第2章 第7讲 第七讲 函数的图象
- 格式:doc
- 大小:478.00 KB
- 文档页数:7
2012年高考复习第二章函数第七讲幂函数知识点:幂函数的图象特征:(1)任何幂函数在第一象限必有图象,第四象限必无图象.先根据函数特征画出第一象限图象;所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);②时,幂函数的图象通过原点,并且在区间上是增函数.③时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.(2)如果幂函数是奇函数,在第象限内有其中心(坐标原点)对称部分;如果幂函数是偶函数,在第象限内有其轴(y轴)对称部分;如果幂函数是非奇非偶函数,则其函数图象只在第一象限内.(3)常见幂函数性质y=xy=xy=xy=xy=x定义域值域奇偶性单调性定点题型一:幂函数解析式特征例1.下列函数是幂函数的是()A.y=x B.y=3x C.y=x+1 D.y=x练习1:已知函数是幂函数,求此函数的解析式.练习2:若函数是幂函数,且图象不经过原点,求函数的解析式.题型二:幂函数性质例2:下列命题中正确的是()A.当时,函数的图象是一条直线B.幂函数的图象都经过(0,0),(1,1)两点C.幂函数的图象不可能在第四象限内D.若幂函数为奇函数,则在定义域内是增函数练习3:如图,曲线c1, c2分别是函数y=xm和y=xn在第一象限的图象,那么一定有()A.n<m<0 B.m<n<0 C.m>n>0 D.n>m>0练习4:.(1)函数y=的单调递减区间为()A.(-∞,1)B.(-∞,0)C.[0,+∞) D.(-∞,+∞)(2).函数y=x在区间上是减函数.(3).幂函数的图象过点(2,), 则它的单调递增区间是.题型三:比较大小.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1),;(2),;(3),;(4),..2012年高考复习第二章函数第八讲函数的图象题型1:作图作出下列函数的图像:(1);(2);(3);(4)。
第7讲函数的图象一、基础梳理1.作图:描点法作图:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性等);④画出函数的图象.2.图象变换法(1)平移变换①水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.②竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.(2)对称变换①y=f(-x)与y=f(x)的图象关于y轴对称.②y=-f(x)与y=f(x)的图象关于x轴对称.③y=-f(-x)与y=f(x)的图象关于原点对称.④y=f-1(x)与y=f(x)的图象关于直线y=x对称.(3)翻折变换①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象.②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.(4)伸缩变换①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)缩(a<1时)到原来的a倍.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)缩(a>1时)到原来的1 a.3.识图:对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.4.用图:函数图象形象地显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题路径,获得问题结果的重要工具,要重视数形结合思想的应用.一条规律对于左、右平移变换,可熟记口诀:左加右减.但要注意加、减指的是自变量,否则不成立.两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种方法画函数图象的方法有:(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响;(3)描点法:当上面两种方法都失效时,则可采用描点法.为了通过描少量点就能得到比较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论.题型精讲题型一作函数的图象【例1】分别画出下列函数的图象.(1)y=|x2-4x+3|;(2)y=2x+1 x+1;(3)y=10|lg x|.针对训练分别画出下列函数的图象. (1)y =x 2-4|x |+3; (2)y =|log 2(x +1)|.题型二 函数图象的识辨【例2】(1)下列函数图象中不正确的是( ).(2)函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图象大致是(3)设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为A .1B .-1 C.-1-52 D.-1+52针对训练(1)函数f (x )=x +|x |x 的图象是( ).(2)函数y =e x +e -xe x -e-x 的图象大致为( ).题型三 函数图象的应用 【例3】(1)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________. (2)函数y =3x -1x +2的图象关于________对称.(3)已知定义在R 上的奇函数y =f (x )的图象关于直线x =1对称,当0<x ≤1时,f (x )=log 12x ,则方程f (x )-1=0在(0,6)内的所有根之和为( ) A .8 B .10 C .12 D .16 针对训练(1)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x-1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1](2)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是(3)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是______.高考中函数图象的考查题型由解析式找图像【示例】函数y =x2-2sin x 的图象大致是( ).二、图象平移问题【示例】若函数f (x )=ka x -a -x (a >0且a ≠1)在(-∞,+∞)上既是奇函数又是增函数,则g (x )=log a (x +k )的图象是( ).三、图象对称问题【示例】y =log 2|x |的图象大致是( ).课时作业7一、选择题1.一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一坐标系中的图象大致是( ).2.函数f (x )=log a |x |+1(0<a <1)的图象大致为( ).3.已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( ).4.函数y =2x -x 2的图象大致是( ).5.方程|x |=cos x 在(-∞,+∞)内( ). A .没有根 B .有且仅有一个根 C .有且仅有两个根 D .有无穷多个根二、填空题6.把函数f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是________.7.函数f (x )=x +1x 的图象的对称中心为________.8.已知f (x )=⎝ ⎛⎭⎪⎫13x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________. 三、解答题9.已知函数y =f (x )的图象关于原点对称,且x >0时,f (x )=x 2-2x +3,试求f (x )在R 上的表达式,并画出它的图象,根据图象写出它的单调区间.10.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ). (1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.。
第七讲:函数图像、函数与方程【考点梳理】 1、函数的图象 (1)平移变换:0,0,||()()a a a a y f x y f x a ><=−−−−−−→=-向右移个单位向左移个单位 0,0,||()()+b b b b y f x y f x b ><=−−−−−−→=向上移个单位向下移个单位(2)伸缩变换:101,11,()()y f x y f x ωωωωω<<>=−−−−−−−−−−−−−→=纵坐标不变,横坐标伸长为原来的倍纵坐标不变,横坐标缩短为原来的倍1,01,()()A A A A y f x y Af x ><<=−−−−−−−−−−−−→=横坐标不变,纵坐标伸长为原来的倍横坐标不变,纵坐标缩短为原来的倍(3)对称变换:()()x y f x y f x =←−−−−→=-关于轴对称()()y y f x y f x =←−−−−→=-关于轴对称()()y f x y f x =←−−−−→=--关于原点对称(4)翻折变换:()(||)y y y y f x y f x =−−−−−−−−−−−→=去掉轴左侧图象,保留轴及右侧图象将轴右侧的图象翻折到左边()|()|x x y f x y f x =−−−−−−−−−→=保留轴及其上方图象将轴下方的图象翻折到上方去2、函数与方程(1)判断二次函数()f x 在R 上的零点个数,一般由对应的二次方程()0f x =的判别式0,0,0∆>∆=∆<来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数()f x 在[,]a b 上的图象是连续不断的一条曲线,且是单调函数,又()()0f a f b ⋅<,则()y f x =在区间(,)a b 内有唯一零点.【典型题型讲解】考点一:函数的图像【典例例题】例1.(多选题)在同一直角坐标系中,函数()()()10,1,xf x a a ag x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC【方法技巧与总结】1.熟练掌握高中八个基本初等函数的图像的画法2.函数的图像变换:平移,对称、翻折变换 【变式训练】1.已知图①中的图象是函数()y f x =的图象,则图②中的图象对应的函数可能是( )A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--【答案】C 【详解】图②中的图象是在图①的基础上,去掉函数()y f x =的图象在y 轴右侧的部分, 然后将y 轴左侧图象翻折到y 轴右侧,y 轴左侧图象不变得来的, ∴图②中的图象对应的函数可能是(||)y f x =-. 故选:C.2.已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,3.若函数()xf x a =(0a >且1a ≠)在R 上为减函数,则函数()log 1a y x =-的图象可以是( )A .B .C .D .【答案】D 【详解】因为函数()xf x a =(0a >且1a ≠)在R 上为减函数.所以01a << .因为函数()log 1a y x =-,定义域为()()11,-∞-+∞,故排除A 、B.当1x >时,函数()()log 1log 1a a y x x =-=-在1,上单调递减.当1x <-时, 函数()()log 1log 1a a y x x =-=--在()1-∞-单调递增. 故选:D.由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.4.函数()ln f x x x =的图象如图所示,则函数()1f x -的图象为( )A .B .C .D .【答案】D 【详解】将函数()f x 的图象作以y 轴为对称轴的翻折变换,得到函数()f x -的图象,再将图象向右平移一个单位,即可得到函数()()()11f x f x -=--的图象. 故选:D .考点二:求函数的零点或零点所在区间判断【典例例题】例1.已知函数()f x 满足()()1f x f x =--,且0x 是()e x y f x =+的一个零点,则0x -一定是下列函数的零点的是( )A .()e 1xy f x =-B .()e 1xy f x =--C .()1e xy f x =+ D .()e xy f x =-【答案】A 【详解】 因为()()1f x f x =--,所以()()f x f x -=-,所以函数()f x 是奇函数.由已知可得()00e 0x f x +=,即()00e x f x =-.所以()00e 1x f x -=-,所以()00e 1x f x --=,故0x -一定是()e 1x y f x =-的零点,故A 正确,B错误; 又由()00e1x f x --=,得()001e x f x --=,所以()0011120e e e e x x x x f x -----+=+=≠,故C 错误;由()()000000e e e e 0x x x x f x f x -----=--=-≠,故D 错误.故选:A .例2.函数()e 26xf x x =+-的零点所在的区间是( )A .()3,4B .()2,3C .()1,2D .()0,1【答案】C 【详解】函数()e 26x f x x =+- 是R 上的连续增函数, 2(1)e 40,(2)e 20f f =-<=->,可得(1)(2)0f f <,所以函数()f x 的零点所在的区间是(1,2). 故选:C【方法技巧与总结】求函数()x f 零点的方法:(1)代数法,即求方程()0=x f 的实根,适合于宜因式分解的多项式;(2)几何法,即利用函数()x f y =的图像和性质找出零点,适合于宜作图的基本初等函数. 【变式训练】1.已知函数()()21,01,0x x f x x x ⎧-≥⎪=⎨+<⎪⎩,则1()2y f x =-的所有零点之和为( )A B C .2 D .0【答案】D 【详解】0x ≥时,由21(1)02x --=得1x =±,0x <时,由1102x +-=得12x =-或32x =-,所以四个零点和为1311022-=. 故选:D .2.已知函数()24x f x x =+-,()e 4x g x x =+-,()ln 4h x x x =+-的零点分别是a ,b ,c ,则a ,b ,c 的大小顺序是( ) A .a b c << B .c b a << C .b a c << D .c a b <<【答案】C 【详解】 由已知条件得()f x 的零点可以看成2x y =与4y x =-的交点的横坐标,()g x 的零点可以看成e x y =与4y x =-的交点的横坐标,()h x 的零点可以看成ln y x =与4y x =-的交点的横坐标,在同一坐标系分别画出2x y =,e x y =,ln y x =,4y x =-的函数图象,如下图所示, 可知c a b >>, 故选:C .3.(2022·广东广州·二模)函数()sin ln 23f x x x π=--的所有零点之和为__________. 【答案】9【详解】由()0sin ln |23|x x f x π=⇔=-,令sin y x =π,ln 23y x =-, 显然sin y x =π与ln 23y x =-的图象都关于直线32x =对称, 在同一坐标系内作出函数sin y x =π,ln 23y x =-的图象,如图,观察图象知,函数sin y x =π,ln 23y x =-的图象有6个公共点,其横坐标依次为123456,,,,,x x x x x x , 这6个点两两关于直线32x =对称,有1625343x x x x x x +=+=+=,则1234569x x x x x x +++++=, 所以函数()sin ln 23f x x x π=--的所有零点之和为9. 故答案为:94.若2log 3x x ⋅=,23y y ⋅=,ln 3z z ⋅=,则x 、y 、z 由小到大的顺序是___________. 【答案】y x z << 【详解】依题意,0,0,0x y z >>>,223log 3log x x x x ⋅=⇔=,3232y yy y ⋅=⇔=,ln 3z z ⋅=3ln z z⇔=,因此,2log 3x x ⋅=成立的x 值是函数12log y x =与43y x=的图象交点的横坐标1t , 23y y ⋅=成立的y 值是函数22x y =与43y x=的图象交点的横坐标2t , ln 3z z ⋅=成立的z 值是函数3ln y x =与43y x=的图象交点的横坐标3t , 在同一坐标系内作出函数1223log ,2,ln xy x y y x ===,43y x=的图象,如图,观察图象得:213t t t <<,即y x z <<,所以x 、y 、z 由小到大的顺序是y x z <<. 故答案为:y x z <<6.函数2()log f x x x =+的零点所在的区间为( ) A .11,32⎛⎫ ⎪⎝⎭B .12,23⎛⎫ ⎪⎝⎭C .23,34⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭【答案】B 【详解】2()log f x x x =+为(0,)+∞上的递增函数,222111112log log 3log 03333332f ⎛⎫=+=-<-< ⎪⎝⎭=-,21111log 02222f ⎛⎫=+=-< ⎪⎝⎭,()22222251log log 353log 333333f ⎛⎫=+=-=- ⎪⎝⎭()221log 32log 2703=->()()22222333511log log 354log 3log log 04444443281f ⎛⎫=+=-+=-+=-+> ⎪⎝⎭,则函数2()log f x x x =+的零点所在的区间为12,23⎛⎫⎪⎝⎭故选:B考点三:函数零点个数的判断【典例例题】例1.函数()32,03e ,0xx x f x x x ⎧+≤=⎨-+>⎩的零点个数为___________. 【答案】2 【详解】当0x ≤时,令320x +=,解得x =0<,此时有1个零点;当0x >时, ()3e x f x x =-+,显然()f x 单调递增,又1215e 0,(1)2e>022f f ⎛⎫=-+<=-+ ⎪⎝⎭,由零点存在定理知此时有1个零点;综上共有2个零点.故答案为:2.例2.定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【详解】∴()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解的个数.2.利用函数图像求解不等式的解集及参数的取值范围.先作出所研究对象的图像,求出它们的交点,根据题意结合图像写出答案3.利用函数图像求函数的最值,先做出所涉及到的函数图像,根据题目对函数的要求,从图像上寻找取得最值的位置,计算出结果,这体现出了数形结合的思想。
第二章 第七讲A 组基础巩固一、选择题1.(2017·湖北省荆州市沙市中学高三上学期第二次月考数学试题)已知函数f (x )的图象如图,则它的一个可能的解析式为导学号 30070393( B )A .y =2xB .y =4-4x +1C .y =log 3(x +1)D .y =x 13(x ≥0)[解析] 由图象过定点可排除C 、D ,由y <4可排除A ,可得答案. 解:由于过(1,2)点,可排除C 、D ;由图象与直线y =4无限接近,但到达不了,即y <4, 而y =2x ,可无限大,知排除A ,故选B.[点拨] 本题考查函数的解析式,逐个验证,排除法是解决问题的关键,属基础题. 2.把函数y =log 2(x -1)的图象上各点的横坐标缩短到原来的12,再向右平移12个单位长度所得图象的函数解析式为导学号 30070394( D )A .y =log 2(2x +1)B .y =log 2(2x +2)C .y =log 2(2x -1)D .y =log 2(2x -2)[解析] 把函数y =log 2(x -1)图象上各点的横坐标缩短到原来的12,得到y =log 2(2x -1)的图象,再向右平移12个单位长度,所得函数的解析式为y =log 2[2(x -12)-1]=log 2(2x -2).故选D.3.(2017·北京市海淀区高三上学期期中考试数学试题)已知函数y =a x ,y =x b ,y =log c x 的图象如图所示,则导学号 30070395( C )A .a >b >cB .a >c >bC .c >a >bD .c >b >a[解析] 根据幂函数的性质,由图可知:0<b <1,由指数函数图象的性质,知:a >1,又当x =1时,y =a 1<2,所以,1<a <2;由对数函数图象的性质,知c >1,又x =2时,由图象可知:log c 2<1,所以,c >2,所以,选C.4.(2017·河北省武邑中学高三上学期第一次调研考试数学试题)函数y =x 2lg x -2x +2的图象导学号 30070396( A )A .关于原点对称B .关于x 轴对称C .关于直线x =1对称D .关于y 轴对称[解析] 记f (x )=x 2lg x -2x +2,其定义域为{x |x <-2或x >2},又f (-x )=x 2lg -x -2-x +2=x 2lgx +2x -2=-x 2lg x -2x +2=-f (x ),因此函数为奇函数,图象关于原点对称.故选A.5.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )等于导学号 30070397( D )A .e x +1B .e x -1C .e-x +1D .e-x -1[解析] 与y =e x 的图象关于y 轴对称的函数为y =e -x .依题意,f (x )图象向右平移1个单位长度,得y =e -x 的图象.所以f (x )的图象由y =e -x 的图象向左平移1个单位长度得到.所以f (x )=e-(x +1)=e-x -1.故选D.6.(2017·山东临沂期中)函数y =(x 3-x )e |x |的图像大致是导学号 30070398( B )[解析] 显然y =(x 3-x )e |x |为奇函数,排除C ,又显然存在小正数a ,当x ∈(0,a )时,y <0,故选B.7.定义在R 上的函数f (x )在(-∞,2)上是增函数,且f (x +2)的图象关于y 轴对称,则导学号 30070399( A )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3)[解析] 函数f (x +2)的图象关于y 轴对称,则f (x )的图象关于直线x =2对称,函数f (x )在(-∞,2)上是增函数,所以在(2,+∞)上是减函数,所以f (-1)=f (5)<f (0)=f (4)<f (3),故选A.8.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为导学号 30070400( C )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)[解析] f (x )的图象如图.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )<0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3). 二、填空题9.(2017·北京市春季普通高中会考数学试题)在函数①y =x -1;②y =2x ;③y =log 2x ;④y=tan x 中,图象经过点(1,1)的函数的序号是_①_.导学号 30070401[解析] 把点(1,1)代入各个选项检验,可得结论. 解:把点(1,1)代入各个选项检验,可得只有y =x-1的图象经过点(1,1).10.若函数y =(12)|1-x |+m 的图象与x 轴有公共点,则实数m 的取值范围是_-1≤m <0_.导学号 30070402[解析] 首先作出y =(12)|1-x |的图象(如图所示),欲使y =(12)|1-x |+m 的图象与x 轴有交点,则-1≤m <0.11.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为_6_.导学号 30070403[解析] f (x )=min{2x ,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4. 当x =4时,f (x )取最大值,f (4)=6.三、解答题12.已知函数f (x )=2x ,x ∈R .导学号 30070404 (1)当m 取何值时,方程|f (x )-2|=m 有一个解?两个解? (2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求m 的取值范围. [解析] (1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m , 画出F (x )的图象如图所示:由图象可得,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个解. (2)令f (x )=t (t >0),H (t )=t 2+t .因为H (t )=(t +12)2-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应用m ≤0.所以m 的取值范围为(-∞,0]. 13.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.导学号 30070405 (1)求f (x )的解析式;(2)若g (x )=f (x )+ax ,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.[答案] (1)f (x )=x +1x(x ≠0) (2)[3,+∞)[解析] (1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x 2.∵g (x )在(0,2]上为减函数,∴1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4,即a ≥3,故a 的取值范围是[3,+∞).B 组能力提升1.(2017·山西省太原市高三上学期期中数学试题)函数y =x |ln x |的图象大致为导学号 30070406( B )[解析] 通过定义域排除C ,D ,再取特殊值,x =1e ,y =1e >0,故排除A ,问题得以解决.解:函数y =x |ln x |的定义域为(0,+∞),故排除C ,D , 当x =1e 时,y =1e>0,故排除A ,故选B.2.(2017·云南省玉溪一中高三上学期第二次月考数学试题)若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图像大致是导学号 30070407( A )[解析] 因为函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},所以0<a <1. 所以函数y =log a |x |在y 轴右侧的图像单调递减,又此函数为偶函数,故选A.3.已知f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0),x 2+1,x ∈[0,1],则下列选项错误的是导学号 30070408( D )A .①是f (x -1)的图象B .②是f (-x )的图象C .③是f (|x |)的图象D .④是|f (x )|的图象[解析] 作出函数f (x )的图象如图所示,f (x -1)的图象是由函数f (x )的图象向右平移1个单位得到的,故A 正确;f (-x )的图象是由f (x )的图象关于y 轴对称后得到的,故B 正确;把函数y =f (x )在y 轴左边的图象去掉,y 轴右边的图象保留,并将y 轴右边的图象沿y 轴翻折到y 轴左边,就得到y =f (|x |)的图象,故C 正确.4.(2017·重庆市西北狼教育联盟高三上学期12月月考数学试题)已知函数g (x )=a -x 2(1e ≤x ≤e ,e 为自然对数的底数)与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是导学号 30070409( B )A .[1,1e 2 +2]B .[1,e 2-2]C .[1e2+2,e 2-2]D .[e 2-2,+∞)[解析] 由已知,得到方程a -x 2=-2ln x ⇔-a =2ln x -x 2在[1e ,e ]上有解,构造函数f (x )=2ln x -x 2,求出它的值域,得到-a 的范围即可.解:由已知,得到方程a -x 2=-2ln x ⇔-a =2ln x -x 2在[1e ,e ]上有解.设f (x )=2ln x -x 2,求导得:f ′(x )=2x -2x =2(1-x )(1+x )x ,∵1e≤x ≤e ,∴f ′(x )=0在x =1有唯一的极值点, ∵f (1e )=-2-1e 2,f (e )=2-e 2,f (x )极大值=f (1)=-1,且知f (e )<f (1e ),故方程-a =2ln x -x 2在[1e ,e ]上有解等价于2-e 2≤-a ≤-1.从而a 的取值范围为[1,e 2-2].故选B.5.已知函数f (x )=|x 2-4x +3|.导学号 30070410 (1)求函数f (x )的单调区间,并指出其增减性.(2)若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.[解析] f (x )=⎩⎪⎨⎪⎧(x -2)2-1,x ∈(-∞,1]∪[3,+∞),-(x -2)2+1,x ∈(1,3),作出图象如图所示.(1)递增区间为[1,2),[3,+∞),递减区间为(-∞,1),[2,3). (2)原方程变形为|x 2-4x +3|=x +a ,设y =x +a ,在同一坐标系下再作出y =x +a 的图象(如图)则当直线y =x +a 过点(1,0)时,a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎪⎨⎪⎧y =x +a ,y =-x 2+4x -3,得x 2-3x +a +3=0. 由Δ=9-4(3+a )=0,得a =-34.由图象知当a ∈[-1,-34] 时,方程至少有三个不等实根.。