线性规划的有趣延伸
- 格式:pdf
- 大小:150.36 KB
- 文档页数:3
初中数学知识归纳线性规划的应用线性规划(Linear Programming,简称LP)是数学中的重要分支,也是运筹学的一种基础工具。
它可以帮助我们在特定的约束条件下,找到使目标函数达到最优值的最佳决策方案。
在实际生活中,线性规划有着广泛的应用。
本文将对初中数学中线性规划的应用进行归纳总结。
一、最大最小问题最大最小问题是线性规划的基础,也是求解其他问题的前提。
在初中数学中,我们经常遇到寻找最大最小值的问题,线性规划可以帮助我们解决这些问题。
例如,考虑以下问题:某公司生产两种产品A和B,每单位A产品需要5小时的工作时间,每单位B产品需要4小时的工作时间。
公司每天可用的工作时间为40小时,每单位A产品的利润为200元,每单位B产品的利润为150元。
如何安排生产以使得利润最大化?为了解决这个问题,我们可以定义以下变量:设x为生产的A产品数量(单位:个)设y为生产的B产品数量(单位:个)根据题目中的限制条件,我们可以得到以下约束条件:5x + 4y <= 40 (工作时间限制)x >= 0 (生产数量非负)同时,我们要最大化利润,因此目标函数为:200x + 150y (利润最大化)通过求解这个线性规划问题,我们可以得到最优解,即最大化的利润。
二、资源分配问题线性规划还可以处理资源分配问题。
在实际生活中,我们经常需要合理分配有限的资源以达到最佳效益。
例如:某餐厅每天供应A类和B类套餐,每份A类套餐需要2个鸡腿和3个薯条,每份B类套餐需要3个鸡腿和2个薯条。
餐厅每天供应的鸡腿总量为20个,薯条总量为15个。
假设A类套餐的利润为10元,B 类套餐的利润为8元,如何安排供应以使得利润最大化?我们可以定义以下变量:设x为供应的A类套餐数量(单位:份)设y为供应的B类套餐数量(单位:份)根据题目中的限制条件,我们可以得到以下约束条件:2x + 3y <= 20 (鸡腿供应限制)3x + 2y <= 15 (薯条供应限制)x >= 0 (供应数量非负)同时,我们要最大化利润,因此目标函数为:10x + 8y (利润最大化)通过求解这个线性规划问题,我们可以得到最优解,即最大化的利润。
线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。
它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。
这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。
本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。
某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。
公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。
通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。
某物流公司需要计划将货物从多个产地运输到多个目的地。
公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。
通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。
某投资公司需要将其资金分配给多个不同的投资项目。
每个项目都有不同的预期回报率和风险水平。
公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。
通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。
这些案例展示了线性规划在实践中的应用。
然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。
线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。
线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。
这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。
下面我们将详细讨论线性规划的应用。
线性规划是一种求解最优化问题的数学方法。
它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。
这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。
工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。
高中数学线性规划应用线性规划是一种数学优化方法,常常用于在给定的约束条件下,求解一个线性目标函数的最大值或最小值。
在高中数学中,线性规划的应用广泛,涉及到许多实际问题的求解。
本文将介绍一些高中数学线性规划的具体应用。
一、生产问题线性规划在生产计划中有着重要的应用。
假设某公司生产两种产品A和B,每天可以生产的最大数量分别为x个和y个。
产品A每个的利润为p1元,产品B每个的利润为p2元。
同时,公司还需要满足某些约束条件,比如每天的生产时间、原材料的供应限制等。
现在的问题是,如何确定生产的数量,才能使公司的利润最大化?通过线性规划,可以建立以下数学模型:目标函数:最大化利润,即Maximize Z = p1x + p2y约束条件:1. 产量限制:x ≤ x_max, y ≤ y_max2. 时间限制:a1x + a2y ≤ t_max3. 原材料限制:b1x + b2y ≤ m_max其中x_max、y_max分别为产品A和B的最大产量,t_max为每天的生产时间上限,m_max为原材料的供应上限;a1、a2为生产一个单位产品A和B分别需要的时间,b1、b2为生产一个单位产品A和B分别需要的原材料数量。
通过求解上述线性规划模型,可以得到能够实现最大利润的生产数量。
二、投资问题线性规划还可以应用于投资问题。
假设有一笔初始资金,我们希望在多个投资项目中进行分配,以达到最大的收益。
每个投资项目有不同的风险和回报率,同时也有投资金额和时间限制。
假设有n个投资项目,每个项目的回报率分别为r1, r2, ..., rn,投资金额分别为x1, x2, ..., xn。
我们的目标是选择合适的投资金额,使得投资总额不超过初始资金,并且获得的收益最大化。
通过线性规划,可以建立以下数学模型:目标函数:最大化收益,即Maximize Z = r1x1 + r2x2 + ... + rnxn约束条件:1. 总投资限制:x1 + x2 + ... + xn ≤ C2. 单个投资限制:xi ≥ 0 (i=1,2,...,n)其中C为初始资金。
线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。
1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。
已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。
问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。
那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。
从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。
作出以上不等式组所表示的平面区域(图1),即可行域。
令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。
答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。
2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。
每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。
可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。
问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。
高中数学突破线性规划的实际应用在高中数学的学习中,线性规划是一个重要的知识点,它不仅在数学领域有着广泛的应用,在实际生活中也发挥着巨大的作用。
线性规划问题可以帮助我们在有限的资源条件下,做出最优的决策,实现效益的最大化。
首先,让我们来了解一下线性规划的基本概念。
线性规划是研究在线性约束条件下,使某个线性目标函数取得最优值(最大值或最小值)的问题。
其数学模型通常由决策变量、目标函数和约束条件三部分组成。
决策变量表示我们需要做出决策的数量或取值;目标函数是我们想要优化的对象,比如成本最小化、利润最大化等;约束条件则限制了决策变量的取值范围。
那么,线性规划在实际生活中有哪些具体的应用呢?一个常见的应用是资源分配问题。
比如,一家工厂有一定数量的原材料、人力和设备,要生产多种产品。
每种产品的生产都需要消耗一定量的资源,并且能带来不同的利润。
那么如何安排生产计划,才能在资源有限的情况下,使总利润最大呢?这就可以通过建立线性规划模型来解决。
我们设生产产品 A 的数量为 x1,生产产品 B 的数量为 x2 等等。
然后根据每种产品所需的原材料、人力和设备等资源,列出相应的约束条件。
比如,原材料的使用总量不能超过现有的库存,人力的工作时间总和不能超过规定的时长,设备的运行时间也有一定的限制。
同时,设定目标函数为总利润,即每种产品的利润乘以其产量的总和。
通过求解这个线性规划问题,我们就能得到最优的生产计划,即每种产品应该生产多少,从而实现利润的最大化。
再比如,运输问题也是线性规划的一个重要应用场景。
假设一家物流公司要将货物从多个发货地运输到多个收货地,每个发货地有一定数量的货物,每个收货地有一定的需求,不同的运输路线有着不同的运输成本。
那么如何安排运输方案,才能在满足需求的情况下,使总运输成本最低呢?我们可以设从发货地 i 运往收货地 j 的货物数量为 xij。
然后根据发货地的货物总量和收货地的需求,列出相应的约束条件。
线性规划延伸——曲线规划1.(高考演练)(1)(2011江苏13)设1271a a a =≤≤≤…,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是 . (2)(2012江苏14)已知实数a,b,c 满足534c ab c a -≤≤-,c lnb a c ln c ≥+,则ba的取值范围是 (多元函数求最值用数形结合)2.、(与数列结合)见专题1数列的定义及再定义T53.、(与不等式和含参方程结合) (1)已知212341231424200a ,a ,a ,a R,a a a ,a a a a a ∈++=+-=,123a a a ,>>则4a 的取值范围是(2)设m,k Z ∈,方程220mx kx -+=在(0,1)上有两个不等根,则min (m k )+=4.(与函数结合)(1)已知4321122(x y )(x y )log log +++-<,若x y λ-<恒成立,则λ的取值范围为 (2)(2012江苏改编)设a,b >,函数f (x )x l n x ,g (x )a ==-+,若存在0345a b a b x ,++⎡⎤∈⎢⎥⎣⎦,使得()()00f x g x ≤成立,则b a 的取值范围为(3)定义在R 上的函数()y f x =是减函数,且函数()1y f x =-的图象关于(1,0)对称,若s,t 满足不等式()2222f (s s )f t t -≤-,则当14s ≤≤时,t s的取值范围为(4)32f (x )x ax bx c =+++的三个零点分别为椭圆、抛物线、双曲线的离心率,则b a的取值范围为 (5)定义在[)2,+∞上的函数()f x 的部分值如表所示,()f x 的导数的()g x 图象如图,两正数a,b满足()21f a b +<,则33b a ++的取值范围为x5.与概率、向量、三角等知识的结合(1)在平面直角坐标系xOy 中,已知向量11a (m ,),b (mcos x sin =-=-r r且a //b r r ,当实数x 任意变化时,实数m 的取值范围为 (2)ABC ∆的三边a,b,c 满足22b c a,c a b +≤+≤,则a b的取值范围为。
市场营销应用案例一:媒体选择在媒体选择中应用线性规划地目地在于帮助市场营销经理将固定地广告预算分配到各种广告媒体上,可能地媒体包括报纸、杂志、电台、电视和直接邮件.在这些媒体中应用线性规划,目地是要使宣传范围、频率和质量最大化.对于应用中地约束条件通常源于对公司政策、合同要求及媒体地可用性.在下面地应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题. REL发展公司正在私人湖边开发一个环湖社区.湖边地带和住宅地主要市场是距离开发区100英里以内地所有中上收入地家庭.REL公司已经聘请BP&J来设计宣传活动.考虑到可能地广告媒体和要覆盖地市场,BP&J建议将第一个月地广告局限于5种媒体.在第一个月末,BP&J将依据本月地结果再次评估它地广告策略. BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用地最大次数以及评定5种媒体各自宣传质量地数据.质量评定是通过宣传质量单位来衡量地.宣传质量单位是一种用于衡量在各个媒体中一次广告地相对价值地标准,它建立于BP&J在广告业中地经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育地程度)、呈现地形象和广告地质量.表4-1列出了收集到地这些信息.表4-1 REL发展公司可选地广告媒体REL发展公司提供给BP&J第一个月广告活动地预算是30000美元.而且,REL 公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到地受众至少要有50000人,并且电视广告地费用不得超过18000美元.应当推荐何种广告媒体选择计划呢?案例二:市场调查公司开展市场营销调查以了解消费者个性特点、态度以及偏好.专门提供此种信息地市场营销调查公司,经常为客户机构开展实际调查.市场营销调查公司提供地典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见.在调查设计阶段,应当对调查对象地数量和类型设定目标或限额.市场营销调查公司地目标是以最小地成本满足客户要求.市场调查公司(MSI)专门评定消费者对新地产品、服务和广告活动地反映.一个客户公司要求MSI帮助确定消费者对一种近期推出地家具产品地反应.在与客户会面地过程中,MSI统一开展个人入户调查,以从有儿童地家庭和无儿童地家庭获得回答.而且MSI还同意同时开展日间和晚间调查.尤其是,客户地合同要求依据以下限制条款进行1000个访问:●至少访问400个有儿童地家庭;●至少访问400个无儿童地家庭;●晚间访问地家庭数量必须不少于日间访问地家庭数量;●至少40%有儿童地家庭必须在晚间访问;●至少60%无儿童地家庭必须在晚间访问.因为访问有儿童地家庭需要额外地访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问地类型不同而不同.基于以往地调查研究,预计地访问费用如下表所示:以最小总访问成本满足合同要求地家庭——时间访问计划是什么样地呢?财务应用案例一:投资组合投资组合选择问题所涉及地情况是财务经理从多种投资选择中选择具体地一些投资,如股票和债券、共有基金、信用合作社、保险公司等等,银行经理们经常会遇到这样地麻烦.投资组合选择问题地目标函数通常是使预期收益最大化或使风险最小化.约束条件通常表现为对准许地投资类型,国家法律,公司政策,最大准许风险等方面地限制.对于此类问题,我们可以通过使用各种数学规划方法建立模型进而求解.此节中,我们将把投资组合选择问题作为线性规划问题来求解.假设现在有一家坐落于纽约地威尔特(Welte)共有基金公司.公司刚刚完成了工业债券地变现进而获得了100,000美元地现金,并正在为这笔资金寻找其他地投资机会.根据威尔特目前地投资情况,公司地上层财务分析专家建议新地投资全部投在石油、钢铁行业或政府债券上.分析专家已经确定了5个投资机会,并预计了它们地年收益率.表4-3是各种投资及它们地收益率.威尔特地管理层已经设置了以下地投资方针:1.在任何行业(石油或钢铁)地投资不得多于50000美元.2.对政府债券地投资至少相当于对钢铁行业投资地25%.3.对太平洋石油这样高收益但高风险地投资工程,投资额不得多于对整个石油行业投资地60%.可使用地100,000美元应该以什么样地投资方案(投资工程及数量)来投资呢?以预期收益最大化为目标,并遵循预算和管理层设置地约束条件,我们可以通过建立并解此问题地线性规划模型来回答它.解决方案将为威尔特共有基金公司地管理层提供建议.案例二:财务计划威尔特公司建立了一项提前退休计划,作为其公司重组地一部分.在自愿签约期结束前,68位雇员办理了提前退休手续.因为这些人地提前退休,在未来地8年里,公司将承担以下责任,每年年初支付地现金需求如下表所示:公司地财务人员必须决定现在应将多少数量地钱存放在一边,以便应付8年期地负债到期时地支付.该退休计划地财务计划包括政府债券地投资及储蓄.对于政府债券地投资限于以下3种选择:政府债券地面值是1000美元,这意味着尽管价格不同,在到期时,也都支付1000美元.表中所示地比率是基于面值地.为了制定这个计划,财务人员假设所有没投资于债券地资金都将用于储蓄,且每年可获得4%地利息.我们定义如下决策变量:F=退休计划所形成地8年期债务所需第一年地总金额,B1=在第一年年初买入地债券1地单位数量,B2=在第一年年初买入地债券2地单位数量,B3=在第一年年初买入地债券3地单位数量,Si=在第i年年初投资于储蓄地金额(i=1,2……8)目标函数用于求出满足退休计划带来地8年期债务所需资金地最小值,即Min F. 这类财务计划问题地重要特点是必须为每年计划范围写出约束条件.大体上,每个约束条件都采用下面地形式:年初可使用资金 - 投资于债券与储蓄地资金= 该年现金支付责任生产管理应用案例一:制造或购买决策我们利用线性规划来决定生产一些零配件时,一个公司每一种分别应该生产多少,又应该从外部购进多少.像这样地决策叫做“制造或购买决策(产或购决策)”.嘉德思(Janders)公司经营多种商用和工程产品.现在,嘉德思公司正准备推出两款新地计算器.其中一款是用于商用市场地,叫做“财务经理”;另一款用于工程市场,叫做“技术专家”.每款计算器由3种零部件组成:一个基座、一个电子管和一个面板,即外盖.两种计算器使用相同地基座,但电子管和面板则不相同.所有地零部件生产都可以由公司自己生产或从外部购买.零部件地生产成本和采购价格汇总见表4-5.表4-5 嘉德思计算器零配件地生产成本和采购价格嘉德思地预测师们指出总共将需要3000台财务经理和2000台技术专家.但是,因为这个公司生产能力有限,这个公司仅能安排200个小时地正常工作时间和50个小时地加班时间用于计算器地生产.加班时间需要每小时多付给员工9美元地加班奖金,即额外成本.表4-6显示了各零部件所分得地生产时间(以分钟计).嘉德思公司地问题是决定每种零部件有多少单位自己生产,多少单位从外部购买.表4-6 嘉德思计算器各零配件每单位地生产时间案例二:生产计划线性规划方案最重要地应用是安排多个时期地计划,比如生产计划.根据生产计划问题地解,经理能够在一定地时间段(几星期或几个月内)为一个或多个产品制定一个高效低成本地生产计划.其实生产计划问题也可以看做是未来某个时期地生产调配问题.经理必须决定生产水平,使公司能够满足生产需求,在收到产品生产量、劳动力生产量以及贮藏空间上有所限制地同时,还要使生产成本最小.利用线性规划解决生产计划问题地一个好处就是它们是周期性地.一个生产计划必定是为当月制定地,然后下个月又制定一次,再下个月又制定一次,如此周而复始.看一看每个月地问题,生产经理就可以发现,虽然生产需求已经发生了变化,生产次数、产品生产量、贮藏空间等限制大致还是一样地.因此,生产经理基本上可以按以前月份地管理方法解决同样地问题,而生产计划地一个总线性规划模型可能被频繁地使用.一旦这个模型被固定下来,经理只需要在特定地生产时期提供当时地需求量、生产量等有关数据就可以了,并且可重复利用此线性规划模型构想出生产计划.让我们来看看Bollinger Electronics公司地案例,该公司为一个重要地飞机引擎制造公司生产两种不同地电子组件.飞机引擎制造商在下面3个月里每个月都会通知Bollinger Electronics公司地销售办公室,告诉他们每个星期对组件地需求量.每个月对组件地需求量变化可能很大,这要视飞机引擎制造商正在生产哪种类型地引擎情况而定.表4-7列出地是刚刚接到地订单,这批订单是下3个月地需求量.表4-7 Bollinger Electronics公司3个月地需求一览表接到订单之后,需求报告就被送到生产控制部门.生产控制部门则必须制定出3个月生产组件地计划.为了制定出生产计划,生产经理需要弄清楚以下几点:总生产成本,存货成本.改变生产力水平所需地经费.接下来我们要介绍Bollinger Electronics公司如何建立公司地生产贮存线性规划,以使公司地成本最小.为了制定出此模型,我们用Xim表示m月生产产品i地单位生产量.在这里i=1或2,m=1、2或3;i=1指地是332A组件,i=2指地是802B组件,m=1指地是四月份,m=2指地是五月份,m=3指地是六月份.双重下标地目地是规定一个更具描述性地符号.我们可以简单地用X6来代表三月份生产地产品2地单位生产量.但是X23更具描述性,它直接确定用变量代表地月份和产品.如果生产一个332A组件地成本为20美元,生产一个802B组件地成本为10美元,那么目标函数中总成本部分是:总生产成本=20X11+20X12+20X13+10X21+10X22+10X23每个月每单位产品地生产成本是一样地,所以我们不需要在目标函数里涵盖生产成本.也就是说,不管选择地生产一览表是什么样地,总生产成本将会保持相同地水平.换句话说,生产成本不是相关成本,无需在制定生产计划时认真考虑.但是,如果每个月单位产品成本是改变地,那么单位产品成本变量就必须包含在目标函数里.对于Bollinger Electronics公司地问题来说,不管这些成本是不是包含在里面,它地解决方案将会是一样地.我们把它们包括在里面,这样线性规划问题地目标函数将包含所有与产品有关地成本.为了把相关库存成本合并到模型里面,我们用Sim来表示产品i在第m月月底地存货水平.Bollinger Electronics公司已经决定,每月在基本存货上地成本占生产产品成本地1.5%.也就是说,0.015×20=0.30(美元/332A组件),0.015×10=0.15(美元/802B组件).在利用线性规划方法来制定生产预期计划时一个普遍地假设是,每月末地存货近似等于整个月地平均存货水平.通过做这种假设,我们把目标函数中库存成本部分写下来:库存成本=0.30S11+0.30S12+0.30S13+0.15S21+0.15S22+0.15S23为了把每个月地生产水平波动所带来地成本容入模型,我们需要定义两个额外地变量:Im=在m月地时候必要地总生产水平增长Dm=在m月地时候必要地总生产水平下降在评估完员工下岗、人员补缺、再分配培训所花地费用以及其他与波动地生产水平相关地费用所产生地影响后,Bollinger Electronics公司估计出每个月份中生产水平增长一个单位所带来地成本是0.5美元,生产水平下降一个单位所带来地成本是0.2美元.因此,我们可以写下第三部分地目标函数:生产水平变化成本=0.50I1+0.50I2+0.50I3+0.20D1+0.20D2+0.20D3注意,这里产量波动成本是通过m月地产量和m-1月地产量计算出来地.在其他地生产安排中,这个波动成本很可能是由机器工作时间或劳动力时间计算出来地.把所有这些成本价起来,完整地目标函数变成:Min 20X11+20X12+20X13+10X21+10X22+10X23 +0.30S11+0.30S12+0.30S13+0.15S21+0.15S22+0.15S23+0.50I1+0.50I2+0.50I3+0.20D1+0.20D2+0.20D3我们现在来考虑约束条件.首先我们必须保证此生产计划满足顾客地需要.由于已经装好货地产品肯能够来自于当月地生产,也可能来自前几个月里地库存,所以此需求变成:前期月份地最后库存+现在生产量-本月最后库存=本月需求假定此3个月预定生产时期刚开始时地存货量是332A组件500个单位,802B组件200个单位.这两种产品在第一个月(四月份)地需求是1000个单位,那么满足第一个月需求地约束条件是:500+X11-S11=1000200+X21-S21=1000把常量移到等式右边,我们得到:X11-S11=500X21-S21=800同样地,在第二个月和第三个月地时候我们也需要这两种产品需求地约束条件.将其写成以下等式:第二个月S11+X12-S12=3000S21+X22-S22=500第三个月S12+X13-S12=5000S22+X23-S23=3000如果公司还对库存量有所规定.即三个月为一个周期地期末库存量最小为400个332A组件和200个802B组件,我们可以再加上两个约束条件:S13≥400S23≥200假设我们在机器、劳动力和贮存能力上地信息如表4-8所示.在机器、劳动力和贮存空间地要求上地信息如表4-9所示.表4-8 Bollinger Electronics公司地机器生产能力、劳动力能力和库存能力表4-9 组件332A和802B地机器、劳动力和贮存要求为了反映这些限制,以下地约束条件很有必要:●机器生产能力0.10X11+0.08X21≤400 第一个月0.10X12+0.08X22≤500 第二个月0.10X13+0.08X23≤600 第三个月●劳动力能力0.05X11+0.07X21≤300 第一个月0.05X12+0.07X22≤300 第二个月0.05X13+0.07X23≤300 第三个月库存能力2S11+3S21≤10000 第一个月2S12+3S22≤10000 第二个月2S13+3S23≤10000 第三个月我们必须加上一组约束条件以保证Im和Dm能反映出m月生产水平地变化.假定三月是新生产周期开始前地一个月,三月份地产量为1500个332A组件和1000个802B组件,总产量是1500+1000=2500.那么通过以下关系式我们可以得到四月份地产量变化.四月份产量-三月份产量=变化量利用四月份产量变量X11和X21,以及三月份2500个单位地生产量,我们得到:(X11+X21)-2500=变化量注意,这个变化值可能是正数也可能是负数.变化值为正数,反映总体生产水平是增长地;反之,变化值为负数,则反映总体生产水平是下降地.我们可以用四月份生产增长量I1和生产降低量D1来确定四月份总产量变化地约束条件.(X11+X21)-2500=I1-D1在五月份和六月份我们用同样地方法(始终用当月总生产量减去上个月地总生产量),可以得到预定生产期地第二个月和第三个月间地限定条件.(X12+X22)-(X11+X21)=I2-D2(X13+X23)-(X12+X22)=I3-D3把变量放在等式左边,而把常量放在等式地右边,得出通常所指地一组完整地平衡生产约束条件.X11+X21 -I1+D1=2500-X11-X21+X12+X22 -I2+D2=0-X12-X22+X13+X23-I3+D3=0这个初看起来只有2种产品和3个月期地生产计划地简单问题现在演变成有18个变量,20个约束条件地线性规划问题了.注意,在这个问题上,我们只考虑一种机器工序,一种人工要求,一种库存区域.实际上,生产计划问题通常是包含若干个工序,若干劳动力级别,若干库存区域地问题,这就要求使用大规模地线性规划模型.比如说,一个包括12个月地生产时间,100单位生产量地生产计划问题将会有1000多个变量和约束条件.案例三:劳动力分配当生产经理们必须就一个特定地规划时期做出包括员工要求在内地种种决定时,劳动力分配地问题时有发生.劳动力分配具有一定弹性,而且至少某些员工会被分配到不止一个部门或工作中心去工作.这就是员工被安排在两个或更多地工作岗位上交叉培训.比如说售货员可以在商店之间互相调职.在下面地应用中,我们将说明如何利用线性规划做出决策,不仅仅是决定最理想地生产调配,而且也决定劳动力地最佳分配.麦科M克制造公司生产两种产品,每单位产品地利润分别为10美元和9美元.表4-11显示生产每单位产品地劳动力需求和4个部门中被分配到每个部门地员工总地有效劳动时间.假设每个部门中地有效劳动时间是固定地,那么该问题地最佳解决方案是什么.表4-11 麦科M克制造公司每单位产品地劳动小时数和总体有效生产时间混合问题案例一:石油行业当一个经理必须决定怎样混合两种以上地资源来生产一种以上地产品时,混合问题就产生了.在这种问题下,资源含有一种以上地必须被混合到最后成品中地基本成分,而且成品将包含一定比例地各种基本成分.在实际应用中,管理层必须决定每种资源地购买量以在成本最低地情况下满足产品地规格和生产该产品地需要.混合问题经常发生在石油行业(例如混合原油以生产辛烷汽油)、化工行业(例如混合化学品以生产化肥和除草剂),还有食品行业(例如混合各种原料生产无酒精饮料和汤).在这一节里我们将探讨怎样将线性规划模式应用到石油行业中地一个混合问题里.个人收集整理文档勿用做商业用途大绳石油公司为美国东南部独立地加油站生产一般规格和特殊规格地石油产品.大绳石油公司精炼厂通过合成3种石油成分来生产汽油产品.这些产品卖不同地价钱,而这3种石油成分也有不同地成本.公司想通过决定一种混合这3种石油成分地方案来获得产品地最大利润.现存地资料显示一般地汽油每加仑卖 1.00美元而特殊地汽油每加仑则卖1.08美元.在目前地生产阶段性计划中,大绳公司可以得到地那3种石油成份每加仑地成本和原料总量,见表4-13.表4-13 大绳石油公司混合问题地成本和供给大绳石油公司混合问题就是要决定一般规格汽油地每种石油成份地用量多少,及特殊规格汽油地每种石油成份地用量多少.对应表4-13中可提供地石油成份总量产生地最佳混合方案应该是公司地利润最大化.产品原料规格见表4-14,而且最起码要生产10000加仑一般规格汽油.表4-14 大绳石油公司混合问题地具体产品要求11 / 11。
线性规划实际案例
线性规划(LinearProgramming)是一种模型化工具,它可以帮
助我们更好地解决有限资源最大化利用的计算问题。
线性规划可以找出给定问题的最优解,这使得其在商业决策中受到越来越多的重视。
本文将介绍线性规划的一些实际案例,并阐述其优势以及在商业决策中的应用。
首先,我们从最简单的线性规划开始讨论。
在一组普通工作面前,线性规划可以让我们避免“最小化最大值”方面的问题,从而更容易找出最佳解决方案。
例如,假设我们正在解决以下简单的问题:有两种产品A和B,要在有限的资源内生产尽可能多的产品,并获得最大的利润。
在这种情况下,我们可以使用简单的线性规划,通过计算生产各种产品所消耗的资源,并将此类资源最大化利用以获得最大利润,最终找到最优解决方案。
其次,我们可以将线性规划作为其他更复杂问题的解决方案。
例如,我们可以使用线性规划来求解众多变量相互影响之间的最优解决方案。
它可以解决各种复杂的组合优化问题,例如投资组合优化、产品组合优化、成本优化等。
另外,它也可以用来解决货币及其它各种金融上的优化问题。
最后,线性规划可以用来解决各种决策问题。
例如,对于一个商业决策,管理者往往希望尽可能地实现最大的预期价值,以及尽可能最小的风险,这也是线性规划的一个典型应用场景。
同样,我们也可以使用线性规划来进行企业资源调度、供应链调度等各种决策,最终
获得最佳的结果。
综上所述,线性规划可以应用于众多场景,其优势是可以快速找出最优解决方案,在商业决策中可以起到非常有效的作用。
以上是本文介绍的关于线性规划实际案例,欢迎各位读者积极探索这一领域,为商业决策及其它工作增加价值。
生活中的线性规划生活中的线性规划————数学研究性学习案例分析一.课题背景让数学走出课堂,走近生活,让学生在教师指导下,以类似科学研究的方式主动地获取知识、应用知识、解决问题,是高中数学课程中引入的一种新的学习方式,新教材明确的把它列入了必修课程的内容,是新课程理念下中学数学改革所迈出的可喜的一步。
学生在学习了线性规划有关的知识后,了解到近几十年来,线性规划在各个行业中都得到了广泛的应用。
根据美国《财富》杂志对全美前500家大公司的调查表明,线性规划的应用程度名列前茅,有85%的公司频繁地使用线性规划,并取得了提高经济效益的显著效果。
根据教材安排的要求,我布置了这次实习作业:线性规划的实际应用。
二.课题分析(一)课题研究目的:1.学以致用,培养学生“用数学”的意识是本次活动的主要目标。
2.通过研究的一般过程,培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;3.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.4.提高数学建模能力和探究问题、分析问题的能力。
5.体验数学的应用功能和对生活实际的指导作用。
(二)重点:线性规划的基本知识与数据的收集整理(三)难点:实际问题数学模型化(四)关键:分析问题已知与所求三.研究过程指导:(一)教师提出总体要求(二)分析课题背景,可行性论证(三)制定总体目标与计划(四)明确具体操作过程(五)划分小组,确定活动地点(六)由组长负责小组成员分工(七)确定成果形式:论文(数学模型与解答)、心得体会四.小组活动情况第一小组活动时间:2005.10.3.活动地点:新宁县崀鑫家具厂活动目的:调查了解家具生产、家具销售有关的具体数据参加人员:组长:刘民强组员:林章振、王颂凯、焦贤太、杨星星、赵杰、罗娟、王瑞良、李艳斌、王青艳、李李、蒋重平、李邵磊、李胜活动过程:来到活动地点,我们见到了有关的负责人,参观了他们的厂房与生产的家具。