高三二轮复习专题-电场与磁场3
- 格式:docx
- 大小:1.04 MB
- 文档页数:4
专题三第二讲 带电粒子在电场、磁场中的运动1.(2020·浙江7月选考)如图所示,一质量为m 、电荷量为q (q >0)的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中。
已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )A .所用时间为m v 0qEB .速度大小为3v 0C .与P 点的距离为22m v 02qED .速度方向与竖直方向的夹角为30°解析:C 粒子从P 点垂直电场方向出发到达MN 连线上某点时,由几何知识得沿水平方向和竖直方向的位移大小相等,即v 0t =12at 2,其中a =Eq m ,联立解得t =2m v 0qE ,A 项错误;粒子在MN 连线上某点时,粒子沿电场方向的速度v =at =2v 0,所以合速度大小v =(2v 0)2+v 02=5v 0,B 项错误;该点到P 点的距离s =2x =2v 0t =22m v 02qE ,C 项正确;由平行四边形定则可知,在该点速度方向与竖直方向夹角的正切值tan θ=v 02v 0=12,则θ≠30°,D 项错误。
2.(2021·河北高考)如图,距离为d 的两平行金属板P 、Q 之间有一匀强磁场,磁感应强度大小为B 1,一束速度大小为v 的等离子体垂直于磁场喷入板间,相距为L 的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为B 2,导轨平面与水平面夹角为θ,两导轨分别与P 、Q 相连,质量为m 、电阻为R 的金属棒ab 垂直导轨放置,恰好静止,重力加速度为g ,不计导轨电阻、板间电阻和等离子体中的粒子重力,下列说法正确的是( )A .导轨处磁场的方向垂直导轨平面向上,v =mgR sin θB 1B 2Ld B .导轨处磁场的方向垂直导轨平面向下,v =mgR sin θB 1B 2LdC .导轨处磁场的方向垂直导轨平面向上,v =mgR tan θB 1B 2LdD .导轨处磁场的方向垂直导轨平面向下,v =mgR tan θB 1B 2Ld解析:B 等离子体垂直于磁场喷入板间时,根据左手定则可得等离子体中的正离子向金属板Q 偏转,负离子向金属板P 偏转,所以金属板Q 带正电荷,金属板P 带负电荷,则电流方向由金属棒a 端流向b 端。
阶段训练(三) 电场和磁场(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,1~5题只有一个选项符合题目要求,6~8题有多个选项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分)1.(广东茂名二模)口罩是人们抗击病毒入侵的一种常见防护物品。
口罩中对病毒起阻隔作用的是一层熔喷无纺布层,布层纤维里加有一种驻极体材料,驻极体材料分子中的正、负电荷原本不重合且杂乱分布(如图甲所示),经过静电处理后变成较为规则的分布(如图乙所示),从而具有静电吸附作用。
以下说法正确的是( )甲乙A.静电处理前,驻极体材料带有静电B.静电处理过程,静电力对驻极体材料中的正、负电荷做正功C.静电处理过程,驻极体材料分子中的电荷电势能增加D.口罩熔喷布不能阻挡不带电的中性微小颗粒物2.(江苏南通如皋一模)如图所示,水平桌面上有一正三角形线框abc,线框由粗细相同的同种材料制成,边长为l,线框处在与桌面成60°斜向下的匀强磁场中,磁感应强度大小为B,ac 边与磁场垂直。
现a 、c 两点接到直流电源上,流过ac 边的电流为I,线框静止在桌面上,则线框受到的摩擦力大小为( )A.√34BIl B.2√32BIlC.3√34BIl D.2BIl3.如图所示,两平行导轨ab 、cd 竖直放置在匀强磁场中,匀强磁场方向竖直向上,将一根金属棒PQ 放在导轨上使其水平且始终与导轨保持良好接触。
现在金属棒PQ 中通以变化的电流I,同时释放金属棒PQ 使其运动。
已知电流I 随时间的变化关系为I=kt(k 为常数,k>0),金属棒与导轨间的动摩擦因数一定。
以竖直向下为正方向,则下面关于棒的速度v、加速度a 随时间变化的关系图像中,可能正确的是( )4.如图所示,绝缘轻杆两端固定带电小球A和B,轻杆处于水平向右的匀强电场中,不考虑两球之间的相互作用。
初始时轻杆与电场线垂直(如图中实线位置),将杆向右平移的同时顺时针转过90°(如图中虚线位置),发现A、B两球电势能之和不变。
通过场的类比(电场与重力场类比、电场与磁场的类比),形象理解电场的性质,掌握电场力和洛伦兹力的特性;围绕两大性质,理顺电场中基本概念的相互联系;熟知两大定则(安培定则和左手定则),准确判定磁场及磁场力的方向;认识两类偏转模型(类平抛和圆周运动),掌握带电粒子在场中的运动性质、规律和分析处理方法.第6讲带电粒子在电场中的运动1.[2015·全国卷Ⅰ] 如图61所示,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ.一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,则( )A.直线a位于某一等势面内,φM>φQB.直线c位于某一等势面内,φM>φNC.若电子由M点运动到Q点,电场力做正功D.若电子由P点运动到Q点,电场力做负功【考题定位】难度等级:容易出题角度:本题考查了考生对电场能的性质的理解,要求考生掌握匀强电场的电场强度与电势差的关系.2.[2015·全国卷Ⅱ] 如图62所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态.现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【考题定位】难度等级:容易出题角度:本题考查了力电综合的力与运动关系问题,涉及平行板电容中电场特点、牛顿运动定律的应用等考点.考点一电场的性质1 如图64所示,半径为R的水平绝缘圆盘可绕竖直轴OO′转动,水平虚线AB、CD互相垂直,一电荷量为+q的可视为质点的小物块置于距转轴r处,空间有方向由A指向B的匀强电场.当圆盘匀速转动时,小物块相对圆盘始终静止.小物块转动到位置Ⅰ(虚线AB上)时受到的摩擦力为零,转动到位置Ⅱ(虚线CD上)时受到的摩擦力为f.求:(1)圆盘边缘两点间电势差的最大值;(2)小物块由位置Ⅰ转动到位置Ⅱ克服摩擦力做的功.导思①小物块分别转动到位置Ⅰ、位置Ⅱ时由哪些力提供向心力?②小物块由位置Ⅰ转动到位置Ⅱ电场力做了多少功?克服摩擦力做了多少功?归纳1.电场力:电场对放入其中的电荷有力的作用,电场力的大小和方向由电场强度和电荷共同决定,大小为F=qE,正电荷所受的电场力方向与电场方向相同.2.电势能:电势能是标量,电场中电荷的电势能与电势的高低及电荷所带的电荷量及电性有关,即E p=qφ,而电场力做的功等于电势能变化的相反数,即W=qU=-ΔE p.变式1 (多选)图65是某空间部分电场线分布图,在电场中取一点O,以O为圆心的圆周上有M、Q、N三个点,连线MON与直电场线重合,连线OQ垂直于MON.下列说法正确的是( )A.M点的场强大于N点的场强B.O点的电势等于Q点的电势C.将一负点电荷由M点移到Q点,电荷的电势能增加D.一静止的正点电荷只受电场力作用能从Q点沿圆周运动至N点变式2 (多选)如图66所示,图中五点均在匀强电场中,它们刚好是一个半径为R=m 的圆的四个等分点和圆心.b、c、d三点的电势如图所示.已知电场线与圆所在的平面平行,关于等分点a处和圆心O处的电势及电场强度,下列描述正确的是( )A.a点的电势为4 VB.O点的电势为5 VC.电场强度方向由O点指向b点D.电场强度的大小为10 5 V/m考点二带电粒子在电场中的加速和偏转2 图67为两组平行金属板,一组竖直放置,一组水平放置,今有一质量为m、电荷量为e的电子静止在竖直放置的平行金属板的A点,经电压U0加速后通过B点进入两板间距为d、电压为U的水平放置的平行金属板间,若电子从两块水平平行板的正中间射入,且最后电子刚好能从右侧的两块平行金属板间穿出,求:(1)电子通过B点时的速度大小;(2)右侧平行金属板的长度;(3)电子穿出右侧平行金属板时的动能.导思①电子通过A、B做什么运动?怎样计算电子在B点的速度?②电子在两块水平平行金属板间做什么运动?水平位移和竖直位移分别满足什么关系?③电子在运动过程中,电场力一共做了多少功?归纳1.带电粒子在电场中的加速可以应用牛顿运动定律结合匀变速直线运动的公式求解,也可应用动能定理qU =12mv 22-12mv 21求解,其中U 为带电粒子初、末位置之间的电势差.2.带电粒子在电场中的偏转带电粒子在匀强电场中做匀变速曲线运动,属类平抛运动,要应用运动的合成与分解的方法求解,同时要注意:(1)明确电场力的方向,确定带电粒子到底向哪个方向偏转;(2)借助画出的运动示意图寻找几何关系或题目中的隐含关系.带电粒子在电场中的运动可从动力学、能量等多个角度来分析和求解.考点三 带电体在电场中的运动3 [2015·四川卷] 如图68所示,粗糙、绝缘的直轨道OB 固定在水平桌面上,B 端与桌面边缘对齐,A 是轨道上一点,过A 点并垂直于轨道的竖直面右侧有大小E =×106N /C 、方向水平向右的匀强电场.带负电的小物体P 电荷量是×10-6C ,质量m = kg ,与轨道间动摩擦因数μ=,P 从O 点由静止开始向右运动,经过 s 到达A 点,到达B 点时速度是5 m /s ,到达空间D 点时速度与竖直方向的夹角为α,且tan α=,P 在整个运动过程中始终受到水平向右的某外力F 作用,F 大小与P 的速率v 的关系如下表所示.P 视为质点,电荷量保持不变,忽略空气阻力,g 取10 m /s 2.求:(1)小物体P 从开始运动至速率为2 m /s 所用的时间; (2)小物体P 从A 运动至D 的过程,电场力做的功.归纳带电体通常是指需要考虑重力的物体,如带电小球、带电液滴、带电尘埃等.带电体在电v/(m ·s -1)0≤v≤22<v<5 v≥5 F/N263场中运动的研究方法与力学综合题的分析方法相近,一般应用牛顿运动定律、运动学规律、动能定理和能量守恒定律求解.当带电体同时受重力和电场力时,可以应用等效场的观点处理.变式1 如图69所示,CD左侧存在场强大小 E=mgq、方向水平向左的匀强电场,一个质量为m、电荷量为+q的光滑绝缘小球从底边BC长为L、倾角为53°的直角三角形斜面顶端A 点由静止开始下滑,运动到斜面底端C点后进入一竖直半圆形细圆管内(C处为一小段长度可忽略的光滑圆弧,圆管内径略大于小球直径,半圆直径CD在竖直线上),恰能到达细圆管最高点D点,随后从D点离开后落回斜面上某点P.(重力加速度为g , sin 53°=, cos 53°=求:(1)小球到达C点时的速度;(2)小球从D点运动到P点的时间t.变式2 如图610所示,空间有一水平向右的匀强电场,半径为r的绝缘光滑圆环固定在竖直平面内,O是圆心,AB是竖直方向的直径.一质量为m、电荷量为+q的小球套在圆环上,并静止在P点,且OP与竖直方向的夹角θ=37°.不计空气阻力.已知重力加速度为g,sin37°=,cos 37°=.(1)求电场强度E的大小;(2)要使小球从P点出发能做完整的圆周运动,求小球初速度v应满足的条件.4 如图611甲所示,一对平行金属板M、N长为L,相距为d,O1O为中轴线.当两板间加电压U MN=U0时,两板间为匀强电场,忽略两极板外的电场,某种带负电的粒子从O1点以速度v0沿O1O方向射入电场,粒子恰好打在上极板M的中点,粒子重力忽略不计.(1)求带电粒子的比荷q m ;(2)若MN间加如图乙所示的交变电压,其周期T=Lv0,从t=0开始,前T3内U MN=2U,后2T3内U MN=-U,大量的上述粒子仍然以速度v0沿O1O方向持续射入电场,最终所有粒子恰好能全部离开电场而不打在极板上,求U的值.图611导思①MN间加交变电压后,粒子在水平方向做什么运动?运动时间是多少?②MN间加交变电压后,粒子在竖直方向做什么运动?可以分成几个阶段?每阶段的加速度是多少?归纳交变电场中粒子的运动往往属于运动的多过程问题,关键是搞清楚电场力或加速度随时间变化的规律,进而分析速度的变化规律,通过绘制vt图像来分析运动过程比较直观简便.【真题模型再现】平行板电容器中带电粒子的运动2011 ·安徽卷交变电场中粒子的运动2012·新课标全国卷带电粒子在电容器中的匀速直线运动2013·广东卷加速偏转模型应用2014·安徽卷带电粒子在电容器中运动的功能关系2014·天津卷带电体在复合场中的功能转化2015·海南卷带电粒子在电场中加速(续表)【真题模型再现】平行板电容器中带电粒子的运动2015·山东卷带电体在变化电场中运动2015·北京卷带电粒子在电场中的功能转化2015·全国卷Ⅱ带电粒子在电场中的动力学问题【模型核心归纳】带电体在平行板电容器间的运动,实际上就是在电场力作用下的力电综合问题,依然需要根据力学解题思路求解,解题过程要遵从以下基本步骤:(1)确定研究对象(是单个研究对象还是物体组);(2)进行受力分析(分析研究对象所受的全部外力,包括电场力.其中电子、质子、正负离子等基本微观粒子在没有明确指出或暗示时一般不计重力,而带电油滴、带电小球、带电尘埃等宏观带电体一般要考虑其重力);(3)进行运动分析(分析研究对象所处的运动环境是否存在束缚条件,并根据研究对象的受力情况确定其运动性质和运动过程);(4)建立物理等式(由平衡条件或牛顿第二定律结合运动学规律求解,对于涉及能量的问题,一般用动能定理或能量守恒定律列方程求解.例在真空中水平放置平行板电容器,两极板间有一个带电油滴,电容器两极板间距为d,当平行板电容器的电压为U0时,油滴保持静止状态,如图612所示.当给电容器突然充电使其电压增加ΔU1,油滴开始向上运动;经时间Δt后,电容器突然放电使其电压减少ΔU2,又经过时间Δt,油滴恰好回到原来位置.假设油滴在运动过程中没有失去电荷,充电和放电的过程均很短暂,这段时间内油滴的位移可忽略不计,重力加速度为g.试求:(1)带电油滴所带电荷量与质量之比;(2)第一个Δt与第二个Δt时间内油滴运动的加速度大小之比;(3)ΔU1与ΔU2之比.展如图613所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有一小孔M和N.今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N 在同一竖直线上),空气阻力忽略不计,到达N孔时速度恰好为零,然后沿原路返回.若保持两极板间的电压不变,则不正确的是( )图613A.把A板向上平移一小段距离,质点自P点自由下落后仍能返回B.把A板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落C.把B板向上平移一小段距离,质点自P点自由下落后仍能返回D.把B板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落第7讲带电粒子在磁场及复合场中的运动1.(多选)[2014·新课标全国卷Ⅱ] 图71为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是( )图71A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中运动轨迹的半径越小【考题定位】难度等级:中等出题角度:本题主要考查学生对左手定则、带电粒子在匀强磁场中运动规律的掌握情况.2.[2015·全国卷Ⅰ] 两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )A.轨道半径减小,角速度增大B.轨道半径减小,角速度减小C.轨道半径增大,角速度增大D.轨道半径增大,角速度减小【考题定位】难度等级:容易出题角度:本题主要考查学生对带电粒子在匀强磁场中运动结论的掌握情况,属于较简单题目.3.(多选)[2015·全国卷Ⅱ] 两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ的磁感应强度是Ⅱ的k倍,两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子( )A.运动轨迹的半径是Ⅰ中的k倍B.加速度的大小是Ⅰ中的k倍C.做圆周运动的周期是Ⅰ中的k倍D.做圆周运动的角速度与Ⅰ中的相等【考题定位】难度等级:容易出题角度:本题主要考查学生对带电粒子在匀强磁场中运动规律的掌握情况,考查了应用牛顿运动定律、圆周运动的规律解决物理问题的能力.考点一通电导体在磁场中的安培力问题1 [2015·重庆卷] 音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.图72是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为L,匝数为n,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为B,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P流向Q,大小为I.(1)求此时线圈所受安培力的大小和方向.(2)若此时线圈水平向右运动的速度大小为v,求安培力的功率.导思①单根通电直导线垂直磁场放置,安培力的大小、方向如何?n根呢?②安培力的功率与哪些因素有关?归纳安培力与动力学综合问题已成为高考的热点,解决这类问题的关键是把电磁学问题力学化,把立体图转化为平面图,即画出平面受力分析图,其中安培力的方向切忌跟着感觉走,要用左手定则来判断,注意F安⊥B、F安⊥I.其次是选用牛顿第二定律或平衡条件建立方程解题.变式如图73所示,一劲度系数为k的轻质弹簧下面挂有匝数为n的矩形线框边长为l,线框的下半部分处在匀强磁场中,磁感应强度大小为B,方向垂直线框平面向里.线框中通以电流I,方向如图所示,开始时线框处于平衡状态,弹簧处于伸长状态.令磁场反向,磁感应强度的大小仍为B,线框达到新的平衡.则在此过程中线框位移的大小Δx及方向是( )A.Δx=2nIlBk,方向向上B.Δx=2nIlBk,方向向下C.Δx=nIlBk,方向向上D.Δx=nIlBk,方向向下考点二带电粒子在有界磁场中的运动2 如图74所示,在xOy平面内以O为圆心、R0为半径的圆形区域Ⅰ内有垂直于纸面向外、磁感应强度为B1的匀强磁场.一质量为m、带电荷量为+q的粒子以速度v0从A(R0,0)点沿x轴负方向射入区域Ⅰ,经过P(0,R0)点,沿y轴正方向进入同心环形区域Ⅱ,为使粒子经过区域Ⅱ后能从Q点回到区域Ⅰ,需在区域Ⅱ内加一垂直于纸面向里、磁感应强度为B2的匀强磁场.已知OQ与x轴负方向成30°角,不计粒子重力.求:(1)区域Ⅰ中磁感应强度B1的大小;(2)环形区域Ⅱ的外圆半径R的最小值;(3)粒子从A点出发到再次经过A点所用的最短时间.导思①粒子以速度v0从A到P,经过P点的速度方向如何?②粒子在区域Ⅱ从P到Q,圆心角是多少?③粒子从A点出发到再次经过A点,经过哪些圆弧?圆心角分别为多少?归纳解答带电粒子在匀强磁场中运动的关键是画粒子运动轨迹的示意图,确定圆心、半径及圆心角.此类问题的解题思路是:(1)画轨迹:即确定圆心,用几何方法求半径并画出运动轨迹.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、入射方向、出射方向相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式和半径公式.变式1 如图75所示,横截面为正方形abcd的有界匀强磁场的磁场方向垂直纸面向里.一束电子以大小不同、方向垂直ad边界的速度飞入该磁场.对于从不同边界射出的电子,下列判断不正确的是( )图75A.从ad边射出的电子在磁场中运动的时间都相等B.从c点离开的电子在磁场中运动时间最长C.电子在磁场中运动的速度偏转角最大为πD.从bc边射出的电子的速度一定大于从ad边射出的电子的速度变式2 (多选)如图76所示,ab是匀强磁场的边界,质子(11H)和α粒子(42He)先后从c点射入磁场,初速度方向与ab边界的夹角均为45°,并都到达d点.不计空气阻力和粒子间的作用.关于两粒子在磁场中的运动,下列说法正确的是( )图76A.质子和α粒子运动轨迹相同B.质子和α粒子运动动能相同C.质子和α粒子运动速率相同D.质子和α粒子运动时间相同考点三带电粒子在复合场中的运动3 [2015·福建卷] 如图77所示,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C 点时离开MN做曲线运动.A、C两点间距离为h,重力加速度为g.(1)求小滑块运动到C点时的速度大小v C;(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点.已知小滑块在D点时的速度大小为v D,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小v P.【规范步骤】[解析] (1)小滑块沿MN运动过程,水平方向受力满足qvB +N=qE小滑块在C点离开MN时,有N=0解得v C=E B .(2)由动能定理,有___________________________________________解得______________________________________.(3)如图78所示,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直.撤去磁场后小滑块将做类平抛运动,等效加速度为g′g ′=⎝⎛⎭⎫qE m 2+g 2 且v 2P =v 2D +g′2t 2解得_______________________________.归纳带电粒子在复合场中常见的运动形式:①当带电粒子在复合场中所受的合力为零时,粒子处于静止或匀速直线运动状态;②当带电粒子所受的合力大小恒定且提供向心力时,粒子做匀速圆周运动;③当带电粒子所受的合力变化且与速度方向不在一条直线上时,粒子做非匀变速曲线运动.如果带电粒子做曲线运动,则需要根据功能关系求解,需要注意的是洛伦兹力始终不做功.4 如图79所示,直线MN 上方有平行于纸面且与MN 成45°角的有界匀强电场,电场强度大小未知;MN 下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B.今从MN 上的O 点向磁场中射入一个速度大小为v 、方向与MN 成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R.若该粒子从O 点出发记为第一次经过直线MN ,而第五次经过直线MN 时恰好又通过O 点.不计粒子的重力.求:(1)电场强度的大小;(2)该粒子再次从O 点进入磁场后,运动轨道的半径; (3)该粒子从O 点出发到再次回到O 点所需的时间. 导思①粒子从O 点出发到第五次经过直线MN ,经过哪些运动过程,分别做什么运动?②粒子第四次经过直线MN ,进入电场,沿电场线和垂直电场线方向分别做什么运动?其位移分别是多少?③粒子再次从O 点进入磁场后,运动的速度是多少?归纳电场(或磁场)与磁场各位于一定的区域内并不重叠,或在同一区域电场与磁场交替出现,这种情景就是组合场.粒子在某一场中运动时,通常只受该场对粒子的作用力.其处理方法一般为:①分析带电粒子在各场中的受力情况和运动情况,一般在电场中做直线运动或类平抛运动,在磁场中做匀速圆周运动;②正确地画出粒子的运动轨迹图,在画图的基础上注意运用几何知识寻找关系;③注意确定粒子在组合场交界位置处的速度大小与方向,该速度是联系两种运动的桥梁.【真题模型再现】带电粒子在电磁场中运动的科技应用2013·重庆卷霍尔效应原理2014·浙江卷离子推进器2014·福建卷电磁驱动原理2015·浙江卷回旋加速器引出离子问题2015·重庆卷回旋加速器原理2015·江苏卷质谱仪(续表)【模型核心归纳】带电粒子在电场、磁场中的运动与现代科技密切相关,应重视以科学技术的具体问题为背景的考题.涉及带电粒子在复合场中运动的科技应用主要是速度选择器、磁流体发电机、电磁流量计、质谱仪等,对应原理如下:装置名称装置图示原理及结论速度选择器粒子经加速电场加速后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中射出,则有qv0B=qE,即v0=EB,故若v=v0=EB,粒子必做匀速直线运动,与粒子电荷量、电性、质量均无关.若v<EB,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>EB,洛伦兹力大,粒子向洛伦兹力方向偏,电场力做负功,动能减少磁流体发电机正、负离子(等离子体)高速喷入偏转磁场中,在洛伦兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个场强向下的电场,两板间形成一定的电势差.当qvB=qUd时,电势差达到稳定,U=dvB,这就相当于一个可以对外供电的电源电磁流量计一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下纵向偏转,a、b间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,由Bqv=Eq=Uqd,可得v=UBd,则流量Q=Sv=πUd4B质谱仪选择器中v=EB1;偏转场中d=2r,qvB2=mv2r,解得比荷qm=2EB1B2d,质量m=B1B2dq2E.作用:主要用于测量粒子的质量、比荷,研究同位素霍尔效应在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差,这种现象称为霍尔效应例[2015·浙江卷] 使用回旋加速器的实验需要把离子束从加速器中引出,离子束引出的方法有磁屏蔽通道法和静电偏转法等.质量为m,速度为v的离子在回旋加速器内旋转,旋转轨道是半径为r的圆,圆心在O点,轨道在垂直纸面向外的匀强磁场中,磁感应强度为B.为引出离子束,使用磁屏蔽通道法设计引出器.引出器原理如图710所示,一对圆弧形金属板组成弧形引出通道,通道的圆心位于O′点(O′点图中未画出).引出离子时,令引出通道内磁场的磁感应强度降低,从而使离子从P点进入通道,沿通道中心线从Q点射出.已知OQ 长度为L,OQ与OP的夹角为θ.(1)求离子的电荷量q并判断其正负;(2)离子从P点进入,Q点射出,通道内匀强磁场的磁感应强度应降为B′,求B′;(3)换用静电偏转法引出离子束,维持通道内的原有磁感应强度B不变,在内外金属板间加直流电压,两板间产生径向电场,忽略边缘效应.为使离子仍从P点进入,Q点射出,求通道内引出轨迹处电场强度E的方向和大小.图710。
专题三电场与磁场专题综合训练(三)1.如图所示,某区域电场线左右对称分布,M、N为对称线上两点。
下列说法正确的是()A.M点电势一定高于N点电势B.M点电场强度一定大于N点电场强度C.正电荷在M点的电势能小于在N点的电势能D.将电子从M点移动到N点,静电力做正功2.如图所示,菱形ABCD的对角线相交于O点,两个等量异种点电荷分别固定在AC连线上的M点与N点,且OM=ON,则()A.A、C两处电势、电场强度均相同B.A、C两处电势、电场强度均不相同C.B、D两处电势、电场强度均相同D.B、D两处电势、电场强度均不相同3.如图所示,正方形线框由边长为L的粗细均匀的绝缘棒组成,O是线框的中心,线框上均匀地分布着正电荷,现在线框上边框中点A处取下足够短的带电量为q的一小段,将其沿OA连线延长线向上移动的距离到B点处,若线框的其他部分的带电量与电荷分布保持不变,则此时O点的电场强度大小为()A.kB.kC.kD.k4.如图,在竖直方向的匀强电场中有一带负电荷的小球(初速度不为零),其运动轨迹在竖直平面(纸面)内,截取一段轨迹发现其相对于过轨迹最高点O的竖直虚线对称,A、B为运动轨迹上的点,忽略空气阻力,下列说法不正确的是()A.B点的电势比A点高B.小球在A点的动能比它在B点的大C.小球在最高点的加速度不可能为零D.小球在B点的电势能可能比它在A点的大5.如图所示,真空中同一平面内MN直线上固定电荷量分别为-9Q和+Q的两个点电荷,两者相距为L,以+Q点电荷为圆心,半径为画圆,a、b、c、d是圆周上四点,其中a、b在MN直线上,c、d 两点连线垂直于MN,一电荷量为q的负点电荷在圆周上运动,比较a、b、c、d四点,则下列说法错误的是()A.a点电场强度最大B.负点电荷q在b点的电势能最大C.c、d两点的电势相等D.移动负点电荷q从a点到c点过程中静电力做正功6.真空中,两个固定点电荷A、B所带电荷量分别为Q1和Q2,在它们共同形成的电场中,有一条电场线如图实线所示,实线上的箭头表示电场线的方向,电场线上标出了C、D两点,其中D点的切线与AB连线平行,O点为AB连线的中点,则()A.B带正电,A带负电,且|Q1|>|Q2|B.O点电势比D点电势高C.负检验电荷在C点的电势能大于在D点的电势能D.在C点静止释放一带正电的检验电荷,只在电场力作用下将沿电场线运动到D点7.如图所示,矩形虚线框的真空区域内存在着沿纸面方向的匀强电场(具体方向未画出),一粒子从bc边上的M点以速度v0垂直于bc边射入电场,从cd边上的Q点飞出电场,不计粒子重力。
高三复习专题:电场与磁场31、(2013海南卷).如图,电荷量为q 1和q 2的两个点电荷分别位于P 点和Q 点。
已知在P 、Q 连线至某点R 处的电场强度为零,且PR=2RQ 。
则 A .q 1=2q 2 B .q 1=4q 2 C .q 1=-2q 2 D .q 1=-4q 2 2、(2013全国新课标I )、如图,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、b 、d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q 的固定点电荷。
已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)A.kB. kC. kD. k3、(2013山东理综) (多选) 如图所示,在x 轴相距为L 的两点固定两个等量异种点电荷+Q 、-Q ,虚线是以+Q 所在点为圆心、L /2为半径的圆,a 、b 、c 、d 是圆上的四个点,其中a 、c 两点在x 轴上,b 、d 两点关于x 轴对称。
下列判断正确的是A .b 、d 两点处的电势相同B.四点中c 点处的电势最低C .b 、d 两点处的电场强度相同D .将一试探电荷+q 沿圆周由a 点移至c 点,+q 的电势能减小4.(2014上海)(多选)静电场在轴上的场强E 随x 的变化关系如图所示,x 轴正向为场强正方向,带正电的点电荷沿x 轴运动,则点电荷()(A )在x 2和x 4处电势能相等(B )由x 1运动到x 3的过程电势能增大(C )由x 1运动到x 4的过程电场力先增大后减小(D )由x 1运动到x 4的过程电场力先减小后增大5.[2014·安徽卷] 一带电粒子在电场中仅受静电力作用,做初速度为零的直线运动.取该直线为x 轴,起始点O 为坐标原点,其电势能E p 与位移x 的关系如右图所示.下列图像中合理的是( )6. [2014·新课标全国卷Ⅰ] 如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未面出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O ,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为( )A .2 B.2 C .1 D.227.[2014·山东卷] 如图所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电荷量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区(两粒子不同时出现在电场中).不计重力.若两粒q 1q 2A 电场强度与位移关系B 粒子动能与位移关系C 粒子速度与位移关系D 粒子加速度与位移关系子轨迹恰好相切,则v 0等于( ) A.s22qE mh B .s2qE mh C.s 42qE mh D.s 4qE mh8.[2014·江苏卷] (多选) 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压UH 满足:U H =k I H B d,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A .霍尔元件前表面的电势低于后表面B .若电源的正负极对调,电压表将反偏C .I H 与I 成正比D .电压表的示数与R L 消耗的电功率成正比9.[2014·安徽卷] “人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感应强度B 正比于( )A.T B .T C.T 3 D .T 210【2015江苏-7】(多选).一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左,不计空气阻力,则小球A .做直线运动B .做曲线运动C .速率先减小后增大,D .速率先增大后减小11【2015天津-7】(多选)如图所示.氕核、氘核、氚核三种粒子从同一位置无初速地飘入电场线水平向右的加速电场E 1 ,之后进入电场线竖直向下的匀强电场E 2发生偏转,最后打在屏上。
整个装置处于真空中,不计粒子重力及其相互作用,那么A .偏转电场E 2对三种粒子做功一样多B .三种粒子打到屏上的速度一样大C .三种粒子运动到屏上所用的时间相同D .三种粒子一定打到屏上的同一位置12(2015四川-7).(多选)如图所示,S 处有一电子源,可向纸面内任意方向发射电子,平板MN 垂直于纸面,在纸面内的长度L =9.1cm ,中点O 与S 间的距离d =4.55cm ,MN 与SO 直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B =2.0×10-4T ,电子质量m =9.1×10-31kg ,电量e =-1.6×10-19C ,不计电子重力。
电子源发射速度v =1.6×106m/s 的一个电子,该电子打在板上可能位置的区域的长度为l ,则A .θ=90°时,l =9.1cmB .θ=60°时,l =9.1cmC .θ=45°时,l =4.55cmD .θ=30°时,l =4.55cm13、(2013四川卷). (1)(6分)在探究两电荷间相互作用力的大小与哪些因素有关的实验中,一同学猜想可能与两电荷的间距和带电量有关。
他选用带正电的小球A 和B ,A 球放在可移动的绝缘座上,B 球用绝缘丝线悬挂于玻璃棒C 点,如图所示。
实验时,先保持两球电荷量不变,使A球从远处逐渐向B球靠近,观察到两球距离越小,B球悬线的偏角越大;再保持两球距离不变,改变小球所带的电荷量,观察到电荷量越大,B球悬线的偏角越大。
实验表明:两电荷之间的相互作用力,随其距离的________而增大,随其所带电荷量的____________而增大。
此同学在探究中应用的科学方法是__________((选填:“累积法”、“等效替代法”、“控制变量法”或“演绎法”)。
14、【2016·上海卷】如图,质量为m的带电小球A用绝缘细线悬挂于O点,处于静止状态。
施加一水平向右的匀强电场后,A向右摆动,摆动的最大角度为60°,则A受到的电场力大小为。
在改变电场强度的大小和方向后,小球A的平衡位置在α=60°处,然后再将A的质量改变为2m,其新的平衡位置在α=30°处,A受到的电场力大小为。
15.【2017·北京卷】(16分)如图所示,长l=1 m的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°。
已知小球所带电荷量q=1.0×10–6 C,匀强电场的场强E=3.0×103N/C,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8。
求:(1)小球所受电场力F的大小。
(2)小球的质量m。
(3)将电场撤去,小球回到最低点时速度v的大小。
16.[2014·全国卷] 如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy平面)向外;在第四象限存在匀强电场,方向沿x轴负向.在y轴正半轴上某点以与x轴正向平行、大小为v0的速度发射出一带正电荷的粒子,该粒子在(d,0)点沿垂直于x轴的方向进入电场.不计重力.若该粒子离开电场时速度方向与y轴负方向的夹角为θ,求:(1 )电场强度大小与磁感应强度大小的比值;(2)该粒子在电场中运动的时间.17. 【2016·上海卷】如图(a),长度L=0.8m的光滑杆左端固定一带正电的点电荷A,其电荷量Q=1.8×10-7C一质量m=0.02kg,带电量为q的小球B套在杆上。
将杆沿水平方向固定于某非均匀外电场中,以杆左端为原点,沿杆向右为x轴正方向建立坐标系。
点电荷A对小球B的作用力随B位置x的变化关系如图(b)中曲线I所示,小球B所受水平方向的合力随B位置x的变化关系如图(b)中曲线II所示,其中曲线II在0.16≤x≤0.20和x≥0.40范围可近似看作直线。
求:(静电力常量k=9×109Nm/C2)(1)小球B所带电量q;(2)非均匀外电场在x=0.3m处沿细杆方向的电场强度大小E;(3)在合电场中,x=0.4m与x=0.6m之间的电势差U。
(4)已知小球在x =0.2m 处获得v =0.4m/s 的初速度时,最远可以运动到x =0.4m 。
若小球在x =0.16m 处受到方向向右,大小为0.04N 的恒力作用后,由静止开始运动,为使小球能离开细杆,恒力作用的做小距离s 是多少?18. 【2016·浙江卷】为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”。
在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转。
扇形聚焦磁场分布的简化图如图所示,圆心为O 的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布。
峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B ,谷区内没有磁场。
质量为m ,电荷量为q 的正离子,以不变的速率v 旋转,其闭合平衡轨道如图中虚线所示。
(1)求闭合平衡轨道在峰区内圆弧的半径r ,并判断离子旋转的方向是顺时针还是逆时针;(2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T ;(3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B',新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B'和B 的关系。
已知:sin (α±β)=sin αcos β±cos αsin β,cos α=1-22sin 2。