AB=AC ( 已知 ) ∠1=∠2 ( 已作 )
B DC
AD=AD (公共边)
∴ △BAD ≌ △CAD (SAS).
∴ ∠ B= ∠C (全等三角形的对应角相等).
方法三:作底边的高线
等腰三角形的两个底角相等。
已知: 如图,在△ABC中,AB=AC.
求证: ∠B= ∠C.
证明:作底边的高线AD,则
(3) ∵AD是角平分线,∴_A__D_ ⊥__B_C_ ,__B_D__ =__C_D__.
知一线得二线
A
“三线合一”可以帮助我
们解决线段的垂直、相等
以及角的相等问题。
B
DC
2、等腰三角形一个底角为70°,它的顶角为4_0__°___.
3、等腰三角形一个角为70°,它的另外两个角为 7_0_°__,_4_0_°__或____5_5_°__,5_5.°
A
B
D
C
性质3 等腰三角形是轴对称图形,其顶角的平分
线(底边上的中线、底边上的高)所在的直线就是
等腰三角形的对称轴。
1. 根据等腰三角形性质2填空, 在△ABC中, AB=AC,
(1) ∵AD⊥BC,∴∠_B_A__D_ = ∠__C_A__D,_B_D__=C__D__.
(2) ∵AD是中线,∴_A_D__⊥_B__C_ ,∠__B_A_D_ =∠__C_A__D.
DF⊥AC于F
E
F 求证:DE=DF
BD C
(2)如果DE、DF分别是AB,AC上的中线或∠ADB,
∠ADC的平分线,它们还相等吗?由等腰三角形是轴对
称图形,利用类似的方法,还可以得到等腰三角形中哪
些相等的线段?
活动5:反馈练习
练习1:小试牛刀