专题三电场和磁场第一讲电场及带电粒子在电场中的运动
- 格式:pptx
- 大小:1.59 MB
- 文档页数:62
(2023届高三物理二轮学案)专题三电场和磁场第二讲带电粒子在电磁场中的运动第一课时带电粒子在电场中的运动(一)带电粒子在电场中做直线运动的解题思路(二)利用“两个分运动”求解带电粒子在电场中的偏转问题1.把偏转运动分解为两个独立的直线运动——平行于极板的匀速直线运动,L=v0t;垂直于极板的匀加速直线运动,a=qUmd,vy=at,偏转距离y=12at2,速度偏转角tan θ=vyv0。
2.根据动能定理,带电粒子的动能变化量ΔEk =ydUq。
(三)分时分段处理带电粒子在交变电场中的运动当粒子平行电场方向射入时,粒子可做周期性的直线运动,当粒子垂直于电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动可能具有周期性。
典型例题1.(多选)如图所示,一带电荷量为q的带电粒子以一定的初速度由P点射入匀强电场,入射方向与电场线垂直。
粒子从Q点射出电场时,其速度方向与电场线成30°角。
已知匀强电场的宽度为d,P、Q两点的电势差为U,不计重力作用,设P点的电势为零。
则下列说法正确的是( )A.带电粒子带负电B.带电粒子在Q点的电势能为-UqC.此匀强电场的电场强度大小为E=23U 3dD.此匀强电场的电场强度大小为E=3U 3d2.(多选)如图所示,板长为L的平行板电容器与一直流电源相连接,其极板与水平面成30°角;若带电粒子甲、乙由图中的P点射入电容器,分别沿着虚线1和2运动(虚线1为水平线,虚线2为平行且靠近上极板的直线)。
下列关于带电粒子的说法正确的是( )A.两粒子均做匀减速直线运动B.两粒子电势能均逐渐增加C.两粒子机械能均守恒D.若两粒子质量相同,则甲的电荷量一定比乙的电荷量大3.(多选)如图所示,质子(11H)、氘核(12H)和α粒子(24He)都沿平行板电容器的中线OO′方向,垂直于电场线射入两极板间的匀强电场中,射出后都能打在同一个与中线垂直的荧光屏上,使荧光屏上出现亮点。
带电粒子和质点在电场、磁场中的运动专题一、带电粒子在电场和磁场中运动1.带电粒子通常指电子、质子、氚核和α粒子等微观粒子,一般可不计重力.2.处理带电粒子在电场和磁场中运动问题的方法.(1)带电粒子在匀强电场和匀强磁场共存区域内运动时,往往既要受到电场力作用,又要受到洛仑兹力作用.这两个力的特点是,电场力是恒力,而洛仑兹力的大小、方向随速度变化.若二力平衡,则粒子做匀速直线运动.若二力不平衡,则带电粒子所受合外力不可能为恒力,因此带电粒子将做复杂曲线运动.解决粒子做复杂曲线运动问题时,必须用动能定理或能量关系处理.这里要抓住场力做功和能量变化的特点,即电场力做功与电势能变化的特点,以及洛仑兹力永远不做功.(2)若匀强电场和匀强磁场是分开的独立的区域,则带电粒子在其中运动时,分别遵守在电场和磁场中运动规律运动,处理这类问题时要注意分阶段求解.[例1]空间存在相互垂直的匀强电场E和匀强磁场B,其方向如图3-7-1所示.一带电粒子+q以初速度v0垂直于电场和磁场射入,则粒子在场中的运动情况可能是A.沿初速度方向做匀速运动B.在纸平面内沿逆时针方向做匀速圆周运动C.在纸平面内做轨迹向下弯曲的匀变速曲线运动D.初始一段在纸平面内做轨迹向上(或向下)弯曲的非匀变速曲线运动问题:1.应根据哪些物理量的关系来判定粒子的运动情况?2.分析粒子的受力及其特点.判断选择并说明理由.3.若欲使带电粒子在此合场中做匀速运动,对该粒子的电性、带电量多少、质量大小、入射初速度大小有无限制?分析:粒子在场中要受到电场力和洛仑兹力作用.其中电场力为方向竖直向下的恒力;洛仑兹力方向与速度方向垂直且在垂直磁场的纸面内,初态时其方向为竖直向上,随速度大小和方向的变化,洛仑兹力也发生变化.若初态时,电场力和洛仑兹力相等,即qE=Bqv0,则粒子所受合外力为零,粒子做匀速运动.若初态时,电场力和洛仑兹力不相等,则粒子所受合外力不为零,方向与初速度方向垂直(竖直向上或竖直向下),粒子必做曲线运动.比如粒子向下偏转,其速度方向变化,所受洛仑兹力方向改变;同时电场力做正功,粒子动能增加,速度增大,洛仑兹力大小也变化.此时粒子所受合外力大小、方向均变化,则粒子所做曲线运动为非匀变速曲线运动.解:选项A、D正确.讨论与小结:1.判断带电粒子在电场和磁场共存区域内的运动形式,要根据其所受合外力的情况和合外力方向与初速度方向的关系来确定.2.若带电粒子在该合场中做匀速运动,根据qE=Bqv0可知,只要入射粒子的初速度v0=E/B,就可以做匀速运动.与粒子的电性、带电量的多少、质量的大小无关.这一点很重要,很多电学仪器的工作原理都涉及到这方面知识,比如离子速度选择器、质谱仪、电磁流量计等.[例2]如图3-7-2所示为一电磁流量计的示意图,截面为正方形的非磁性管,其边长为d,内有导电液体流动,在垂直液体流动方向加一指向纸里的匀强磁场,磁感应强度为B.现测得液体a、b两点间的电势差为U,求管内导电液体的流量Q为多少?问题:1.液体中的离子在磁场中怎样运动;为什么液体a、b两点间存在电势差?2.简述电磁流量计的工作原理.分析:流量是指单位时间内流过某一横截面的液体的体积.导电液体是指液体内含有正、负离子.在匀强磁场中,导电液体内的正、负离子在洛仑兹力作用下分别向下、上偏转,使管中上部聚积负电荷,下部聚积正电荷.从而在管内建立起一个方向向上的匀强电场,其场强随聚积电荷的增高而加强.后面流入的离子同时受到方向相反的洛仑兹力和电场力作用.当电场增强到使离子所受二力平衡时,此后的离子不再偏移,管上、下聚积电荷不再增加a、b两点电势差达到稳定值U,可以计算出流量Q.解:设液体中离子的带电量为q,因为[例3]如图3-7-3所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里的匀强磁场.一电子从两板左侧以速度v0沿金属板方向射入,当两板间磁场的磁感应强度为B1时,电子从a点射出两板,射出时的速度为2v.当两板间磁场的磁感应强度变子从b点射出时的速率.问题:1.依据力和运动关系,分析电子在合场中为什么会偏转,电子所做的运动是匀变速曲线运动吗?2.因为电子所做运动为非匀变速曲线运动,无法用牛顿运动定律解决,应该考虑用什么方法解决?3.若用动能定理解决,则各场力做功有什么特点?若用能量守恒定律解决,各场的能量有什么特点?分析:电子在合场中受到电场力和洛仑兹力,初态时电子所受二力不平衡,电子将发生偏转.因为洛仑兹力的大小、方向均变化,电子所受合力为变力,做非匀变速曲线运动.若用动能定理处理问题,则需知:电场力做功与路径无关,与带电量和初、末两位置的电势差有关.洛仑兹力永远不做功.若用能量守恒定律处理问题,则需知:电子在磁场中只有动能,没有势能;电子在电场中不仅有动能,而且还有势能,因此要规定零电势面.解一:设aO两点电势差为U,电子电量为e,质量m.依据动能定理可知:解二:设O点所在等势面为零电势面,其余同上.依据能量守恒定律可知:电子从a点射出,其守恒方程为:电子从b点射出,其守恒方程为:小结:1.处理带电粒子在电场和磁场共存区域内运动的另一种方法是应用动能定量,或能量守恒定律.2.应用动能定理时要注意,洛仑兹力永远不做功;应用能量守恒定律时注意,若只有电场力做功,粒子的动能加电势能总和不变,计算时需设定零电势面,同时注意电势能的正、负.[例4]如图3-7-4所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B,在X轴下方有沿y轴负方向的匀强电场,场强为E.一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出.射出之后,第三次到达X轴时,它与点O的距离为L.求此粒子射出时的速度V和运动的总路程(重力不计).问题:带电粒子在电场和磁场中分别做什么运动?你能画出它的轨迹示意图吗?分析:本题与前两个例题不同,它的电场和磁场区域是分开的.带电粒子在x轴上方运动只受洛仑兹力作用,做匀速圆周运动,又因为x轴是磁场的边界,粒子入射速度方向与磁场垂直,所以粒子的轨迹为半圆.带电粒子在x轴下方运动只受电场力作用,速度方向与力在一条直线上,粒子做匀变速直线运动.即当粒子从磁场中以速度v垂直于x轴向下射出时,因电场力作用先匀减速到0,再反向加速至v,并垂直射入磁场(粒子在电场中做类平抛运动).因为只要求讨论到粒子第三次到达x轴,所以粒子运动轨迹如图3-7-5所示.解:如图所示,有L=4R设粒子进入电场做减速运动的最大路程为l,加速度为a,则由前面分析知,粒子运动的总路程为S=2rR+2l小结:本题带电粒子的运动比较复杂,要根据粒子运动形式的不同分阶段处理.这是解决同类问题常用的方法.在动笔计算之前,一定要依据力和运动关系认真分析运动规律,分阶段后再个个击破.二、带电质点在电场和磁场中运动1.带电质点是指重力不能忽略,但又可视为质点的带电体.2.处理带电质点在匀强电场和匀强磁场中运动问题的方法(1)讨论带电质点在复合场中运动问题时,要先弄清重力、电场力、洛仑兹力的特点.根据质点受力情况和初速度情况判定运动形式.(2)讨论带电质点在复合场中运动问题时,还须清楚重力、电场力做功和重力势能、电势能变化关系.注意洛仑兹力不做功的特点.若带电质点只受场力作用,则它具有的动能、重力势能和电势能总和不变.[例5]如图3-7-6所示,在匀强电场和匀强磁场共存的区域内,场强E的方向竖直向下,磁感应强度B的方向垂直纸面向里.有三个带有等量同种电荷的油滴M、N、P在该区域中运动,其中M向有做匀速直线运动,N在竖直平面内做匀速圆周运动,P向左做匀速直线运动,不计空气阻力,则三个油滴的质量关系是A.m M>m N>m PB.m P>m N>m MC.m N>m P>m MD.m P>m M>m N问题:1.物体做匀速圆周运动的条件是什么?油滴N在场中的受力情况怎样?其电性如何?2.请对油滴P、M进行受力分析,并选出正确答案.分析:油滴在合场中要同时受到重力、电场力和洛图3-7-6仑兹力作用,其中重力、电场力是恒力,洛仑兹力随速度的变化而变化.若油滴N欲做匀速圆周运动,则其所受重力和电场力必然等大、反向,所受合力表现为洛仑兹力.这样才能满足合外力大小不变,方向时刻与速度方向垂直的运动条件.油滴一定带负电.三油滴的受力分析如图3-7-7所示.因它们所受的电场力和洛仑兹力大小分别相同,所以可知油滴P的质量最大,油滴M的质量最小.解:选项B正确.小结:1.若带电质点在三场共存区域内运动,一般会同时受到重力、电场力、洛仑兹力作用,若电场和磁场又为匀强场,则重力、电场力为恒力,洛仑兹力与速度有关,可为恒力也可为变力.2.若电场和磁场均是匀强场,且带电质点仅受三场力作用.则:(1)若重力与电场力等大、反向,初速度为零,带电质点必静止不动.(2)若重力与电场力等大、反向,初速度不为零,带电质点必做匀速圆周运动,洛仑兹力提供向心力.(3)若初速度不为零,且三力合力为零,带电质点必做匀速直线运动.(4)若初速度不为零,初态洛仑兹力与重力(或电场力)等大、反向,合外力不为零,带电质点必做复杂曲线运动.[例6]如图3-7-8所示,在xOy平面内,有场强E=12N/C,方向沿x轴正方向的匀强电场和磁感应强度大小为B=2T、方向垂直xOy平面指向纸里的匀强磁场.一个质量m=4×10-5kg,电量q=2.5×10-5C带正电的微粒,在xOy平面内做匀速直线运动,运动到原点O时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点.求:(1)P点到原点O的距离;(2)带电微粒由原点O运动到P点的时间.问题:1.微粒运动到O点之前都受到哪些力的作用?在这段时间内微粒为什么能做匀速直线运动?2.微粒运动到O点之后都受到哪些力的作用?在这段时间内微粒做什么运动?说明原因.分析:(1)微粒运动到O点之前要受到重力、电场力和洛仑兹力作用,如图3-7-9所示.在这段时间内微粒做匀速直线运动,说明三力合力为零.由此可得出微粒运动到O点时速度的大小和方向.(2)微粒运动到O点之后,撤去磁场,微粒只受到重力、电场力作用,其合力为一恒力,与初速度有一夹角,因此微粒将做匀变速曲线运动,如图3-7-9所示.可利用运动合成和分解的方法去求解.解:因为mg=4×10-4NF=Eq=3×1O-4N(Bqv)2=(Eq)2+(mg)2所以 v=10m/s所以θ=37°因为重力和电场力的合力是恒力,且方向与微粒在O点的速度方向垂直,所以微粒在后一段时间内的运动为类平抛运动.可沿初速度方向和合力方向进行分解.设沿初速度方向的位移为s1,沿合力方向的位移为s2,则因为s l=vt所以 P点到原点O的距离为15m; O点到P点运动时间为1. 2s.[例7]如图3-7-10所示,一对竖直放置的平行金属板长为L,板间距离为d,接在电压为U的电源上,板间有一与电场方向垂直的匀强磁场,磁场方向垂直纸面向里,磁感强度为B,有一质量为m,带电量为+q的油滴,从离平行板上端h高处由静止开始自由下落,由两板正中央P点处进入电场和磁场空间,油滴在P点所受电场力和磁场力恰好平衡,最后油滴从一块极板的边缘D处离开电场和磁场空间.求:(1)h=?(2)油滴在D点时的速度大小?问题:油滴的运动可分为几个阶段?每个阶段油滴做什么运动?每个阶段应该用什么方法来求解?分析:油滴的运动可分为两个阶段:从静止始至P点,油滴做自由落体运动;油滴进入P点以后,要受到重力、电场力和洛仑兹力作用,且合力不为零,由前面的小结知,油滴将做复杂曲线运动并从D点离开.第一个阶段的运动,可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.第二个阶段的运动只能依据能量关系求解,即重力、电场力做功之和等于油滴动能变化.或油滴具有的重力势能、电势能、动能总和不变.当然这一能量关系对整个运动过程也适用.解:(1)对第一个运动过程,依据动能定理和在P点的受力情况可知:(2)对整个运动过程,依据动能定理可知:小结:由例6、例7可以看出,处理带电质点在三场中运动的问题,首先应该对质点进行受力分析,依据力和运动的关系确定运动的形式.若质点做匀变速运动,往往既可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.若质点做非匀变速运动,往往需要用能量关系求解.应用能量关系求解时,要特别注意各力做功的特点以及重力、电场力做功分别与重力势能和电势能变化的关系.同步练习(A组)一、选择题1.氢原子中,质量为m,电量为e的电子绕核做匀速圆周运动,现垂直于电子的轨道平面加一磁感应强度为B的匀强磁场,若电子的轨道半径不变,电子受到的电场力是洛仑兹力的N倍,则电子绕核运动的角速度可能为[ ]二、非选择题2.如图3-7-11所示,MN、PQ是一对长为L、相距为d(L d)的平行金属板,两板加有一定电压.现有一带电量为q、质量为m的带正电粒子(不计重力).从两板中央(图中虚线所示)平行极板方向以速度v0入射到两板间,而后粒子恰能从平行板的右边缘飞出.若在两板间施加一个垂直纸面的匀强磁场,则粒子恰好沿入射方向做匀速直线运动.求(1)两板间施加的电压U:(2)两板间施加的匀强磁场的磁感应强度B;(3)若将电场撤销而只保留磁场,粒子仍以原初速大小与方向射入两板间,并打在MN板上某点A处,通过计算MA的大小,对粒子不能射出板间区域加以说明.(B组)一、选择题1.如图3-7-12所示,真空中两水平放置的平行金属板间有电场强度为E的匀强电场,垂直场强方向有磁感应强度为B的匀强磁场,OO′为两板中央垂直磁场方向与电场方向的直线,以下说法正确的是[ ]A.只要带电粒子(不计重力)速度达到某一数值,沿OO′射入板间区域就能沿OO′做匀速直线运动B.若将带电微粒沿OO′射入板间区域,微粒仍有可能沿OO′做匀速直线运动C.若将带电微粒沿OO′射入板间区域,微粒有可能做匀变速曲线运动D.若将带电微粒沿OO′射入板间区域,微粒不可能做匀变速曲线运动二、非选择题2.有一个未知的匀强磁场,用如下方法测其磁感应强度,如图3-7-13所示,把一个横截面是矩形的铜片放在磁场中,使它的上、下两个表面与磁场平行,前、后两个表面与磁场垂直.当通入从左向右的电流I时,连接在上、下两个表面上的电压表示数为U.已知铜片中单位体积内自由电子数为n,电子质量m,带电量为e,铜片厚度(前后两个表面厚度)为d,高度(上、下两个表面的距离)为h,求磁场的磁感应强度B.3.如图3-7-14所示,在y轴右方有一匀强磁场,磁感应强度为B,方向垂直于纸面向外;在x轴下方,有一匀强电场,场强为E,方向平行x轴向左,有一铅板放置在y轴处,且与纸面垂直,现有一质量为m,带电量q的粒子由静止经过加速电压U的电场加速,然后,以垂直于铅板的方向从A处直线穿过铅板,而后从x轴上的D处以与x 轴正向夹角为60°的方向进入电场和磁场叠加的区域,最后达到y轴上的C点,已知OD长为L,求:(1)粒子经过铅板时损失了多少动能?(2)粒子到达C点时的速度多大?4.如图3-7-15所示,在一根足够长的竖直绝缘杆上,套着一个质量为m、带电量为-q的小球,球与杆之间的动摩擦因数为μ.场强为E的匀强电场和磁感应强度为B的匀强磁场方向如图所示,小球由静止开始下落.求:(1)小球开始下落时的加速度;(2)小球的速度多大时,有最大加速度,它们的值是多少?(3)小球运动的最大速度为多少?(C组)非选择题1.如图3-7-16所示的三维空间中,存在磁感应强度为B的匀强磁场和电场强度为E的匀强电场,B和E的方向均与Z轴正方向一致.一质量为m、带电量为q的正离子(重力不计),从坐标原点O以速率v沿y轴正方向射入电场和磁场中.OACD为xOz平面中的一个挡板,求此离子打到此挡板上时的速度大小是多少?2.如图3-7-17甲所示,图的右侧MN为一竖直放置的荧光屏,O为它的中点,OO′与荧光屏垂直,且长度为L.在MN的左侧空间存在着方向水平向里的匀强电场,场强大小为E.乙图是从左边去看荧光屏得到的平面图,在荧光屏上以O为原点建立如图的直角坐标系.一细束质量为m、电量为q的带电粒子以相同的初速度v0从O′点沿O′O方向射入电场区域.粒子的重力和粒子间的相互作用都可忽略不计.(1)若再在MN左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点O处,求这个磁场的磁感应强度B的大小和方向.(2)如果磁感应强度B的大小保持不变,但把方向变为与电场方A点横坐标的数值.参考答案。
物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。
⑴带电粒子在匀强电场中做类平抛运动。
这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。
⑵带电粒子在匀强磁场中做匀速圆周运动。
这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。
例1 右图是示波管内部构造示意图。
竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。
电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。
为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。
]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。
它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。
今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。
专题三电场与磁场第1讲电场的性质带电粒子在电场中的运动基本知能:考点一| 电场的性质1.电场中各物理量的关系2.电势高低的比较(1)根据电场线方向判断,沿着电场线方向,电势越来越低。
(2)将带电荷量为+q的电荷从电场中的某点移至无穷远处时,电场力做正功越多,则该点的电势越高。
(3)根据电势差U AB=φA-φB判断,若U AB>0,则φA>φB,反之φA<φB。
3.电势能变化的判断(1)根据电场力做功判断,若电场力对电荷做正功,电势能减少;反之则增加。
即W=-ΔE p。
(2)根据能量守恒定律判断,电场力做功的过程是电势能和其他形式的能相互转化的过程,若只有电场力做功,电荷的电势能与动能相互转化,总和应保持不变,即当动能增加时,电势能减少。
4.掌握图象问题的四个关键(1)根据v t 图象中速度变化、斜率确定电荷所受合力的方向与合力大小变化,确定电场的方向、电势高低及电势能变化。
(2)电场强度的大小等于φ x 图线的斜率大小,电场强度为零处,φ x 图线存在极值,其切线的斜率为零。
(3)E x 图象中图线与x 轴围成的“面积”表示电势差,“面积”大小表示电势差大小。
(4)E p x 图象中图线的切线斜率大小等于电场力大小。
5.掌握平行板电容器的两个重要结论(1)电容器与电路(或电源)相连,则两端电压取决于电路(或电源),稳定时相当于断路,两端电压总等于与之并联的支路电压。
(2)充电后电容器与电路断开,电容器所带电荷量不变,此时若只改变两板间距离,则板间电场强度大小不变。
必须记住的三个公式定义式C =Q U ,决定式C =εr S 4πkd ,关系式E =U d .电场中力与能的综合[典例1] (多选)(2021·湖南卷)如图,圆心为O 的圆处于匀强电场中,电场方向与圆平面平行,ab 和cd 为该圆直径。
将电荷量为q (q >0)的粒子从a 点移动到b 点,电场力做功为2W (W >0);若将该粒子从c 点移动到d 点,电场力做功为W 。
专题三:带电粒子在电磁场中的运动(全国卷高考真题版)1、(2011年全国卷,25题,19分)★★★★如图,与水平面成45°角的平面MN 将空间分成I 和II 两个区域。
一质量为m 、电荷量为q (q >0)的粒子以速度0v 从平面MN 上的0p 点水平右射入I 区。
粒子在I 区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在II 区运动时,只受到匀强磁场的作用,磁感应强度大小为B ,方向垂直于纸面向里。
求粒子首次从II 区离开时到出发点0p 的距离。
(粒子的重力可以忽略。
)00221()mv v l q E B=+2、(2011年全国新课标卷,25题,19分)★★★★如图,在区域Ⅰ(0≤x ≤d )和区域Ⅱ(d ≤x ≤2d )内分别存在匀强磁场,磁感应强度大小分别为B 和2B ,方向相反,且都垂直于Oxy 平面。
一质量为m 、带电荷量q (q >0)的粒子a 于某时刻从y 轴上的P 点射入区域Ⅰ,其速度方向沿x 轴正向。
已知a 在离开区域Ⅰ时,速度方向与x 轴正方向的夹角为30°;因此,另一质量和电荷量均与a 相同的粒子b 也从p 点沿x 轴正向射入区域Ⅰ,其速度大小是a 的1/3。
不计重力和两粒子之间的相互作用力。
求:(1)粒子a 射入区域I 时速度的大小;(2)当a 离开区域II 时,a 、b 两粒子的y 坐标之差。
(1)2dqB m (2)23(3-2)d3、(2012年全国大纲版,24题,16分)★★如图,一平行板电容器的两个极板竖直放置,在两极板间有一带电小球,小球用一绝缘清线悬挂于O 点。
先给电容器缓慢充电,使两级板所带电荷量分别为﹢Q 和﹣Q ,此时悬线与竖直方向的夹角为π/6。
再给电容器缓慢充电,直到悬线和竖直方向的夹角增加到π/3,且小球与两极板不接触。
求第二次充电使电容器正极板增加的电荷量。
Q=2Q ∆4、(00年全国卷21题,13分)★★★如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a 、b 、c 和d ,外筒的外半径为r 0。