2014年重庆卷高考理数试题解析及点评
- 格式:ppt
- 大小:342.00 KB
- 文档页数:11
2014年重庆高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限2.对任意等比数列{}n a ,下列说法一定准确的是( ) 139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+ .2 2.4B y x =- .29.5C y x =-+ .0.3 4.4C y x =-+4.已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( )9.2A - .0B .C 3 D.1525.执行如题(5)图所示的程序框图,学科 网若输出k 的值为6,则判断框内可填入的条件是( ) A.12s>B.35s >C.710s >D.45s >6.已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝7.某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.728.设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存有一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A.34 B.35 C.49D.3 9.某次联欢会要安排3个歌舞类节目、学科 网2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.310.已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( )A.8)(>+c b bcB.216b)+ab(a >C.126≤≤abcD.1224abc ≤≤ 二、填空题11.设全集=⋂==≤≤∈=B A C B A n N n U U )(},9,7,5,3,1{},8,5,3,2,1{},101|{则______. 12.函数)2(log log )(2x x x f ⋅=的最小值为_________.13. 已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且 ABC ∆为等边三角形,学 科网则实数=a _________.考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14. 过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C , 若6=PA ,AC =8,BC =9,则AB =________. 15. 已知直线l 的参数方程为⎩⎨⎧+=+=t y tx 32(t 为参数),以坐标原点为极点,x 正半轴为极轴线l 与曲线C 的公共点的极经=ρ________. 16. 若不等式2212122++≥++-a a x x 对任意实数x 恒成立,学 科网则实数a 的取值范围是 ____________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程. 17. (本小题13分,(I )小问5分,(II )小问8分)已知函数()()⎪⎭⎫⎝⎛<≤->+=220sin 3πϕπωϕω,x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π.(I )求ω和ϕ的值; (II )若⎪⎭⎫ ⎝⎛<<=⎪⎭⎫⎝⎛326432παπαf ,求⎪⎭⎫ ⎝⎛+23cos πα的值.18.(本小题满分13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字 是2,2张卡片上的数字是3,学 科 网从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列(注:若三个数c b a ,,满足 c b a ≤≤,则称b 为这三个数的中位数).19.(本小题满分12分)如图(19),四棱锥ABCD P -,底面是以O 为中心的菱形,⊥PO 底面ABCD , 3,2π=∠=BAD AB ,M 为BC 上一点,且AP MP BM ⊥=,21. (1)求PO 的长;(2)求二面角C PM A --的正弦值。
2014年普通高等学校招生全国统一考试(重庆卷)理科数学1.复平面内表示复数i(1-2i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.对任意等比数列{a n },下列说法一定正确的是( )A .a 1,a 3,a 9成等比数列B .a 2,a 3,a 6成等比数列C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9,成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A .y =0.4x +2.3B .y =2x -2.4C .y =-2x +9.5D .y =-0.3x +4.44.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.1525.执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( ) A .s >12 B .s >35 C .s >710 D .s >45题图 题图 6.已知命题p :对任意x ∈R ,总有2>0,q :“x >1”是“x >2”( )A .p ∧qB .⌝p ∧⌝qC .⌝p ∧qD .p ∧⌝q7.某几何体的三视图如图所示,则该几何体的表面积为( ) A .54 B .60 C .66 D .728.设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( ) A.43 B.53 C.94D .3 9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .16810.已知△ABC 的内角A ,B ,C 满足sin 2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( ) A .bc (b +c )>8 B .ab (a +b )>16 2 C .6≤abc ≤12 D .12≤abc ≤2411.设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =__ .12.函数()()2log 2f x x =的最小值为_ _.13.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.14.过圆外一点P 作圆的切线P A (A 为切点),再作割线PBC 依次交圆于B ,C .若P A =6,AC =8,BC =9,则AB =________.15.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.16.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________. 17.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3,求cos ⎝⎛⎭⎫α+3π2的值.18.一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望.(注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数)19.如图所示,四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长;(2)求二面角A -PM -C 的正弦值.20.已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性;(3)若f (x )有极值,求c 的取值范围.21.如图所示,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *).(1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论.。
2014年重庆高考数学试题〔理〕一.选择题:本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.1.在复平面内表示复数(12)i i -的点位于〔〕.A 第一象限.B 第二象限 .C 第三象限.D 第四象限【答案】A 【解析】..∴2)2-1(A i i i 选对应第一象限+=2.对任意等比数列{}n a ,如下说法一定正确的答案是〔〕139.,,A a a a 成等比数列236.,,B a a a 成等比数列 248.,,C a a a 成等比数列239.,,D a a a 成等比数列【答案】D 【解析】.∴D 选要求角码成等差3.变量x 与y 正相关,且由观测数据算得样本的平均数 2.5x =, 3.5y =,如此由观测的数据得线性回归方程可能为〔〕.0.4 2.3A y x =+.2 2.4B y x =-.29.5C y x =-+.0.3 4.4C y x =-+【答案】A 【解析】.∴)5.33(),(.,,0,A y x D C b a bx y 选,过中心点排除正相关则=∴>+=4.向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,如此实数k=9.2A -.0B C.3 D.152【答案】C 【解析】.∴3),42(3)32(2,32,0)3-2(∴⊥)3-2(C k k bc ac c b a c b a 选解得即即=+=+==5.执行如题〔5〕图所示的程序框图,假设输出k 的值为6,如此判断框内可填入的条件是。
A .12s >B.1224abc ≤≤35s >C.710s >D.45s >【答案】C 【解析】.∴10787981091C S 选=•••=6.命题:p 对任意x R ∈,总有20x >; :"1"q x >是"2"x >的充分不必要条件如此如下命题为真命题的是〔〕.A p q ∧.B p q ⌝∧⌝.C p q ⌝∧.D p q ∧⌝【答案】D 【解析】.∴,,D q p 选复合命题为真为假为真7.某几何体的三视图如下列图,如此该几何体的外表积为〔〕A.54B.60C.66D.72【答案】B 【解析】BS S S S S S 选,,,何体表的面积的上部棱锥后余下的几;截掉高为,高原三棱柱:底面三角形侧上下侧上下∴60s 2273392318152156344*3=++=+=•++===8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+如此该双曲线的离心率为〔〕A.34B.35C.49D.3【答案】B 【解析】.,35,5,4,3,34∴,2-,49,3,,,22221B a c c b a b a b a c a n m ab mn b n m n m PF n PF m 选令解得则且设====∴=+====+>==9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,如此类节目不相邻的排法种数是〔〕A.72B.120C.144D.3 【答案】B【解析】解析完成时间2014-6-12 373780592..120)A A A A A (A ∴A A A 2(2).A A (1),A 222212122333222212122333B 选共有个:歌舞中间有法:歌舞中间有一个,插空再排其它:先排歌舞有=+10.ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积满足C B A c b a S ,,,,21分别为,记≤≤所对的边,如此如下不等式成立的是〔〕A.8)(>+c b bcB.)(c a ac +C.126≤≤abcD. 1224abc ≤≤【答案】A【解析】2014-6-12 373780592...8)(,82nC sinAsinBsi 8)(,]8,4[∈∴]2,1[∈4nC sinAsinBsi 2sin 21.1inC 8sinAsinBs ∴21inC 4sinAsinBs nA)sinBcosBsi cosAsinB 4sinAsinB(A in 4sinBcosBs B in 4sinAcosAs cos2A)-sin2B(1cos2B)-in2A(1cos2Asin2B -sin2Acos2B -sin2B in2A 2B)sin(2A -sin2B in2A sin2C sin2B in2A ∴21-sin2C 21B)-A -sin(C sin2B sin2A C)B -sin(A sin2A 333222Δ22A c b bc R R bca c b bc A R R R C ab S s s s s ABC 所以,选别的选项可以不考虑成立对>+∴=≥==>+======+=+=+=+=++=+++=+=+=++二、填空题 本大题共6小题,考生作答5小题,每一小题5分,共25分,把答案填在答题卡相应位置上。
2014年普通高校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的 1. 在复平面内表示复数(12)i i -的点位于( ) A.第一象限 B.第二象限 C. 第三象限D.第四象限 【答案】A【解析】(12)2i i i -=+,故表示复数的点在第一象限内。
选择A 。
【分值】5分【解题思路】先将原虚数式化简,再判断虚部与实部的正负,实部为横坐标虚部为纵坐标。
直接判断该点位于第几象限。
【考查方向】本题考查复数的计算(乘法)和复数的几何意义,属于容易题。
【易错点】实部虚部所对应的坐标轴记反了。
2. 对任意等比数列{}n a ,下列说法一定正确的是( )A.1a 、3a 、9a 成等比数列B.2a 、3a 、6a 成等比数列C.2a 、4a 、8a 成等比数列D.3a 、6a 、9a 成等比数列【答案】D【解析】由等比数列的性质:下标成等差,对应项成等比,知选D 。
【分值】5分【解题思路】观察各个选项中给出的数列,若它们下标成等差则为等比数列。
【考查方向】本题考查等比数列的简单性质,属容易题。
【易错点】容易将下标成等比的一组数列当成等比数列。
3. 已知变量x 与y 正相关,且由观测数据算得样本的平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( ) A. 0.4 2.3y x =+B. 2 2.4y x =-C. 29.5y x =-+D. 0.3 4.4y x =-+ 【答案】A【解析】由线性回归方程过点(,)x y ,将选择支逐一代入验证,只有A 适合,故选A 。
【分值】5分【解题思路】回归直线方程过样本点中心,所以将点()3,3.5带入选项中的直线方程检验,若符合,则即为所选。
【考查方向】本题考查线性回归方程的基本特点,涉及验证法,是容易题。
【易错点】不少学生忽略了书本上回归直线方程过样本点中心这句话。
1、设集合A={x|x是小于6的正整数},B={x|x是3的倍数},则A∩B等于:A、{3}B、{1,2,3}C、{3,6}D、{1,3,5}(答案:A、{3}。
解析:集合A为{1,2,3,4,5},集合B为{3,6,...},交集即为两个集合共有的元素,只有3。
)2、已知等差数列的前三项分别为a, a+d, a+2d,若a+3d=10,则a+d+a+2d的值为:A、10B、15C、20D、无法确定(答案:C、20。
解析:由等差数列性质,a+3d=10,则a+d+a+2d=2a+3d=2*(a+3d/2)=2*10/2=20。
)3、若复数z满足z(1+i)=2i,则z等于:A、1+iB、1-iC、-1+iD、-1-i(答案:B、1-i。
解析:z=2i/(1+i)=(2i*(1-i))/((1+i)*(1-i))=2i-2i2/2=2i+2/2=1+i的共轭复数,即1-i。
)4、已知直线l过点P(2,3),且与x轴、y轴的正半轴分别交于A、B两点,若△AOB的面积最小,则直线l的斜率为:A、-1B、-2C、-3/2D、-1/2(答案:C、-3/2。
解析:设直线l方程为y-3=k(x-2),k<0,求与x轴、y轴交点,计算面积S,利用基本不等式求S的最小值,对应k值。
)5、若a,b,c为实数,且a>b>c,则下列不等式一定成立的是:A、a2>b2>c2B、ab>acC、a/b>a/cD、a-b>b-c(答案:D、a-b>b-c。
解析:对于A,若a=1,b=-1,c=-2,则不成立;对于B,若a=2,b=1,c=0,则不成立;对于C,若a=2,b=1,c=-1,则不成立;对于D,由于a>b>c,所以a-b>0,b-c>0,且a-b=(a-c)-(b-c)>b-c。
)6、已知圆C的圆心为C(2,1),且过点A(4,3),则圆C上到直线l+1=0距离最远的点的坐标为:A、(4,5)B、(0,-1)C、(4,-3)D、(0,3)(答案:C、(4,-3)。
14重庆理一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数i(12i)-的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 【测量目标】复数的基本运算和复数在复平面中的表示. 【考查方式】考查复数的运算和在复平面中的表示. 【难易程度】容易. 【参考答案】A【试题解析】i(1-2i)=2+i ,其在复平面内对应的点为(2,1),位于第一象限,故选A. 2.对任意等比数列{}n a ,下列说法一定正确的是( ) A.139,,a a a 成等比数列 B.236,,a a a 成等比数列 C.248,,a a a 成等比数列 D.369,,a a a 成等比数列【测量目标】等比数列的性质.【考查方式】考查等比数列等比中项性质的运用. 【难易程度】容易. 【参考答案】D【试题解析】因为在等比数列中23n n n a a a ,,,…也成等比数列,所以369a a a ,,成等比数列,故选D. 3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( )A. 0.4 2.3y x =+B. 2 2.4y x =-C. 29.5y x =-+D. 0.3 4.4y x =-+ 【测量目标】线性回归方程的概念.【考查方式】考查对线性回归方程的理解 【难易程度】容易. 【参考答案】A【试题解析】因为变量x 与y 正相关,则在线性回归方程中,x 的系数应大于零,排除B ,D ;将x =3,y =3.5分别代入A ,B 中的方程只有A 满足,故选A.4.已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥ ,则实数k =( )A.92- B.0 C.3 D.152【测量目标】向量的运算及关系. 【考查方式】考查向量的运算及关系. 【难易程度】容易. 【参考答案】C【试题解析】∵232(3)3(14)(236)a b k k -=,-,=-,-,又(23)a b c ⊥-,∴(2k -3)×2+(-6)=0,解得k =3.故选C.5.执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A.12s >B.35s >C.710s >D.45s >第5题图【测量目标】程序框图,判断语句,循环语句.【考查方式】考查阅读程序框图,读懂判断语句,循环语句的能力. 【难易程度】容易. 【参考答案】C【试题解析】第一次循环结束,得99S=1=1010⨯,k =8;第二次循环结束,得984S==1095⨯,k =7;第三次循环结束,得477S==5810⨯,k =6,此时退出循环,输出k =6.故判断框内可填7s>10.故选C.6.已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件.则下列命题为真命题的是( )A.p q ∧B.p q ⌝∧⌝C.p q ⌝∧D.p q ∧⌝ 【测量目标】命题的真假判断和命题连接词.【考查方式】考查命题的判断和命题连接词的理解. 【难易程度】容易. 【参考答案】D【试题解析】根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以q ⌝为真命题,所以p q ∧⌝为真命题.故选D. 7.某几何体的三视图如图所示,则该几何体的表面积为( )第7题图A.54B.60C.66D.72【测量目标】三视图,几何体的面积计算,空间想象能力.【考查方式】给出三视图,由三视图求几何体的面积,平面图形向立体图形转化. 【难易程度】容易.【参考答案】B【试题解析】由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为1352+52+5S=34+4+5+35=602222⨯⨯⨯+⨯⨯⨯.故选B.8.设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得12||||3PF PF b +=,129||||4PF PF ab ⋅=,则该双曲线的离心率为( ) A.34 B.35 C.49D.3 【测量目标】由已知条件求双曲线离心率.【考查方式】根据给出几何条件,向代数关系转化,解出参数间的关系,进而求出离心率. 【难易程度】容易. 【参考答案】B【试题解析】不妨设P 为双曲线右支上一点,根据双曲线的定义有122PF PF a -=,联立123PF PF b +=,平方相减得221294·=4b a PF PF -,则由题设条件,得22949=44b a ab -,整理得43b a =,∴22451133c b e a a ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭.故选B.9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.3 【测量目标】排列组合问题.【考查方式】考查排列组合问题中插入法的应用. 【难易程度】容易. 【参考答案】B【试题解析】分两步进行:(1)先将3个歌舞进行全排,其排法有33A 种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有332A 种.若两歌舞之间有两个其他节目时插法有122222C A A 种.所以由计数原理可得节目的排法共有3312233222A (2A C A A )120+= (种).故选B.10.已知ABC △的内角,A B C ,满足1sin 2sin()sin()2A ABC C A B +-+=--+,面积S 满足12S 剟,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式成立的是( )A.8)(>+c b bcB.(+)162ab a b >C.612abc 剟D.1224abc 剟 【测量目标】三角函数,三角函数和差化积公式,正弦定理.【考查方式】考查三角形内角三角函数的变换,和差化积公式以及正弦定理的运用. 【难易程度】中等. 【参考答案】A【试题解析】因为πA BC ++=,所以πA C B +=-,π()C A B =-+,所以由已知等式可得1sin 2+sin(π2)=sin[π2(+)]+2A B A B --,即1sin 2+sin 2=sin 2(+)+2A B A B ,所以1sin[()()]sin[()()]=sin 2(+)+2A B A B A B A B A B ++-++--,所以12 sin()cos()=2sin(+)cos(+)+2A B A B A B A B +-,所以12sin()[cos()cos(+)]=2A B A B A B +--,所以1sin sin sin =8A B C .由12S 剟,2sin 2sin 2sin a R A b R B c R C =,=,=,得11s i n 22bc A 剟.由正弦定理得2sin 2sin 2sin a R A b R B c R C =,=,=,所以21sin sin sin R A B C剟22, 所以2124R 剟,即222R 剟,所以33()8sin sin sin 8bc b c abc R A B C R >+==….故选A.二、填空题11.设全集{|110}U n n=∈N 剟,{1,2,3,5,8},{1,3,5,7,9}A B ==则()U A B = ð______.【测量目标】集合的基本运算.【考查方式】考查集合的概念,交集,并集. 【难易程度】容易. 【参考答案】{7,9} 【试题解析】由题知U A ð={4,6,7,9,10},∴()U A B = ð{7,9}.12.函数22()=log log (2)f x x x的最小值为________. 【测量目标】对数函数和二次函数的性质.【考查方式】考查对数函数的换底公式以及二次函数的最大值. 【难易程度】容易. 【参考答案】14-【试题解析】22221()=log log (2)=log 2log (2)2f x x x x x222211log (1log )=(log )24x x x +- =+,所以当2=2x 时,函数f (x )取得最小值14-.13.已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且ABC △为等边三角形,则实数=a _________. 【测量目标】圆的方程,点到直线距离.【考查方式】考查圆的方程,点到直线距离,圆的半径与弦的关系. 【难易程度】中等.【参考答案】415±【试题解析】由题意可知圆的圆心为C (1,a ),半径r =2,则圆心C 到直线ax +y -2=0的距离22|+2||22|=1+1a a a d a a --=+.∵ABC △为等边三角形,∴=2AB r =.又22||=2AB r d -,∴2222222()=21a a --+,即2810a a -+=,解得415±.考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C ,若6=PA ,AC =8,BC =9,则AB =________.【测量目标】切割线定理,弦切角定理,相似三角形.【考查方式】考查对有关圆内图形的有关图形和相似图形的确定以及相似性的应用. 【难易程度】中等. 【参考答案】4【试题解析】根据题意,作出图形如图所示,由切割线定理,得2··()PA PB PC PB PB BC ==+,即36=PB ·(PB +9)∴PB =3,∴PC =12.由弦切角定理知∠P AB =∠PCA ,又∠APB =∠CP A ,∴PAB PCA △∽△,=AB PB CA PA ∴,即38===46PB CA AB PA ⨯ .第14题图15.已知直线l 的参数方程为⎩⎨⎧+=+=ty tx 32(t 为参数),以坐标原点为极点,x 正半轴为极轴线l 与曲线C 的公共点的极径=ρ________.【测量目标】极坐标方程及有关的概念.【考查方式】考查极坐标方程和直角坐标系方程的转化,直线和曲线焦点的求解. 【难易程度】容易.【参考答案】5【试题解析】由题意,得直线l 的普通方程为x -y +1=0,曲线C 的平面直角坐标方程为y 2=4x ,联立直线l 与曲线C 的方程,解得=1=2x y ⎧⎨⎩,所以直线l 与曲线C 的公共点的极径2210)(20)5ρ-+-==(.16.若不等式2121222x x a a -++++…对任意实数x 恒成立,则实数a 的取值范围是_______. 【测量目标】绝对值不等式,二次函数.【考查方式】考查恒成立问题即最值问题,分类讨论思想. 【难易程度】中等.【参考答案】112a剟- 【试题解析】令()|21||2|f x x x =-++,则①当x <-2时,()212315f x x x x >=-+--=--;②当122x-剟时,()2123f x x x x =-+++=-+,故5()52f x 剟;③当12x >时, 5()=21+2=31>.2f x x x x ++-综合①②③可知5()2f x …,所以要使不等式恒成立,则需215++222a a …,解得112a -剟.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程. 17.(本小题13分)已知函数()()ππ3sin 022f x x ωϕωϕ⎛⎫=+>-< ⎪⎝⎭,…的图像关于直线π3x =对称,且图像上相邻两个最高点的距离为π.(I)求ω和ϕ的值; (II)若3π2π2463f αα⎛⎫⎛⎫=<<⎪ ⎪⎝⎭⎝⎭,求3πcos 2α⎛⎫+ ⎪⎝⎭的值. 【测量目标】三角函数的性质,三角恒等变换.【考查方式】通过三角函数具有的一些图像上的性质确定三角函数中的位置参数,考查将已知的三角函数值变换成为需要的形式的能力.. 【难易程度】中等.【试题解析】(I)因()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期=πT ,从而2π2T ω==.又因()f x 的图象关于直线π3x =对称,所以ππ22π,0,1,2,,32k k ϕ⋅+=+=±± 因ππ22ϕ-<…得0k =,所以π2ππ236ϕ=-=-.(II)由(I)得π33sin 22264f αα⎛⎫⎛⎫=⋅-= ⎪ ⎪⎝⎭⎝⎭,所以π1sin 64α⎛⎫-= ⎪⎝⎭.由π2π63α<<得ππ0,62α<-< 所以22ππ115cos 1sin 1.6644αα⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此3πππcos sin sin 266ααα⎡⎤⎛⎫⎛⎫+==-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 6666αα⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭ =1315131542428+⨯+⨯=. 18.(本小题满分13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列(注:若三个数c b a ,,满足a b c 剟,则称b 为这三个数的中位数).【测量目标】古典概型,排列组合和分布列.【考查方式】考查排列如何在求古典概型中的应用以及分布列. 【难易程度】中等.【试题解析】(Ⅰ)由古典概型中的概率计算公式知所求概率为334339C C 5C 84P +==.(Ⅱ)X 的所有可能值为1,2,3,且()21345439171,42C C C P X C +===()11121334236339C C C +C C +C 432C 84P X ===, ()212739C C 13C 12P X ===.故X 的分布列为:X 1 2 3P1742 4384 112从而()174314712342841228E X =⨯+⨯+⨯=. 19.(本小题满分12分)如图,四棱锥ABCD P -,底面是以O 为中心的菱形,⊥PO 底面ABCD ,π2,3AB BAD =∠=,M 为BC 上一点,且AP MP BM ⊥=,21.(1)求PO 的长;(2)求二面角C PM A --的正弦值。
2014年重庆市高考理科数学试卷及参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在复平面内复数Z=i(1-2i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)对任意等比数列{an},下列说法一定正确的是( )A.a1,a3,a9成等比数列 B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列 D.a3,a6,a9成等比数列3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是( )A.=0.4x+2.3B.=2x-2.4C.=-2x+9.5D.=-0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2-3)⊥,则实数k=( )A.-B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是( )A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是( )A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为( )A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为( )A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是( )A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC =8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cosθ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C的公共点的极径ρ=.16.若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,-≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c 满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P-ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A-PM-C的正弦值.20.(12分)已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=-1,问:是否存在实数c使得a2n <c<a2n+1对所有的n∈N*成立,证明你的结论.2014年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在复平面内复数Z=i(1-2i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1-2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.2.(5分)对任意等比数列{an},下列说法一定正确的是( )A.a1,a3,a9成等比数列 B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列 D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是( )A.=0.4x+2.3B.=2x-2.4C.=-2x+9.5D.=-0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2-3)⊥,则实数k=( )A.-B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2-3=(2k-3,-6),∵(2-3)⊥,∴(2-3)•=0'∴2(2k-3)+1×(-6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是( )A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是( )A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为( )A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为( )A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex-a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率. 【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex-a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2-a2=ab∴b2-a2=ab,即9b2-4a2-9ab=0,∴(3b-4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是( )A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+,∴sin2A+sin2B=-sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B-C)=,2sinA(cos(B-C)-cos(B+C))=,化为2sinA[-2sinBsin(-C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9} .【分析】由条件利用补集的定义求得∁U A,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值.【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:-【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2-8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC =8,BC=9,则AB= 4 .【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论. 【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ-4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x-1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[-1,] .【分析】利用绝对值的几何意义,确定|2x-1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x-1|+|x+2|=,∴x=时,|2x-1|+|x+2|的最小值为,∵不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a-≤0,∴-1≤a≤,∴实数a的取值范围是[-1,].故答案为:[-1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,-≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合-≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α-)=.再根据α-的范围求得cos(α-)的值,再根据cos(α+)=sinα=sin[(α-)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合-≤φ<可得φ=-.(Ⅱ)∵f()=(<α<),∴sin(α-)=,∴sin(α-)=.再根据 0<α-<,∴cos(α-)==,∴cos(α+)=sinα=sin[(α-)+]=sin(α-)cos+cos(α-)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c 满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题.19.(13分)如图,四棱锥P-ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A-PM-C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O-xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A-PM-C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O-xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),=(0,1,0),=(-,-1,0),又∵BM=,∴=(-,-,0),则=+=(-,,0),设P(0,0,a),则=(-,0,a),=(,-,a),∵MP⊥AP,∴•=-a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(-,0,),=(,-,),=(,0,), 设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,-,-2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===-故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y =f(x)在点(0,f(0))处的切线的斜率为4-c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x-be-2x-cx(a,b,c∈R)∴f′(x)=2ae2x+2be-2x-c,由f′(x)为偶函数,可得2(a-b)(e2x-e-2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c,即f′(0)=2a+2b-c=4-c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e-2x-3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e-2x-c,而2e2x+2e-2x≥2=4,当且仅当x=0时取等号, 当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+-c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(-∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(-c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=-x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=-或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(-c,0),F2(c,0),其中c2=a2-b2,由=2,得|DF 1|==c,从而=|DF 1||F 1F 2|=c 2=,故c =1.从而|DF 1|=,由DF 1⊥F 1F 2,得=+=,因此|DF 2|=,所以2a =|DF 1|+|DF 2|=2,故a =,b 2=a 2-c 2=1,因此,所求椭圆的标准方程为+y 2=1;(Ⅱ)设圆心在y 轴上的圆C 与椭圆+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,由圆和椭圆的对称性,易知x 2=-x 1,y 1=y 2,|P 1P 2|=2|x 1|,由(Ⅰ)知F 1(-1,0),F 2(1,0),所以=(x 1+1,y 1),=(-x 1-1,y 1),再由F 1P 1⊥F 2P 2,得-+=0,由椭圆方程得1-=,即3+4x 1=0,解得x 1=-或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在;当x 1=-时,过P 1,P 2,分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C. 由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2,又|CP 1|=|CP 2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=-1,问:是否存在实数c使得a2n <c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an-1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=-1,解得c=.用数学归纳法证明加强命题a2n <c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1-1)2=(an-1)2+1,∴{(an-1)2}是首项为0,公差为1的等差数列;∴(an-1)2=n-1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=-1,解得c=.下面用数学归纳法证明加强命题a2n <c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=-1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k <c<a2k+1<1∵f(x)在(-∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n <c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.。
2014年全国普通高等学校招生统一考试理科(重庆卷)数学答案解析1、【答案】A【解析】试题分析:因为复数,它在复平面内对应的点的坐标为,位于第一象限,故选A.考点:1、复数的运算;2、复平面.2、【答案】D【解析】试题分析:因为数列为等比数列,设其公比为,则所以,一定成等比数列,故选D.考点:1、等比数列的概念与通项公式;2、等比中项.3、【答案】A【解析】试题分析:因为变量与正相关,所以排除选项,又因为回归直线必过样本中心点,代入检验知,只有直线过点,故选A.考点:1、变量相关性的概念;2、回归直线.4、【答案】C【解析】试题分析:因为所以又因为,所以,,所以,,解得:故选C.考点:1、平面向量的坐标运算;2、平面向量的数量积.5、【答案】C【解析】试题分析:条件成立,运行第一次,条件成立,运行第二次,条件成立,运行第三次,条件不成立,输出由此可知判断框内可填入的条件是:故选C.考点:循环结构.6、【答案】D【解析】试题分析:由题设可知:是真命题,是假命题;所以,是假命题,是真命题;所以,是假命题,是假命题,是假命题,是真命题;故选D.考点:1、指数函数的性质;2、充要条件;3、判断复合命题的真假.7、【答案】B【解析】试题分析:由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于, ,平面平面,所以平面,所以平面,所以,故三角形是直角三角形,且, 所以几何体的表面积为:=60故选B.考点:1、三视图;2、空间几何体的表面积.8、【答案】B【解析】试题分析:因为是双曲线上一点,所以,又所以,,所以又因为,所以有,,即解得:(舍去),或;所以,所以故选B.考点:1、双曲线的定义和标准方程;2、双曲线的简单几何性质.9、【答案】B【解析】试题分析:将所有的安排方法分成两类,第一类:歌舞类节目中间不穿插相声节目,有(种);第二类:歌舞类节目中间穿插相声节目,有(种);根据分类加法计数原理,共有96+24=120种不同的排法.故选B.考点:1、分类加法计数原理;2、排列.10、【答案】A【解析】试题分析:由题设得:(1)由三角形面积公式及正弦定理得:所以又因为,所以所以恒成立,所以故选A.考点:1、两角和与差的三角函数;2、正弦定理;3、三角形的面积公式.11、【答案】【解析】试题分析:,所以答案应填:考点:集合的运算.12、【答案】【解析】试题分析:所以,当,即时,取得最小值.所以答案应填:.考点:1、对数的运算;2、二次函数的最值.13、【答案】试题分析:由题设圆心到直线的距离为解得:所以答案应填:考点:1、直线与圆的位置关系;2、点到直线的距离公式.14、【答案】4【解析】试题分析:由切割线定理得:,设,则所以,即,解得:(舍去),或又由是圆的切线,所以,所以、,所以所以答案应填:4.考点:1、切割线定理;2、三角形相似.15、【答案】试题分析:由参数方程消法参数得直线的一般式方程为:(1)由曲线的极坐标方程两边同乘以得,,所以,曲线C在直角坐标系下的方程为(2)解由方程(1)(2)能成的方程级得所以,直线与曲线的交点坐标为,极径所以,答案应填:考点:参数方程与极坐标.16、【答案】【解析】试题分析:令,其图象如下所示(图中的实线部分)由图可知:由题意得:,解这得:所以答案应填:考点:1、分段函数;2、等价转换的思想;3、数形结合的思想.17、【答案】(1);(2)【解析】试题分析:(1)由函数图像上相邻两个最高点的距离为求出周期,再利用公式求出的值;由函数的图像关于直线对称,可得,然后结合,求出的值.(2)由(1)知,由结合利用同角三角函数的基本关系可求得的值,因为可由两角和与差的三角函数公式求出从而用诱导公式求得的值.解:(1)因的图象上相邻两个最高点的距离为,所以的最小正周期,从而.又因的图象关于直线对称,所以因得所以.(2)由(1)得所以.由得所以因此=考点:1、诱导公式;2、同角三角函数的基本关系;3、两角和与差的三角函数公式;4、三角函数的图象和性质.18、【答案】(1)(2)详见解析.【解析】试题分析:(1)从9张卡片中任取3张,有和不同的结果,其中,3张卡片上的数字完全相同的有,由于是任取的,所以每个结果出现的可能性是相等的,故可根据古典概型的概率公式求得概率;(2)由题设随机变量的所有可能取值有1,2,3;表示抽出的三第卡片上的三个数字可以是表示抽出的三第卡片上的三个数字可以是表示抽出的三第卡片上的三个数字可以是于是可用古典概型的概率公式求出的分布列与数学期望.解:(1)由古典概型中的概率计算公式知所求概率为(2)的所有可能值为1,2,3,且,.故的分布列为从而考点:1、组合;2、古典概型;3、离散型随机变量的分布列与数学期望.19、【答案】(1);(2).【解析】试题分析:(1)连结、,因为是菱形的中心,,以为坐标原点,的方向分别为轴、轴、轴的正方向,建立空间直角坐标系,根据题设条件写出的坐标,并设出点的坐标,根据空间两点间的距离公式和勾股定理列方程解出的值得到的长;.(2)设平面的法向量为,平面PMC的法向量为,首先利用向量的数量积列方程求出向量的坐标,再利用向量的夹角公式求出,进而求出二面角的正弦值.解:(1)如图,连结,因为菱形,则,且,以为坐标原点,的方向分别为轴,轴,轴的正方向,建立空间直角坐标系,因,故所以由知,从而,即设,则因为,故即,所以(舍去),即. (2)由(1)知,,设平面的法向量为,平面的法向量为由得故可取由得故可取从而法向量的夹角的余弦值为故所求二面角的正弦值为.考点:1、空间直线与平面垂直的性质;2、空间直角坐标系;3、空间向量的数量积及其应用.20、【答案】(1);(2)增函数;(3).【解析】试题分析:(1)由因为是偶函数,所以,又曲线在点处的切线的斜率为,所以有,利用以上两条件列方程组可解的值;(2)由(1),,当时,利用的符号判断的单调性;(3)要使函数有极值,必须有零点,由于,所以可以对的取值分类讨论,得到时满足条件的的取值范围.解:(1)对求导得,由为偶函数,知,即,因,所以又,故.(2)当时,,那么故在上为增函数.(3)由(1)知,而,当时等号成立.下面分三种情况进行讨论.当时,对任意,此时无极值;当时,对任意,此时无极值;当时,令,注意到方程有两根,即有两个根或.当时,;又当时,从而在处取得极小值.综上,若有极值,则的取值范围为.考点:1、导数的几何意义及导数在研究函数性质中的应用;2、分类讨论的思想.21、【答案】(1);(2)【解析】试题分析:(1)由题设知其中由,结合条件的面积为,可求的值,再利用椭圆的定义和勾股定理即可求得的值,从而确定椭圆的标准方程;(2)设圆心在轴上的圆与椭圆在轴的上方有两个交点为由圆的对称性可知,利用在圆上及确定交点的坐标,进而得到圆的方程.解:(1)设,其中,由得从而故.从而,由得,因此. 所以,故因此,所求椭圆的标准方程为:(2)如答(21)图,设圆心在轴上的圆与椭圆相交,是两个交点,,,是圆的切线,且由圆和椭圆的对称性,易知,由(1)知,所以,再由得,由椭圆方程得,即,解得或.当时,重合,此时题设要求的圆不存在.当时,过分别与,垂直的直线的交点即为圆心.由,是圆的切线,且,知,又故圆的半径考点:1、圆的标准方程;2、椭圆的标准方程;3、直线与圆的位置关系;4、平面向量的数量积的应用.22、【答案】(1);(2)存在,【解析】试题分析:(1)由所以数列是等差数列,可先求数列再求数列的通项公式;也可以先根据数列的前几项归纳出数列的通项公式,然后由数学归纳法证明. (2)利用数列的递推公式构造函数,由,然后结合函数的单调性,用数学归纳法证明即可.解:(1)解法一:再由题设条件知从而是首项为0公差为1的等差数列,故=,即解法二:可写为.因此猜想.下用数学归纳法证明上式:当时结论显然成立.假设时结论成立,即.则这就是说,当时结论成立.所以(2)解法一:设,则.令,即,解得.下用数学归纳法证明加强命:当时,,所以,结论成立. 假设时结论成立,即易知在上为减函数,从而即再由在上为减函数得.故,因此,这就是说,当时结论成立. 综上,符合条件的存在,其中一个值为.解法二:设,则先证:①当时,结论明显成立.假设时结论成立,即易知在上为减函数,从而即这就是说,当时结论成立,故①成立.再证:②当时,,有,即当时结论②成立假设时,结论成立,即由①及在上为减函数,得这就是说,当时②成立,所以②对一切成立.由②得即因此又由①、②及在上为减函数得即所以解得.综上,由②③④知存在使对一切成立.考点:1、数列通项公式的求法;2、等差数列;3、函数思想在解决数列问题中的应用.4、数学归纳法.。