几何体的侧面积.【解答】解:(1)由三视图知该几何体是:三棱柱;(2)其展开图如下:(3)()234103120S S cm =⨯=⨯⨯=侧长.20.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有 10 个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加个小正方体.【解答】解:(1)正方体的个数:13610++=,(2)如图所示:;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加第一排的右边2列的2个,第2排的右边第3列的2个,+=.224答:最多还能在图1中添加4个小正方体.故答案为:10;4.21.如图是由5个边长为1的正方体叠放而成的一个几何体,请画出这个几何体的三视图.(用铅笔描黑)【解答】解:如图所示:24.根据要求完成下列题目:(1)图中有6块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要 个小立方块,最多要 个小立方块.【解答】解:(1)图中有6块小正方体;故答案为:6;(2)如图所示:;(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要5个小立方块,最多要7个小立方块.故答案为:5,7.1、三人行,必有我师。
第五章投影与视图1投影第1课时投影、中心投影01基础题知识点1投影、中心投影的概念1.下列现象不属于投影的是(D)A.皮影B.树影C.手影D.素描画2.下列各种现象属于中心投影现象的是(B)A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子知识点2影子或光源的确定3.下列四幅图中,灯光与影子的位置合理的是(B)4.(教材P144复习题T1变式)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,其中,粗线分别表示三人的影子.(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解:(1)如图所示:O即为灯泡的位置.(2)如图所示:EF即为小明的身高.知识点3中心投影条件下物体与其投影之间的转化5.(教材P145复习题T3变式)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向下移时,圆形阴影的大小变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定02中档题6.小红和小花在路灯下的影子一样长,则她们的身高关系是(D)A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定7.如图,位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为(B)A .8 cmB .20 cmC .3.2 cmD .10 cm8.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,将她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是(C)9.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A 点沿AO 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?解:∵∠MAC =∠MOP =90°,∠AMC =∠OMP , ∴△MAC ∽△MOP. ∴MA MO =AC OP , 即MA 20+MA =1.68. ∴MA =5米.同理△NBD ∽△NOP ,可求得NB =1.5 米. 则MA -NB =5-1.5=3.5(米). ∴小明的身影变短了,短了3.5米.第2课时 平行投影01 基础题 知识点1 平行投影1.下列各组投影是平行投影的是(A)2.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是(D)3.学校里旗杆的影子整个白天的变化情况是(B)A .不变B .先变短后变长C .一直在变短D .一直在变长 4.【动手操作】如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明(AB)落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示. (2)∵DG ∥AC , ∴∠ACB =∠DGE.又∵∠ABC =∠DEG =90°, ∴Rt △ABC ∽△Rt △DEG. ∴AB DE =BC EG ,即1.6DE =2.416. 解得DE =323.∴旗杆DE 的高度为323m.知识点2 正投影5.如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是(D)6.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小相同(填“相同”“不一定相同”或“不相同”). 02 中档题7.下列说法错误的是(B)A .太阳的光线所形成的投影是平行投影B .在一天的不同时刻,同一棵树所形成的影子的长度不可能一样C .在一天中,不论太阳怎样变化,两棵相邻的树的影子都是平行的或在一条直线上D .影子的长短不仅和太阳的位置有关,还和事物本身的长度有关8.【易错】太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是(A)A .与窗户全等的矩形B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形9.(教材P132习题T1变式)一天下午小红先参加了校运动会女子100 m 比赛,过一段时间又参加了女子400 m 比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是(A)A .乙照片是参加100 m 的B .甲照片是参加100 m 的C .乙照片是参加400 m 的D .无法判断甲、乙两张照片10.(百色中考)如图,长方体的一个底面ABCD 在投影面P 上,M ,N 分别是侧棱BF ,CG 的中点,矩形EFGH 与矩形EMNH 的投影都是矩形ABCD ,设它们的面积分别是S 1,S 2,S ,则S 1,S 2,S 的关系是S 1=S <S 2.(用“=”“>”或“<”连起来)11.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1 m 的竹竿的影长为0.4 m ,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2 m ,一级台阶高为0.3 m ,如图所示.若此时落在地面上的影长为4.4 m ,求树的高度.解:设树高为h m ,由题意,得 4.4+0.2h -0.3=0.41, 则0.4(h -0.3)=4.6, 解得h =11.8.答:树的高度为11.8 m.2 视图第1课时 简单几何体的三视图01 基础题知识点1 圆柱、圆锥、球的三视图1.(桂林中考)如图所示的几何体的主视图是(C)2.下列几何体中,其左视图为三角形的是(D)3.下列立体图形中,俯视图不是圆的是(B)4.如图是一个圆台,它的主视图是(B)5.(泰州中考)下列几何体中,主视图与俯视图不相同的是(B)6.(安徽中考)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是(D)7.(营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成的,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是(A)8.将图中的实物与它的主视图用线连接起来.9.一个圆锥和一个圆柱如图放置,说出下面①②两组视图分别是什么视图.解:①是俯视图;②是主视图.知识点2画简单几何体的三视图10.(教材P137习题T1变式)画出图中所示物体的主视图、左视图和俯视图.解:如图所示:易错点判断圆锥的俯视图时忽视中心点11.如图所示的几何体的俯视图是(D)02中档题12.(安徽中考)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(B)13.将如图所示的Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是(A)14.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是(D)15.如图,茶杯的左视图是(C)16.(菏泽中考)如图是两个等直径圆柱构成的“T”形管道,其左视图是(B)17.(益阳中考)如图,空心卷筒纸的高度为12 cm ,外径(直径)为10 cm ,内径为4 cm ,在比例尺为1∶4的三视图中,其主视图的面积是(D)A.21π4 cm 2 B.21π16cm 2 C .30 cm 2 D .7.5 cm 218.(泰州中考)如图所示的几何体,它的左视图与俯视图都正确的是(D)03 综合题19.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图所示:第2课时直棱柱的三视图01基础题知识点1直棱柱的三视图1.(娄底中考)如图,正三棱柱的主视图为(B)2.(丽水中考)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B)A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.(泰安中考)下面四个几何体:其中,俯视图是四边形的几何体有(B)A.1个B.2个C.3个D.4个4.(德州中考)图甲是某零件的直观图,则它的主视图为(箭头方向为主视方向)(A)5.一个几何体如图所示,则该几何体的三视图正确的是(D)6.请将六棱柱的三视图名称填在相应的横线上.(1)俯视图;(2)主视图;(3)左视图.知识点2直棱柱的三视图的画法7.画出如图所示几何体的三视图.解:如图:易错点判断视图时忽视被遮挡部分的轮廓线8.(潍坊中考)如图所示的几何体的左视图是(C)02中档题9.(陕西中考)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(B)10.(沈阳和平区期末)从一个边长为3 cm的大立方体中挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(C)11.(太原期末)一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是(A)12.(济宁中考)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为6cm.13.下面几何体的三种视图有无错误?如果有,请改正.解:主视图有错误,左视图无错误,俯视图有错误,正确画法如图所示.14.两个四棱柱的底面均为等腰梯形,它们的俯视图分别如图所示,画出它们的主视图和左视图.(1) (2)解:如图所示:03 综合题 15.如图1是由两个长方体所组成的立体图形,图2中的长方体是图1中的两个长方体的另一种摆放形式,图①②③是从不同的方向看图1所得的平面图形.(1)填空:图①是主视图得到的平面图形,图②是俯视图得到的平面图形,图③是左视图得到的平面图形; (2)请根据各图中所给的信息(单位:cm),计算出图1中上面的小长方体的体积.解:由图可得⎩⎪⎨⎪⎧x =y +2,x +y =12.解得⎩⎪⎨⎪⎧x =7,y =5. 小长方体的体积为5×3×2=30(cm 3).所以图1中上面的小长方体的体积为30 cm 3.第3课时由视图描述几何体01基础题知识点1由三视图还原几何体1.(云南中考)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是(D)A.三棱柱B.三棱锥C.圆柱D.圆锥2.(泰安中考)如图是下列哪个几何体的主视图与俯视图(C)3.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(C)A.圆柱B.圆锥C.球D.正方体4.(襄阳中考)一个几何体的三视图如图所示,则这个几何体是(C)知识点2由几何体的三视图求其面积或体积5.(临沂中考)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是(C)A.12 cm2B.(12+π)cm2C.6π cm2D.8π cm26.(通辽中考)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是(C)A.18π B.24πC.27π D.42π7.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24cm3.8.如图是一个几何体的主视图、左视图和俯视图.(1)写出这个几何体的名称;(2)若已知主视图的高为10 cm,俯视图的三边长都为4 cm,求这个几何体的侧面积.解:(1)三棱柱.(2)这个几何体的侧面积为10×4×3=120(cm2).02中档题9.(河北中考)图中三视图对应的几何体是(C)10.(广元中考)如图是由几个相同小正方体组成的立体的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是(B)11.(巴彦淖尔中考)如图是一个几何体的三视图,则这个几何体的表面积是(A)A.60π+48 B.68π+48C.48π+48 D.36π+4812.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)A.60π B.70π C.90π D.160π13.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中画出一种该几何体的主视图,且使该主视图是轴对称图形.解:如图所示.(答案不唯一)14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm.∴菱形的边长为(42)2+(32)2=52(cm).∴棱柱的侧面积为52×8×4=80(cm 2).由三视图判断小立方体的个数【方法指导】 在三视图中,通过主视图、俯视图可以确定组合图形的列数,通过俯视图、左视图可以确定组合图形的行数,通过主视图、左视图可以确定行与列中的最高层数,从而确定小正方体的个数. 类型1 个数确定1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块的个数是(B)A .7B .8C .9D .102.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是4.类型2 个数不确定3.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则这个几何体最多由9个小正方体组成,最少由7个小正方体组成.回顾与思考(五)投影与视图01分点突破知识点1中心投影与平行投影1.下列结论正确的有(B)①同一时刻,同一公园内的物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在点光源照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个2.把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是(B)3.(贺州中考)小明拿一个等边三角形木框在阳光下玩耍,发现等边三角形木框在地面上形成的投影不可能是(B) 4.如图,两幅图片中竹竿的影子是在太阳光下形成的,还是在灯光下形成的?请你画出两图中小树的影子.解:如图所示.知识点2由几何体判断三视图5.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是(C)6.(赤峰中考)如图是一个空心圆柱体,其俯视图是(D)7.(柳州中考)如图,这是一个机械模具,则它的主视图是(C)知识点3由三视图还原几何体8.(贵阳中考)如图是一个几何体的主视图和俯视图,则这个几何体是(A)A.三棱柱B.正方体C.三棱锥D.长方体9.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是6__cm2.02易错题集训10.一元硬币放在太阳光下,它在平整的地面上的投影不可能是(D)A.线段B.圆C.椭圆D.正方形11.如图所示几何体的左视图是(C)03中考题型演练12.(大连中考)一个几何体的三视图如图所示,则这个几何体是(C)A.圆柱B.圆锥C.三棱柱D.长方体13.(娄底中考)如图的几何体中,主视图是中心对称图形的是(C)14.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是(B)15.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(C)16.图中三视图对应的几何体是(C)17.一个几何体的三视图如图所示,则该几何体的表面积为(D)A.4π B.3πC.2π+4 D.3π+48.。
北师大版九年级数学上册第五章5.1投影同步测试一.选择题1. 下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A. B. C. D.2.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能3.两个不同长度的物体在同一时刻同一地点的太阳光下得到的投影是()A.相等B.长的较长C.短的较长D.不能确定4. 如图,晚上小亮在路灯下经过,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短 B.先变短后变长 C.逐渐变长 D.先变长后变短5. 同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米 B.4.8米 C.5.2米 D.5.6米6.电影院呈阶梯或下坡形状的主要原因是()A.为了美观B.盲区不变C.增大盲区D.减小盲区7.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A.B.15 C.10 D.8.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A.3m B.4m C.4.5m D.5m9. 下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.(3)(1)(4)(2) B.(3)(2)(1)(4)C.(3)(4)(1)(2) D.(2)(4)(1)(3)10.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm2二.填空题11. 为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为______米.12.下面4个图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是.13. 人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是___,影子的长短随人的位置的变化而变化的是____.14.小明拿一个等边三角形木板在阳光下玩,等边三角形木板在地面上形成的投影可能是.(填序号)15.如图,小芸用灯泡O照射一个矩形相框ABCD,在墙上形成矩形影子A′B′C′D′.现测得OA=20cm,OA′=50cm,相框ABCD的面积为80cm2,则影子A′B′C′D′的面积为cm2.16.如图所示,此时树的影子是在(填太阳光或灯光)下的影子.17.航拍器拍出的照片会给我们视觉上带来震撼的体验,越来越受追捧.如图,航拍器在空中拍摄地面的区域是一个圆,且拍摄视角α固定:(1)现某型号航拍器飞行高度为36m,测得可拍摄区域半径为48m.若要使拍摄区域面积为现在的2倍,则该航拍器还要升高m;(2)航拍器由遥控器控制,与(1)中同型号的航拍器最远飞行距离为距遥控器2000m,则该航拍器可拍摄区域的最大半径为 m.(忽略遥控器所在高度)18.图中八边形表示一个正八棱柱形状的高大建筑物的俯视图,小明站在地面上观察该建筑物,图中标注的4个区域中,他只能同时看到其中三个侧面的是.三.解答题19. 确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.20. 如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m的小明落在地面上的影长为BC=2.4m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.21.如图所示,太阳光线AC和A′C′是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.(注:太阳光线可看成是平行的)22.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD =2.1m,求灯泡的高.23.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是3m,求P到AB的距离.24.小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?(精确到0.1)答案提示1. A.2.D.3.D.4. B.5.B.6.D.7.B.8.D.9.C.10.C.11.40米.12.④①③②.13.太阳光下形成的影子;灯光下形成的影子.14.①③④.15.500cm2.16.太阳光 17.(36﹣36)..18.①.19.解:如图:;分析:根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.20. 解:(1)影子EG如图所示;;(2)∵DG∥AC,∴∠G=∠C,∴Rt△ABC∽Rt△DGE,∴AB BCDE EG=,即1.62.416DE=,解得323DE=,∴旗杆的高度为32m3.21.解:建筑物一样高.证明:∵AB⊥BC,A′B′⊥B′C′,∴∠ABC=∠A′B′C′=90°,∵AC∥A′C′,∴∠ACB=∠A′C′B′,在△ABC和△A′B′C′中,∵,∴△ABC≌△A′B′C′(ASA)∴AB=A′B′.即建筑物一样高.22.(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.23.解:∵AB∥CD∴△PAB∽△PCD∴AB:CD=P到AB的距离:点P到CD的距离.∴2:6=P到AB的距离:3∴P到AB的距离为1m.24.解:(1)如图所示:汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)∵小明的视角为30°,A建筑物高25米,∴AC=25,tan30°==,∴AM=25,∵∠AEC=45°,∴AE=AC=25m,∴ME=AM﹣AE=43.3﹣25=18.3m.则他向前行驶了18.3米.。
1投影(2)同步练习
1.填空题
(1)平行投影是由光线形成的.
(2)太阳光线可以看成.
(3)在我国北方某地上午9点和11点同一颗树的影子点时树影较长.
(4)某一时刻甲木杆高2米,它的影长是1.5米,小颖身高1.6米,那么此时她的影长为米.
2.选择题
(1)小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子().
(A)相交(B)平行(C)垂直(D)无法确定
(2)在一个晴朗的天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是().
(A)上午(B)中午(C)下午(D)无法确定
(3)小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为().
(A)上午12时(B)上午10时
(C)上午9时30分(D)上午8时
(4)对同一建筑物,相同时刻在太阳光下的影子冬天比夏天().
(A)短(B)长(C)看具体时间(D)无法比较
(5)如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是().
(A)①②③④(B)④①③②(C)④②③①(D)④③②①
(6)太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是().
(A)与窗户全等的矩形(B)平行四边形
(C)不窗户略小的矩形(D)比窗户略大的矩形
(7)在太阳光下,转动一个正方体,观察正方体在地上投下的影子,那么这个影子最多可能是几边形().
(A)四边形(B)五边形(C)六边形(D)七边形
3.已知两棵小树在同一时刻的影子,你如何确定影子是在什么光线下形成的.
4.有两根木棒AB、CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE 如图所示,请你在图中画出这时木棒CD的影子.
5.阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好被站在他后面的同学踩在脚下,而小宁的影子却没有被他后面的同学踩在脚下,你知道他们的队列是向哪个方向的吗?小宁和小勇哪个高?为什么?
6.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,求旗杆高.
参考答案
1.(1)平行光线;(2)平行光线;(3)9;(4)1.2米.
2.(1)B;(2)A;(3)D;(4)B;(5)B;(6)A;(7)B.
3.平行光线.
4.略.
5.向南,小勇高.
6.20m.。