高中数学大一轮复习讲义(文科)第7讲函数图像
- 格式:doc
- 大小:248.00 KB
- 文档页数:8
函数的图像一、基础知识1、做草图需要注意的信息点:做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。
在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点(1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线特点:两点确定一条直线信息点:与坐标轴的交点(2)二次函数:()2y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。
函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确特点:对称性信息点:对称轴,极值点,坐标轴交点(3)反比例函数:1y x=,其定义域为()(),00,-¥+¥U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线特点:奇函数(图像关于原点中心对称),渐近线信息点:渐近线注:(1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。
渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x ®+¥,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。
(2)水平渐近线的判定:需要对函数值进行估计:若x ®+¥(或-¥)时,()f x ®常数C ,则称直线y C =为函数()f x 的水平渐近线例如:2x y = 当x ®+¥时,y ®+¥,故在x 轴正方向不存在渐近线 当x ®-¥时,0y ®,故在x 轴负方向存在渐近线0y =(3)竖直渐近线的判定:首先()f x 在x a =处无定义,且当x a ®时,()f x ®+¥(或-¥),那么称x a =为()f x 的竖直渐近线例如:2log y x =在0x =处无定义,当0x ®时,()f x ®-¥,所以0x =为2log y x =的一条渐近线。
2018版高考数学大一轮复习第二章函数概念与基本初等函数I 第7讲函数的图象教师用书理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第二章函数概念与基本初等函数I 第7讲函数的图象教师用书理新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第二章函数概念与基本初等函数I 第7讲函数的图象教师用书理新人教版的全部内容。
第二章函数概念与基本初等函数I 第7讲函数的图象教师用书理新人教版(建议用时:40分钟)一、选择题1.为了得到函数y=2x-2的图象,可以把函数y=2x图象上所有的点()A.向右平行移动2个单位长度B.向右平行移动1个单位长度C。
向左平行移动2个单位长度D。
向左平行移动1个单位长度解析因为y=2x-2=2(x-1),所以只需将函数y=2x的图象上所有的点向右平移1个单位长度即可得到y=2(x-1)=2x-2的图象.答案B2。
小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( )解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除A。
因交通堵塞停留了一段时间,与学校的距离不变,排除D.后来为了赶时间加快速度行驶,排除B.故选C.答案C3。
(2015·浙江卷)函数f(x)=错误!cos x(-π≤x≤π且x≠0)的图象可能为()解析(1)因为f(-x)=错误!cos(-x)=-错误!cos x=-f(x),-π≤x≤π且x≠0,所以函数f(x)为奇函数,排除A,B.当x=π时,f(x)=错误!cos π〈0,排除C,故选D。
第7讲 函数图像一、选择题 1.函数=ln1|2x -3|的大致图像为(如图所示)( ).解析y =-ln|2x -3|=⎩⎪⎨⎪⎧-ln (2x -3),x >32,-ln (3-2x ),x <32,故当x >32时,函数为减函数,当x <32时,函数为增函数. 答案 A2.由方程x |x |+y |y |=1确定的函数y =f (x )在(-∞,+∞)上是( ). A .增函数 B .减函数 C .先增后减 D .先减后增解析 ①当x ≥0且y ≥0时,x 2+y 2=1,②当x >0且y <0时,x 2-y 2=1, ③当x <0且y >0时,y 2-x 2=1, ④当x <0且y <0时,无意义.由以上讨论作图如上图,易知是减函数. 答案 B3.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x -tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( ).A .大于1B .大于0C .小于0D .不大于0解析 分别作出函数y =⎝ ⎛⎭⎪⎫1e x 与y =tan x 在区间⎝ ⎛⎭⎪⎫-π2,π2上的图象,得到0<x 0<π2,且在区间(0,x 0)内,函数y =⎝ ⎛⎭⎪⎫1e x 的图象位于函数y =tan x 的图象上方,即0<x <x 0时,f (x )>0,则f (t )>0,故选B. 答案 B4.如图,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B ⎝ ⎛⎭⎪⎫22,0,顶点C 、D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是( ).解析 当直线l 从原点平移到点B 时,面积增加得越来越快;当直线l 从点B 平移到点C 时,面积增加得越来越慢.故选C. 答案 C5.在同一坐标系中画出函数y =log a x ,y =a x ,y =x +a 的图象,可能正确的是( ).解析 当a >1或0<a <1时,排除C ;当0<a <1时,再排除B ;当a >1时,排除A. 答案 D6.如右图,已知正四棱锥S -ABCD 所有棱长都为1, 点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE =x (0<x <1),截面下面部分的体积为V (x ),则函数y =V (x )的图象大致为( ).解析 (1)当0<x <12时,过E 点的截面为五边形EFGHI (如图1所示),连接FI ,由SC 与该截面垂直知,SC ⊥EF ,SC ⊥EI ,∴EF =EI =SE tan 60°=3x ,SI =2SE =2x ,IH =FG =BI =1-2x ,FI =GH =2AH =2 2x ,∴五边形EFGHI 的面积S =FG ×GH +12FI ×EF 2-⎝ ⎛⎭⎪⎫12FI 2=22x -32x 2,∴V (x )=V C -EFGHI +2V I -BHC =13(22x -32x 2)×CE +2×13×12×1×(1-2x )×22(1-2x )=2x 3-2x 2+26,其图象不可能是一条线段,故排除C ,D.(2)当12≤x <1时, 过E 点的截面为三角形,如图2,设此三角形为△EFG ,则EG =EF =EC tan 60°=3(1-x ),CG =CF =2CE =2(1-x ),三棱锥E -FGC底面FGC 上的高h =EC sin 45°=22(1-x ), ∴V (x )=13×12CG ·CF ·h =23(1-x )3, ∴V ′(x )=-2(1-x )2,又显然V ′(x )=-2(1-x )2在区间⎝ ⎛⎭⎪⎫12,1上单调递增,V ′(x )<0⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫12,1,∴函数V (x )=23(1-x )3在区间⎝ ⎛⎭⎪⎫12,1上单调递减,且递减的速率越来越慢,故排除B ,应选A. 答案 A 二、填空题7.设函数f (x )=|x +2|+|x -a |的图像关于直线x =2对称,则a 的值为________. 解析 因为函数f (x )的图像关于直线x =2对称,则有f (2+x )=f (2-x )对于任意实数x 恒成立,即|x +4|+|x +2-a |=|x -4|+|x -2+a |对于任意实数x 恒成立,从而有⎩⎪⎨⎪⎧2-a =-4,a -2=4,解得a =6.答案 68.使log 2(-x )<x +1成立的x 的取值范围是________.解析 作出函数y =log 2(-x )及y =x +1的图象.其中y =log 2(-x )与y =log 2 x 的图象关于y 轴对称,观察图象(如图所示)知-1<x <0,即x ∈(-1,0).也可把原不等式化为⎩⎪⎨⎪⎧-x >0,-x <2x +1后作图.答案(-1,0)9.已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2,给出下列结论:①f(x2)-f(x1)>x2-x1;②x2f(x1)>x1f(x2);③f x1+f x22<f⎝⎛⎭⎪⎫x1+x22.其中正确结论的序号是________(把所有正确结论的序号都填上).解析由f(x2)-f(x1)>x2-x1,可得f x2-f x1x2-x1>1,即两点(x1,f(x1))与(x2,f(x2))连线的斜率大于1,显然①不正确,由x2f(x1)>x1f(x2)得f x1x1>f x2x2,即表示两点(x1,f(x1))、(x2,f(x2))与原点连线的斜率的大小,可以看出结论②正确;结合函数图象,容易判断③的结论是正确的.答案②③10.已知a>0,且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<12,则实数a的取值范围是________.解析由题知,当x∈(-1,1)时,f(x)=x2-a x<12,即x2 -12<a x .在同一坐标系中分别作出二次函数y =x 2-12,指数函数y =a x的图象,如图,当x ∈(-1,1)时,要使指数函数的图象均在二次函数图象的上方,需12≤a ≤2且a ≠1.故实数a 的取值范围是12≤a <1或1<a ≤2.答案 [12,1)∪(1,2]三、解答题11.设函数f (x )=x +1x (x ∈(-∞,0)∪(0,+∞))的图像为C 1,C 1关于点A (2,1)的对称的图像为C 2,C 2对应的函数为g (x ). (1)求函数y =g (x )的解析式,并确定其定义域;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点的坐标. 解 (1)设P (u ,v )是y =x +1x 上任意一点, ∴v =u +1u ①.设P 关于A (2,1)对称的点为Q (x ,y ), ∴⎩⎨⎧ u +x =4,v +y =2⇒⎩⎨⎧u =4-x ,v =2-y , 代入①得2-y =4-x +14-x ⇒y =x -2+1x -4, ∴g (x )=x -2+1x -4(x ∈(-∞,4)∪(4,+∞)). (2)联立⎩⎪⎨⎪⎧y =b ,y =x -2+1x -4⇒x 2-(b +6)x +4b +9=0,∴Δ=(b +6)2-4×(4b +9)=b 2-4b =0⇒b =0或b =4. ∴当b =0时得交点(3,0);当b =4时得交点(5,4).12.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ).(1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.解析 (1)证明 设P (x 0,y 0)是函数y =f (x )图象上任一点, 则y 0=f (x 0),点P 关于直线x =2的对称点为P ′(4-x 0,y 0). 因为f (4-x 0)=f [2+(2-x 0)]=f [2-(2-x 0)]=f (x 0)=y 0,所以P ′也在y =f (x )的图象上,所以函数y =f (x )的图象关于直线x =2对称. (2) 当x ∈[-2,0]时,-x ∈[0,2], 所以f (-x )=-2x -1. 又因为f (x )为偶函数,所以f (x )=f (-x )=-2x -1,x ∈[-2,0]. 当x ∈[-4,-2]时,4+x ∈[0,2], 所以f (4+x )=2(4+x )-1=2x +7, 而f (4+x )=f (-x )=f (x ), 所以f (x )=2x +7,x ∈[-4,-2].所以f (x )=⎩⎪⎨⎪⎧2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0].13.当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,求a 的取值范围. 解 设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2) 时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 的下方即可.当0<a <1时,综合函数图象知显然不成立.当a >1时,如图,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,log a 2≥1,∴1<a ≤2.∴a 的取值范围是(1,2]14.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数; (3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}. 解 (1)∵f (4)=0,∴4|m -4|=0,即m =4. (2)∵f (x )=x |m -x |=x |4-x |=⎩⎨⎧x (x -4),x ≥4,-x (x -4),x <4.∴函数f (x )的图象如图:由图象知f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为[2,4]. (4)从图象上观察可知:不等式f (x )>0的解集为:{x |0<x <4或x >4}.(5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4,∴集合M ={m |0<m <4}.。