第1讲 函数图象与性质
- 格式:ppt
- 大小:4.18 MB
- 文档页数:38
第一讲 函数的图象与性质A 组 基础题组1.函数f(x)=+的定义域为( )1x -1x A.[0,+∞)B.(1,+∞)C.[0,1)∪(1,+∞)D.[0,1)2.已知函数f(x)=3x -,则f(x)( )(13)xA.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数3.(2018湖北武汉调研)函数f(x)=log 2(x 2-4x-5)的单调递增区间是( )A.(-∞,-2) B.(-∞,-1)C.(2,+∞)D.(5,+∞)4.(2018河北石家庄模拟)已知f(x)=(0<a<1),且f(-2)=5, f(-1)=3,则f(f(-3))=( ){log 3x,x >0,a x+b,x ≤0A.-2B.2C.3D.-35.(2018湖南益阳、湘潭调研)函数f(x)=的图象大致是( )x 1-x26.(2018陕西质量检测一)设x ∈R,定义符号函数sgn x=则函数f(x)=|x|sgn x 的图{1,x >0,0,x =0,-1,x <0,象大致是( )7.(2018贵州贵阳模拟)已知函数f(x)是定义在R 上的奇函数,且当x ≥0时, f(x)=log 2(x+2)-1,则f(-6)=( )A.2 B. 4C.-2D.-48.已知函数f(x)=则下列结论正确的是( ){x 4+1,x >0,cos2x ,x ≤0,A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)9.奇函数f(x)的定义域为R,若f(x+2)为偶函数,则f(8)=( )A.-1B.0C.1D.-210.已知函数f(x)=,则下列结论正确的是( )2x -1A.函数f(x)的图象关于点(1,0)中心对称B.函数f(x)在(-∞,1)上是增函数C.函数f(x)的图象关于直线x=1对称D.函数f(x)的图象上至少存在两点A,B,使得直线AB ∥x 轴11.(2018四川成都模拟)已知定义在R 上的奇函数f(x)的图象关于直线x=1对称,且当x ∈[0,1]时, f(x)=log 2(x+1),则下列不等式正确的是( )A.f(log 27)<f(-5)<f(6)B.f(log 27)<f(6)<f(-5)C.f(-5)<f(log 27)<f(6)D.f(-5)<f(6)<f(log 27)12.(2018广东惠州模拟)已知函数f(x)=若函数f(x)的图象上关于原点对称的{kx -1,x ≥0,-ln(-x ),x <0,点有2对,则实数k 的取值范围是( )A.(-∞,0)B.(0,12)C.(0,+∞)D.(0,1)13.已知函数f(x)=若f(a)+f(1)=0,则实数a 的值为 .{2x,x >0,x +1,x ≤0,14.(2018广东惠州模拟)已知f(x)=x+-1,f(a)=2,则f(-a)= .1x 15.(2018河南洛阳第一次统考)若函数f(x)=ln(e x +1)+ax 为偶函数,则实数a= . 16.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x ∈R,不等式f(x)≥g(x)恒成立,则实数a 的取值范围是 .B 组 提升题组 1.(2018重庆六校联考)函数f(x)=的大致图象为( )sin πx x22.已知函数f(x)=e |ln x|-,则函数y=f(x+1)的大致图象为( )|x -1x|3.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t 之间的函数关系的是( )4.函数f(x)=的图象如图所示,则下列结论成立的是( )ax +b (x +c )2A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<05.(2018河南开封模拟)已知f(x)是定义在R 上周期为4的奇函数,当x ∈(0,2]时, f(x)=2x +log 2x,则f(2 015)=( )A.5 B. C.2 D.-2126.设函数f(x)=若f =2,则实数n 的值为( ){2x +n ,x <1,log 2x,x ≥1,(f(34)) A.-B.-C.D.541314527.∀x ∈,8x ≤log a x+1恒成立,则实数a 的取值范围是( )(0,13)A. B. C. D.(0,23)(0,12][13,1)[12,1)8.设曲线y=f(x)与曲线y=x 2+a(x>0)关于直线y=-x 对称,且f(-2)=2f(-1),则a=( )A.0B.C.D.113239.(2018福建福州模拟)已知函数f(x)=e x +e 2-x ,若关于x 的不等式[f(x)]2-af(x)≤0恰有3个整数解,则实数a 的最小值为( )A.1 B.2eC.e 2+1D.e 3+1e310.已知函数f(x)的定义域为R,且满足下列三个条件:①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有 >0;f (x 1)-f(x 2)x 1-x 2②f(x+4)=-f(x);③y=f(x+4)是偶函数.若a=f(6),b=f(11),c=f(2 017),则a,b,c 的大小关系正确的是( )A.a<b<cB.b<a<cC.a<c<bD.c<b<a 11.已知函数f(x)=的值域为R,则实数a 的取值范围是 . {(1-2a )x +3a ,x <1,ln x ,x ≥112.已知函数f(x)是定义在R 上的奇函数,当x ≥0时, f(x)=x 2,若对任意的x ∈[m-2,m],不等式f(x+m)-9f(x)≤0恒成立,则实数m 的取值范围是 .13.已知函数f(x)=若f(x-1)<f(2x+1),则x 的取值范围{3x 2+ln(1+x 2+x),x ≥0,3x 2+ln(1+x 2-x),x <0,为 .14.(2018陕西西安八校联考)函数f(x)在定义域R 内可导,若f(x)=f(2-x),且(x-1)f '(x)<0,设a=f(0),b=f,c=f(3),则a,b,c 的大小关系是 .(12)答案精解精析A 组 基础题组1.C 由题意知即0≤x<1或x>1.{x -1≠0,x ≥0,∴f(x)的定义域为[0,1)∪(1,+∞).2.B 易知函数f(x)的定义域为R,∵f(-x)=3-x -=-3x =-=-f(x),(13)-x (13)x[3x-(13)x ]∴f(x)为奇函数.又∵y=3x 在R 上为增函数,y=-在R 上为增函数,∴f(x)=3x -在R 上是增函数.故选B.(13)x(13)x3.D 由x 2-4x-5>0得x ∈(-∞,-1)∪(5,+∞).原函数f(x)=log 2(x 2-4x-5)由t=x 2-4x-5与y=log 2t 复合而成,当x ∈(-∞,-1)时,t=x 2-4x-5为减函数;当x ∈(5,+∞)时,t=x 2-4x-5为增函数.又y=log 2t 为增函数,所以函数f(x)=log 2(x 2-4x-5)的单调递增区间是(5,+∞).故选D.4.B 由题意得f(-2)=a -2+b=5①, f(-1)=a -1+b=3②.联立①②,结合0<a<1,得a=,b=1,所以f(x)=则f(-3)=+1=9,所以f(f(-12{log 3x,x >0,(12)x +1,x ≤0,(12)-33))=f(9)=log 39=2.故选B.5.B 易知函数f(x)的定义域为{x|x ≠±1}, f(-x)==-=-f(x),所以函数f(x)为奇函数.-x 1-(-x )2x 1-x 2当x ∈(0,1)时, f(x)=>0,排除D;当x ∈(1,+∞)时, f(x)=<0,排除A,C.故选B.x 1-x2x1-x26.C 函数f(x)=|x|sgn x=即f(x)=x,{x ,x ≠0,0,x =0,故函数f(x)=|x|sgn x 的图象为直线y=x.故选C.7.C 由题意,知f(-6)=-f(6)=-(log 28-1)=-3+1=-2,故选C.8.D 由f(-x)≠f(x)知f(x)不是偶函数,当x ≤0时, f(x)不是增函数,显然f(x)也不是周期函数,故选D.9.B 由奇函数f(x)的定义域为R,可得f(0)=0,由f(x+2)为偶函数,可得f(-x+2)=f(x+2),故f(x+4)=f((x+2)+2)=f(-(x+2)+2)=f(-x)=-f(x),则f(x+8)=f((x+4)+4)=-f(x+4)=-[-f(x)]=f(x),即函数f(x)的周期为8,所以f(8)=f(0)=0.故选B.10.A 由题知,函数f(x)=的图象是由函数y=的图象向右平移1个单位长度得到的,可得2x -12x 函数f(x)的图象关于点(1,0)中心对称,选项A 正确;函数f(x)在(-∞,1)上是减函数,选项B 错误;易知函数f(x)=的图象不关于直线x=1对称,选项C 错误;由函数f(x)的单调性及函数f(x)2x -1的图象可知函数f(x)的图象上不存在两点A,B,使得直线AB ∥x 轴,选项D 错误.11.C 因为奇函数f(x)的图象关于直线x=1对称,所以函数f(x)是以4为周期的周期函数,所以f(-5)=f(-1)=-f(1)=-1, f(6)=f(2)=f(0)=0.于是,结合题意可画出函数f(x)在[-2,4]上的大致图象,如图所示.又2<log 27<3,所以结合图象可知-1<f(log 27)<0,故f(-5)<f(log 27)<f(6).故选C.12.D 依题意,函数f(x)的图象上存在关于原点对称的点,可作出函数y=-ln(-x)(x<0)的图象关于原点对称的函数y=ln x(x>0)的图象,使得它与直线y=kx-1(x>0)的交点个数为2即可,当直线y=kx-1与函数y=ln x 的图象相切时,设切点为(m,ln m),又y=ln x 的导函数为y'=,则1x解得可得切线的斜率为1,结合图象可知k ∈(0,1)时,函数y=ln x 的图{km -1=ln m ,k =1m ,{m =1,k =1,象与直线y=kx-1有2个交点,即函数f(x)的图象上关于原点对称的点有2对.故选D.13.答案 -3解析 ∵f(1)=2>0,且f(1)+f(a)=0,∴f(a)=-2<0,故a ≤0.依题知a+1=-2,解得a=-3.14.答案 -4解析 因为f(x)=x+-1,所以f(a)=a+-1=2,所以a+=3,所以f(-a)=-a--1=--1=-3-1=-4.1x 1a 1a 1a (a +1a )15.答案 -12解析 ∵函数f(x)是偶函数,∴f(x)-f(-x)=ln(e x +1)+ax-ln(e -x +1)+ax=ln+2ax=lne x+1e -x +1e x +2ax=(1+2a)x=0恒成立.∴1+2a=0,即a=-.1216.答案 [-1,+∞)解析 如图,要使f(x)≥g(x)恒成立,则-a ≤1,∴a ≥-1.B 组 提升题组1.D 易知函数f(x)=为奇函数且定义域为{x|x ≠0},只有选项D 满足,故选D.sin πx x22.A 根据已知函数关系式可得f(x)=作出其图象,然后将其向左{e-ln x+(x -1x )=x,0<x ≤1,e ln x-(x -1x )=1x ,x >1.平移1个单位即得函数y=f(x+1)的图象,结合选项知A 正确.3.A 若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10 ℃,所以当t=12时,平均气温应该为10 ℃,故排除B;因为在靠近12月份时其温度小于10 ℃,因此12月份前的一小段时间内的平均气温应该大于10℃,故排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D.故选A.4.C 函数f(x)的定义域为{x|x ≠-c},由题中图象可知-c=x P >0,即c<0,排除B.令f(x)=0,可得x=-,则x N =-.又x N >0,所以<0.所以a,b 异号,排除A,D.故选C.ba ba ba 5.D 由题意得f(2 015)=f(4×504-1)=f(-1)=-f(1).又当x ∈(0,2]时, f(x)=2x +log 2x,故f(1)=2+log 21=2,所以f(2 015)=-2.故选D.6.D 因为f=2×+n=+n,当+n<1,即n<-时, f =2+n=2,解得n=-,不符合题意;(34)34323212(f(34))(32+n )13当+n ≥1,即n ≥-时, f =log 2=2,即+n=4,解得n=.故选D.3212(f(34))(32+n )32527.C 由各选项及题意可得解得≤a<1.{0<a <1,log a 13+1≥2,138.C 依题意得曲线y=f(x)即为-x=(-y)2+a(其中-y>0,即y<0,注意到点(x 0,y 0)关于直线y=-x 的对称点是点(-y 0,-x 0)),化简后得y=-,即f(x)=-,于是有-=-2,由此解得-x -a -x -a 2-a 1-a a=.故选C.239.C 因为f(x)=e x +e 2-x >0,所以由[f(x)]2-af(x)≤0可得0<f(x)≤a.令t=e x ,g(t)=t+(t>0),画出函e2t数g(t)的大致图象,如图所示,结合图象分析易知原不等式有3个整数解可转化为0<g(t)≤a 的3个解分别为1,e,e 2.又当t=e x 的值分别为1,e,e 2时,x=0,1,2.画出直线y=e 2+1,故结合函数图象可知a 的最小值为e 2+1.故选C.10.B ∵对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有 >0,f (x 1)-f(x 2)x 1-x 2∴函数f(x)在区间[4,8]上为增函数.∵f(x+4)=-f(x),∴f(x+8)=-f(x+4)=f(x),∴函数f(x)是周期为8的周期函数.∵y=f(x+4)是偶函数,∴函数f(x)的图象关于直线x=-4对称,又函数f(x)的周期为8,∴函数f(x)的图象也关于直线x=4对称.∴b=f(11)=f(3)=f(5),c=f(2 017)=f(252×8+1)=f(1)=f(7).又a=f(6),函数f(x)在区间[4,8]上为增函数,∴b<a<c.故选B.11.答案 [-1,12)解析 要使函数f(x)的值域为R,则有∴{1-2a >0,ln1≤1-2a +3a ,{a <12,a ≥-1,∴-1≤a<.1212.答案 [4,+∞)解析 依题意知函数f(x)在R 上单调递增,且当x ∈[m-2,m]时, f(x+m)≤9f(x)=f(3x),所以x+m ≤3x,即x ≥恒成立,于是有≤m-2,解得m ≥4,即实数m 的取值范围是[4,+∞).m 2m213.答案 (-∞,-2)∪(0,+∞)解析 若x>0,则-x<0, f(-x)=3(-x)2+ln(+x)=3x 2+ln(+x)=f(x),同理可得,当x<01+x 21+x 2时, f(-x)=f(x),且x=0时,f(0)=f(-0),所以f(x)是偶函数.因为当x>0时,函数f(x)单调递增,所以不等式f(x-1)<f(2x+1)等价于|x-1|<|2x+1|,整理得x(x+2)>0,解得x>0或x<-2.14.答案 b>a>c解析 因为f(x)=f(2-x),所以函数f(x)的图象关于直线x=1对称.因为(x-1)f '(x)<0,所以当x>1时, f '(x)<0,所以函数f(x)在(1,+∞)上单调递减;当x<1时, f '(x)>0,所以函数f(x)在(-∞,1)上单调递增.取符合题意的函数f(x)=-(x-1)2,则a=f(0)=-1,b=f=-,c=f(3)=-4,故b>a>c.(12)14。
专题升级训练函数的图象与性质(时间:60分钟满分:100分)一、选择题(本大题共6小题,每小题6分,共36分)1.若f(x)=,则f(x)的定义域为( )A. B.C. D.(0,+∞)2.(2018·山东淄博模拟,4)函数y=xsin x在[-π,π]上的图象是( )3.设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=2x-x,则有( )A.f<f<fB.f<f<fC.f<f<fD.f<f<f4.已知x,y为正实数,则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy)=2lg x·2lg y5.对实数a和b,定义运算“⊗”:a⊗b=设函数f(x)=(x2-2)⊗(x-x2),x∈R,若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是( )A.(-∞,-2]∪B.(-∞,-2]∪C.D.6.函数f(x)=的图象上关于y轴对称的点共有( )A.0对B.1对C.2对D.3对二、填空题(本大题共3小题,每小题6分,共18分)7.设函数f(x)=若f(x)=1,则x= .8.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为.9.已知定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+1)=;②函数y=f(x+1)的图象关于y轴对称;③对于任意的x1,x2∈[0,1],且x1<x2,都有f(x1)>f(x2),则f,f(2),f(3)从小到大的关系是.三、解答题(本大题共3小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤)10.(本小题满分15分)已知函数f(x)=是奇函数.(1)求a的值;(2)判断函数f(x)的单调性,并用定义证明;(3)求函数的值域.11.(本小题满分15分)已知函数f(x)=ax2-2ax+2+b(a≠0)在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;[:(2)若b<1,g(x)=f(x)-2m x在[2,4]上单调,求m的取值范围.12.(本小题满分16分)定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,f(x)=(a∈R).(1)求f(x)在[0,1]上的最大值;(2)若f(x)是[0,1]上的增函数,求实数a的取值范围.##一、选择题(本大题共6小题,每小题6分,共36分)1.A 解析:根据题意得lo(2x+1)>0,即0<2x+1<1,解得x∈.2.A 解析:因为函数y=f(x)=xsin x为偶函数,所以图象关于y轴对称,所以排除D.fsin>0,排除B.f(π)=πsin π=0,排除C,所以选A.3.B 解析:f'(x)=2x ln 2-1,当x≥1时,f'(x)=2x ln 2-1≥2ln 2-1=ln 4-1>0,故函数f(x)在[1,+∞)上单调递增.又f=f=f,f=f=f,故f<f<f.4.D 解析:根据指数与对数的运算法则可知,2l g x+lg y=2lg x·2lg y,故A错,B错,C错;D中,2lg(xy)=2lg x+lg y=2lg x·2lg y,故选D.5.B 解析:f(x)==则f(x)的图象如图.∵y=f(x)-c的图象与x轴恰有两个公共点,∴y=f(x)与y=c的图象恰有两个公共点,由图象知c≤-2,或-1<c<-.6.D 解析:因为y=cos πx是偶函数,图象关于y轴对称.所以,本题可转化成求函数y=log3x与y=cos πx图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f(x)图象上关于y轴对称的点有3对.二、填空题(本大题共3小题,每小题6分,共18分)7.-2 解析:当x≤1时,由|x|-1=1,得x=±2,故可得x=-2;当x>1时,由2-2x=1,得x=0,不适合题意.故x=-2.8.[1,+∞) 解析:要使f(x)的值域为R,必有a=0,于是g(x)=x2+1,值域为[1,+∞).9.f(3)<f<f(2) 解析:由①得f(x+2)=f(x+1+1)==f(x),所以函数f(x)的周期为2.因为函数y=f(x+1)的图象关于y轴对称,将函数y=f(x+1)的图象向右平移一个单位即得y=f(x)的图象,所以函数y=f(x)的图象关于x=1对称;根据③可知函数f(x)在[0,1]上为减函数,又结合②知,函数f(x)在[1,2]上为增函数.因为f(3)=f(2+1)=f(1),在区间[1,2]上,1<<2,[:所以f(1)<f<f(2),即f(3)<f<f(2).三、解答题(本大题共3小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤)10.解:(1)∵f(x)的定义域为R,且为奇函数,∴f(0)=0,解得a=1.(2)由(1)知,f(x)==1-,∴f(x)为增函数.证明:任取x1,x2∈R,且x1<x2.f(x1)-f(x2)=1--1+,∵x1<x2,∴<0,且+1>0,+1>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2).∴f(x)为R上的增函数.(3)令y=,则2x=,∵2x>0,∴>0.∴-1<y<1.∴函数f(x)的值域为(-1,1).11.解:(1)f(x)=a(x-1)2+2+b-a.①当a>0时,f(x)在[2,3]上为增函数,故②当a<0时,f(x)在[2,3]上为减函数,故(2)∵b<1,∴a=1,b=0,即f(x)=x2-2x+2,g(x)=x2-2x+2-2m·x=x2-(2+2m)x+2.若g(x)在[2,4]上单调,则≤2或≥4,∴2m≤2或2m≥6,即m≤1或m≥log26.12.解:(1)设x∈[0,1],则-x∈[-1,0],f(-x)==4x-a·2x. ∵f(-x)=-f(x),∴f(x)=a·2x-4x,x∈[0,1].令t=2x,t∈[1,2],∴g(t)=a·t-t2=-.当≤1,即a≤2时,g(t)max=g(1)=a-1;当1<<2,即2<a<4时,g(t)max=g;当≥2,即a≥4时,g(t)max=g(2)=2a-4.综上,当a≤2时,f(x)的最大值为a-1;当2<a<4时,f(x)的最大值为;当a≥4时,f(x)的最大值为2a-4.[:(2)∵函数f(x)在[0,1]上是增函数,∴f'(x)=aln 2·2x-ln 4·4x=2x ln 2(a-2·2x)≥0,∴a-2·2x≥0,a≥2·2x恒成立,∵2x∈[1,2],∴a≥4.。
2022高考数学二轮复习讲义 专题一 第1讲 函数的图象与性质【要点提炼】考点一 函数的概念与表示 1.复合函数的定义域(1)若f(x)的定义域为[m ,n],则在f(g(x))中,m ≤g(x)≤n ,从中解得x 的范围即为f(g(x))的定义域.(2)若f(g(x))的定义域为[m ,n],则由m ≤x ≤n 确定的g(x)的范围即为f(x)的定义域. 2.分段函数分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数值域的并集.【热点突破】【典例1】 (1)若函数f(x)=log 2(x -1)+2-x ,则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为( )A .(1,2]B .(2,4]C .[1,2)D .[2,4)(2)设函数f(x)=⎩⎪⎨⎪⎧2x +1,x ≤0,4x,x>0,则满足f(x)+f(x -1)≥2的x 的取值范围是________.【拓展练习】(1)已知实数a<0,函数f(x)=⎩⎪⎨⎪⎧x 2+2a ,x<1,-x ,x ≥1,若f(1-a)≥f(1+a),则实数a 的取值范围是( ) A .(-∞,-2] B .[-2,-1] C .[-1,0)D .(-∞,0)(2)(多选)设函数f(x)的定义域为D ,如果对任意的x ∈D ,存在y ∈D ,使得f(x)=-f(y)成立,则称函数f(x)为“H 函数”.下列为“H 函数”的是( )A .y =sin xcos xB .y =ln x +e xC .y =2xD .y =x 2-2x【要点提炼】考点二 函数的性质 1.函数的奇偶性(1)定义:若函数的定义域关于原点对称,则有: f(x)是偶函数⇔f(-x)=f(x)=f(|x|); f(x)是奇函数⇔f(-x)=-f(x).(2)判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数). 2.函数单调性判断方法:定义法、图象法、导数法. 3.函数图象的对称中心或对称轴(1)若函数f(x)满足关系式f(a +x)=2b -f(a -x),则函数y =f(x)的图象关于点(a ,b)对称.(2)若函数f(x)满足关系式f(a +x)=f(b -x),则函数y =f(x)的图象关于直线x =a +b2对称.【热点突破】考向1 单调性与奇偶性【典例2】 (1)(2020·新高考全国Ⅰ)若定义在R 上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x -1)≥0的x 的取值范围是( ) A .[-1,1]∪[3,+∞) B .[-3,-1]∪[0,1] C .[-1,0]∪[1,+∞)D .[-1,0]∪[1,3](2)设函数f(x)=cos ⎝ ⎛⎭⎪⎫π2-πx +x +e2x 2+e2的最大值为M ,最小值为N ,则(M +N -1)2 021的值为________.考向2 奇偶性与周期性【典例3】(1)定义在R 上的奇函数f(x)满足f ⎝ ⎛⎭⎪⎫x +32=f(x),当x ∈⎝ ⎛⎦⎥⎤0,12时,f(x)=()12log 1x -,则f(x)在区间⎝ ⎛⎭⎪⎫1,32内是( ) A .减函数且f(x)>0 B .减函数且f(x)<0 C .增函数且f(x)>0D .增函数且f(x)<0(2)已知定义在R 上的函数f(x)满足:函数y =f(x -1)的图象关于点(1,0)对称,且x ≥0时恒有f(x +2)=f(x),当x ∈[0,1]时,f(x)=e x-1,则f(2 020)+f(-2 021)=________. 【拓展练习】 (1)(2018·全国Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于( ) A .-50 B .0 C .2 D .50(2)(多选)关于函数f(x)=x +sin x ,下列说法正确的是( ) A .f(x)是奇函数 B .f(x)是周期函数C .f(x)有零点D .f(x)在⎝⎛⎭⎪⎫0,π2上单调递增【要点提炼】考点三 函数的图象1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.【热点突破】考向1 函数图象的识别【典例4】 (1)(2020·衡水模拟)函数f(x)=x ·ln |x|的图象可能是( )(2)已知某函数图象如图所示,则此函数的解析式可能是( )A .f(x)=1-ex1+e x ·sin xB .f(x)=e x-1e x +1·sin xC .f(x)=1-ex 1+e x ·cos xD .f(x)=e x-1e x +1·cos x考向2 函数图象的变换及应用【典例5】 (1)若函数y =f(x)的图象如图所示,则函数y =-f(x +1)的图象大致为( )(2)已知函数f(x)=⎩⎪⎨⎪⎧2x-1,x ≤0,-x 2-3x ,x>0,若不等式|f(x)|≥mx -2恒成立,则实数m 的取值范围为( )A .[3-22,3+22]B .[0,3-22]C .(3-22,3+22)D .[0,3+22]【拓展练习3】 (1)(2020·天津市大港第一中学模拟)函数y =2|x|sin 2x 的图象可能是( )(2)已知函数f(x)=⎩⎪⎨⎪⎧x 2-x ,x ≤0,ln x +1,x>0,若存在x 0∈R 使得f(x 0)≤ax 0-1,则实数a 的取值范围是( ) A .(0,+∞)B .[-3,0]C .(-∞,-3]∪[3,+∞)D .(-∞,-3]∪(0,+∞)专题突破一、单项选择题1.函数y =-x 2+2x +3lg x +1的定义域为( )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3]2.设函数f(x)=⎩⎪⎨⎪⎧log 21-x ,x<0,22x -1,x ≥0,则f(-3)+f(log 23)等于( )A.112B.132C.152D .103.设函数f(x)=4x23|x|,则函数f(x)的图象大致为( )4.设函数f(x)=⎩⎪⎨⎪⎧2|x -a|,x ≤1,x +1,x>1,若f(1)是f(x)的最小值,则实数a 的取值范围是( )A .[-1,2)B .[-1,0]C .[1,2]D .[1,+∞)5.(2020·抚顺模拟)定义在R 上的偶函数f(x)满足f(x +2)=f(x),当x ∈[-1,0]时,f(x)=-x -2,则( )A .f ⎝ ⎛⎭⎪⎫sin π6>f ⎝⎛⎭⎪⎫cos π6 B .f(sin 3)<f(cos 3)C .f ⎝ ⎛⎭⎪⎫sin 4π3<f ⎝ ⎛⎭⎪⎫cos 4π3D .f(2 020)>f(2 019) 6.定义新运算:当a ≥b 时,a b =a ;当a<b 时,ab =b 2.则函数f(x)=(1x)x -(2x),x ∈[-2,2]的最大值为( )A .-1B .1C .6D .127.(2020·全国Ⅱ)设函数f(x)=ln|2x +1|-ln|2x -1|,则f(x)( )A .是偶函数,且在⎝ ⎛⎭⎪⎫12,+∞单调递增B .是奇函数,且在⎝ ⎛⎭⎪⎫-12,12单调递减C .是偶函数,且在⎝ ⎛⎭⎪⎫-∞,-12单调递增D .是奇函数,且在⎝⎛⎭⎪⎫-∞,-12单调递减 8.已知函数f(x)(x ∈R )满足f(x)=f(2-x),若函数y =|x 2-2x -3|与y =f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则i 等于( ) A .0 B .m C .2m D .4m 二、多项选择题9.若函数f(x),g(x)分别是定义在R 上的偶函数、奇函数,且满足f(x)+2g(x)=e x,则( ) A .f(x)=e x+e-x2B .g(x)=e x -e-x2C .f(-2)<g(-1)D .g(-1)<f(-3)10.(2020·福州质检)已知函数f(x)=⎩⎪⎨⎪⎧x 2+32x ,x ≥0,x 2-32x ,x<0,则( )A .f(x)是偶函数B .f(x)在[0,+∞)上单调递增C .f(x)在(-∞,0)上单调递增D .若f ⎝ ⎛⎭⎪⎫1a ≥f(1),则-1≤a ≤111.符号[x]表示不超过x 的最大整数,如[3.14]=3,[-1.6]=-2,定义函数f(x)=x -[x],则下列命题正确的是( ) A .f(-0.8)=0.2B .当1≤x<2时,f(x)=x -1C .函数f(x)的定义域为R ,值域为[0,1)D .函数f(x)是增函数、奇函数12.已知函数f(x)的定义域为R ,且f(x +1)是偶函数,f(x -1)是奇函数,则下列说法正确的是( ) A .f(7)=0B .f(x)的一个周期为8C .f(x)图象的一个对称中心为(3,0)D .f(x)图象的一条对称轴为直线x =2 019 三、填空题13.(2020·江苏)已知y =f(x)是奇函数,当x ≥0时,f(x)=23x ,则f(-8)的值是________. 14.已知定义在R 上的函数f(x)满足f(x +2)=-1f x,当x ∈(0,2]时,f(x)=2x +1,则f(2 020)+f(2 021)的值为________.15.对于函数y =f(x),若存在x 0使f(x 0)+f(-x 0)=0,则称点(x 0,f(x 0))是曲线f(x)的“优美点”.已知f(x)=⎩⎪⎨⎪⎧x 2+2x ,x<0,kx +2,x ≥0,若曲线f(x)存在“优美点”,则实数k 的取值范围是________________.16.(2020·全国Ⅲ)关于函数f(x)=sin x +1sin x 有如下四个命题:①f(x)的图象关于y 轴对称; ②f(x)的图象关于原点对称;③f(x)的图象关于直线x =π2对称; ④f(x)的最小值为2.其中所有真命题的序号是________.。
反比例函数 第1讲(反比例函数的图象与性质)反比例函数的图象与性质 命题点一:根据反比例函数的定义求函数表达式 【方法归纳】确定反比例函数的表达式,关键是确定比例系数k 的值,常用的方法:①根据反比例函数的定义或性质列方程求解;②根据图象中点的坐标求解;③利用待定系数法求解;④利用好比例系数k 的几何意义求解.例1如图,菱形ABCD 的顶点A 在x 轴上,D 在y 轴上,B ,C 在反比例函数的图象上,对角线AC ,BD 交于点E ,且BD ∥x 轴,若AE =1,∠ADE =30°,则反比例函数的表达式为( D )A .y =2xB .y =3xC .y =3xD .y =23x例2已知反比例函数y =(m -1)xm 2-m -3,当x <0时,y 随x 的增大而减小,求反比例函数的表达式.解:由反比例函数y =(m -1)xm 2-m -3,得⎩⎨⎧m 2-m -3=-1,m -1≠0,解得m =2或m =-1.由当x <0时,y 随x 的增大而减小,得m -1>0,m >1, ∴m =2.故反比例函数的表达式为y =1x.命题点二:利用反比例函数的增减性解题 【方法归纳】比较函数值大小的方法一般有三种:①性质法,即利用反比例函数的额增减性进行比较;②求值法(或特殊值法),即代入自变量的值,求出函数值进行比较;③图象法,即画出函数的图象,在图象上画出点的相应位置,由点的位置直接比较函数值大小.例3已知反比例函数y =1-3m x的图象上的两点A (x 1,y 1),B (x 2,y 2), 当x 1<0<x 2时,y 1<y 2,则m 的取值范围是( C )A .m <0B .m >0C .m <13D .m >13例4若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y=mx(m<0)的图象上,则y1,y2,y3的大小关系为( B )A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3命题点三:根据反比例函数的定义求比例系数k的值或范围例5(1)如图,过点C(1,2)分别作x轴,y轴的平行线,交直线y=-x+6于A,B两点,若反比例函数y=kx(x>0)的图象与△ABC有公共点,则k的取值范围是( A )A.2≤k≤9 B.2≤k≤8 C.2≤k≤5 D.5≤k≤8【方法归纳】当反比例函数与一次函数或平面图形结合时,常因条件的隐含性、综合性而增加难度,从代数式的表达形式和图形性质综合考虑是突破难点的关键,而点的坐标与线段长度的转化是数形结合的桥梁.(2)如图,在平面直角坐标系中,△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B在x轴正半轴上,点A在第三象限,且在反比例函数y=kx的图象上,则k的值为( A )A.3 B.4 C.6 D.12例6如图,在平面直角坐标系xOy中,等边三角形AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3B D.反比例函数y=kx(k≠0)的图象恰好经过点C和点D,则k的值为( A )A .81325 B .81316 C .8135 D .8134命题点四:利用反比例函数代数式求值 【方法归纳】如图,反比例函数||k 的几何意义:①S △AOB =S △AOC =12|k |;②S 矩形OBAC =|k |.下面两个结论是上述结论的 拓展:①如图①,S △OPA =S △OCD ,S △OPC =S 梯形PADC ; ②如图②,S 梯形OAPB =S 梯形OBCA , S △BPE =S △ACE .例7(1)如图,直线y=kx(k>0)与双曲线y=4x交于A(x1,y1), B(x2,y2) 两点,则2x1y2-7x2y1的值等于 20 .(2)如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=9x在第一象限的图象经过点B,则OA2-AB2的为 18 .例8(1)如果一个正比例函数的图象与反比例函数y=6x的图象交于A(x1,y1),B(x2,y2)两点,那么(x2-x1)(y2-y1)的值为 24 .(2)如图,A,B为直线y=x上的两点,过A,B两点分别作y轴的平行线交双曲线y=1x (x>0)于C,D两点.若BD=2AC,则4OC2-OD2的值为 6 .命题点五:利用函数的系数,判断函数图象的可能性例9反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的图象可能是( C )例10如图,在同一直角坐标系中,函数y=kx与y=kx+k2的大致图象是( C )命题点六:利用反比例函数k的几何意义解题例11(1)下列选项中,涂色部分面积最小的是( C )(2)如图,在平面直角坐标系中,A(-6,0),曲线上每一点到x轴与y轴的距离的乘积都相等,过曲线上横坐标分别为-6,-4,-2的三点B,C,D分别向x轴,y轴作垂线,图中的涂色部分是由这些垂线围成的,且面积是6,则由O,A,C三点围成的三角形的面积为 27 .例12如图,在平面直角坐标系中,▱OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA,交平行四边形各边如图.若反比例函数y=kx的图象经过点D,四边形BCFG的面积为8,则k的值为( B )A.16 B.20 C.24 D.26 命题点七:关于叠加曲线的问题例13(2018·宁波)如图,平行于x轴的直线与函数y=k1x(k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1-k2的值为( A )A.8 B.-8 C.4 D.-4例14(1)如图,A为函数y=9x (x>0)图象上一点,连结OA,交函数y=1x(x>0)的图象于点B,C是x轴上的一点,且AO=AC,则△ABC的面积为 6 .命题点八:关于反比例函数的规律性问题例15如图,在反比例函数y=10x(x>0)的图象上,有点P1,P2,P3, P4,…,它们的横坐标依次为2,4,6,8,…,分别过这些点作x轴与y轴的垂线,图中所构成的涂色部分的面积从左到右依次记为S1,S2,S3,…,S n,则S1+S2+S3+…+S n=10-10n+1(用含n的代数式表示).例16如图,△P1OA1,△P2A1A2,△P3A2A3,…,△P100A99A100是等腰直角三角形,点P1,P2,P3,…,P100在反比例函数y=4x的图象上,斜边OA1,A1A2,A2A3,…,A99A100都在x轴上,则点A100的坐标是 (40,0) .课后练习1.如图,正方形ABCD的边长为5,点A的坐标为(-4,0),点B在y轴上.若反比例函数y=kx(k≠0)的图象过点C,则该反比例函数的表达式为( A )A.y=3x B.y=4xC.y=5xD.y=6x2.已知A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=2x上的三点,x1<x2<x3,y2<y1<y3,则下列关系式不正确的是( A )A.x1·x2<0 B.x1·x3<0 C.x2·x3<0 D.x1+x2<03.(2018·徐州)如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于A ,B 两点,过A 作y 轴的垂线,交函数y =4x的图象于点C ,连结BC ,则△ABC 的面积为( C )A .2B .4C .6D .84.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x的图象上,AC 交x 轴于点E ,BD 交x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1等于( A )A .4B .143 C .163D .6 5.如图,矩形ABCD 的对角线BD 经过坐标原点O ,矩形的边分别平行于坐标轴,反比例函数y =k x (k >0)的图象交BC 于点M ,交CD 于点N .若A 点坐标为(-2,-2),S OMN =32,则k 的值为( B )A .52B .2C .32D .16.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围为2≤k≤494.7.(2018·德州)如图,反比例函数y=3x与一次函数y=x-2的图象在第三象限相交于点A,点B的坐标为(-3,0),P是y轴左侧的一点.若以A,O,B,P为顶点的四边形是平行四边形,则点P的坐标为 (-4,-3),(-2,3) .8.如图,点A,B在反比例函数y=1x(x>0)的图象上,点C,D在反比例函数y=kx(k>0)的图象上,AC∥BD∥y轴.已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为32,则k的值为 3 .9.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线y=3x(x>0)与此正方形的边有交点,则a的取值范围是3≤a≤3+1.10.(2018·金华)如图,四边形ABCD的四个顶点分别在反比例函数y=mx与y=nx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时,①若点P的纵坐标为2,求直线AB的函数表达式;②若P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.解:(1)①∵m=4,∴反比例函数y=mx为y=4x.当x=4时,y=1,∴点B的坐标为(4,1).当y=2时,2=4x,x=2,∴点A的坐标为(2,2).设直线AB的表达式为y=kx+b.∴⎩⎨⎧2k +b =2,4k +b =1,解得⎩⎨⎧k =-12,b =3.∴直线AB 的表达式为y =-12x +3.②四边形ABCD 是菱形.理由如下: 由题①,知点B 的坐标为(4,1). ∵BD ∥y 轴,∴点D 的坐标为(4,5). ∵点P 是线段BD 的中点, ∴点P 的坐标为(4,3). 当y =3时,由y =4x ,得x =43;由y =20x ,得x =203.∴PA =4-43=83,PC =203-4=83.∴PA =P C.∵PB =PD ,∴四边形ABCD 为平行四边形. ∵BD ⊥AC ,∴四边形ABCD 是菱形.(2)能.理由如下:当四边形ABCD 是正方形时,记AC ,BD 的交点为P , ∴BD =A C.当x =4时,y =m x =m 4,y =n x =n4,∴点B 的坐标为⎝ ⎛⎭⎪⎫4,m 4,点D 的坐标为⎝ ⎛⎭⎪⎫4,n 4.∴点P 的坐标为⎝⎛⎭⎪⎫4,m +n 8. ∴点A 的坐标为⎝⎛⎭⎪⎫8m m +n ,m +n 8,点C 的坐标为⎝ ⎛⎭⎪⎫8n m +n ,m +n 8. ∵AC =BD ,∴8n m +n -8m m +n =n 4-m 4. ∴m +n =32.11.(2018·泰州)在平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数y 1=k x(x >0)的图象上,点A ′与点A 关于点O 对称,一次函数y 2=mx +n 的图象经过点A ′.(1)设a =2,点B (4,2)在函数y 1,y 2的图象上, ①分别求函数y 1,y 2的表达式; ②直接写出使y 1>y 2>0成立的x 的范围.(2)如图①,设函数y 1,y 2的图象相交于点B ,点B 的横坐标为3a ,△AA ′B 的面积为16,求k 的值.(3)设m =12,如图②,过点A 作AD ⊥x 轴,与函数y 2的图象相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.解:(1)①∵点B 在y 1的图象上,∴k =2×4=8.∴y 1=8x.∵a =2,点A 在y 1的图象上,∴点A 的坐标为(2,4),点A ′的坐标为(-2,-4).将点A ′和B 的坐标代入y 2,得⎩⎨⎧4m +n =2,-2m +n =-4,解得⎩⎨⎧m =1,n =-2.∴y 2=x -2.②2<x <4.(2)分别过点A ,B 作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连结O B.∵O 为AA ′的中点,∴S △AOB =12S △AA ′B =8.∵点A ,B 在双曲线上,∴S △AOC =S △BO D . ∴S △AOB =S 四边形ACDB =8.根据已知,点A ,B 坐标可设为⎝ ⎛⎭⎪⎫a ,k a ,⎝ ⎛⎭⎪⎫3a ,k 3a ,∴12×⎝ ⎛⎭⎪⎫k 3a +k a ×2a =8,解得k =6. (3)设A ⎝ ⎛⎭⎪⎫a ,k a ,则A ′⎝⎛⎭⎪⎫-a ,-k a .把A ′⎝ ⎛⎭⎪⎫-a ,-k a 代入y =12x +n ,得-k a =-12a +n ,∴n =12a -k a .∴A ′D 的表达式为y 2=12x +12a -ka .当x =a 时,点D 的纵坐标为a -ka, ∴AD =2ka-a.∵在正方形ADEF 中,AD =AF ,∴点F 和点P 的横坐标为a +2k a -a =2k a.∴点P 的纵坐标为12×2k a +12a -k a =12a ,即点P 的坐标为⎝ ⎛⎭⎪⎫2k a ,12a .把点P 的横坐标2k a 代入y 1=k x (x >0),得y 1=12a.∴点P 在y 1=kx(x >0)的图象上.12.(自主招生模拟题)如图,反比例函数y =kx位于第一象限的图象上有A ,B 两点,从点A 作AD ⊥y 轴于点D ,从点B 作BC ⊥x 轴于点C ,若△OAB 的面积为56,△OCD 的面积为32,则k 的值为( B )A .32B .2C .52D .313.如图,在平面直角坐标系xOy 中,已知直线l :y = -x -1,双曲线y =1x.在l 上取点A 1,过A 1作x 轴的垂线交双曲线于点B 1,过B 1作y 轴的垂线交l 于点A 2.请继续操作并探究:过A 2作x 轴的垂线交双曲线于点B 2,过B 2作y 轴的垂线交l 于点A 3,…,这样依次得到l 上的点A 1,A 2,A 3,…,A n ,…,记点A n 的横坐标为a n .若a 1=2, 则a 2= -32 ,a 2013= -13 ;若要将上述操作无限次地进行下去,则a 1不能取的值是 0,-1 .14.(自主招生模拟题)已知点O 是坐标系的原点,直线y =-x +m +n 与双曲线y =1x交于两个不同点A (m ,n )(m ≥2)和B (p ,q ),直线y =-x +m +n 与y 轴交于点C ,求△OBC 的面积S 的取值范围.解:∵直线y =-x +m +n 与y 轴交于点C , ∴C (0,m +n ).∵点B (p ,q )在直线y =-x +m +n 上, ∴q =-p +m +n .又∵点A ,B 在双曲线y =1x上,∴1p =-p +m +1m ,即p -m =p -m pm.∵点A ,B 是不同的点, ∴p -m ≠0. ∴pm =1. ∵mn =1, ∴p =n ,q =m . ∵1>0,∴在每一个象限内,反比例函数y =1x的函数值y 随自变量x 的增大而减小.∴当m ≥2时,0<n ≤12.∵S =12(p +q )p =12p 2+12pq =12n 2+12,∴当0<n ≤12时,S 随自变量n 的增大而增大.∴12<S ≤58.。
第1讲 函数、基本初等函数的图象与性质1.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ).A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |2.已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( ).A .10个B .9个C .8个D .1个3.函数y =x 13的图像是( ).4.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=__________. 热点一 函数及其表示该类题型主要涉及求函数定义域、值域、解析式以及抽象函数问题.【例1】 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ).A .12B .45C .2D .0 (2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域.热点二 函数图象及其应用该部分主要考查以下内容:(1)知式选图或知图定式;(2)利用图象研究函数的单调性、最值、零点;(3)利用图象研究方程、不等式问题.【例2】 已知函数f (x )=x 3-3x 2+1,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,-x 2-6x -8,x ≤0,关于方程g [f (x )]-a =0(a 为正实数)的根的叙述有下列四个命题:①存在实数a ,使得方程恰好有3个不同的实根;②存在实数a ,使得方程恰好有4个不同的实根;③存在实数a ,使得方程恰好有5个不同的实根;④存在实数a ,使得方程恰好有6个不同的实根.其中真命题的个数是( ).A .0B .1C .2D .3拓展延伸设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )的图象是( ).热点三 函数性质的综合应用该类题目往往把函数的奇偶性、单调性、周期性、最值、解析式等综合在一起进行考查,求解这类问题时,一是要紧扣奇偶性、单调性的定义及有关的结论,二是要把各种性质之间的联系充分利用好.【例3】 设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f(x -1),已知当x ∈[0,1]时,f (x )=⎝⎛⎫121-x ,则①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈[3,4]时,f (x )=⎝⎛⎭⎫12x -3.其中所有正确命题的序号是__________.拓展延伸设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( ).A .-12B .-14C .14D .12第2讲 函数与方程及函数的实际应用1.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ).A .⎝⎛⎭⎫-14,0B .⎝⎛⎭⎫0,14 C .⎝⎛⎭⎫14,12 D .⎝⎛⎭⎫12,34 2.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ).A .60件B .80件C .100件D .120件3.方程|x |=cos x 在(-∞,+∞)内( ).A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根4.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ).A .(1,10)B .(5,6)C .(10,12)D .(20,24) 热点一 确定函数的零点函数的零点不是点,是方程f (x )=0的根,即当函数的自变量取这个实数时,其函数值等于零.函数的零点也就是函数y =f (x )的图象与x 轴的交点的横坐标.【例1】 设函数f (x )=13x -ln x (x >0),则y =f (x )( ). A .在区间⎣⎡⎦⎤1e ,1,(1,e )内均有零点 B .在区间⎣⎡⎦⎤1e ,1,(1,e )内均无零点 C .在区间⎣⎡⎦⎤1e ,1内有零点,在区间(1,e )内无零点D .在区间⎣⎡⎦⎤1e ,1内无零点,在区间(1,e )内有零点拓展延伸方程|x |=cos x 在(-∞,+∞)内( ).A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根热点二 函数零点的应用函数与方程虽然是两个不同的概念,但它们之间存在着密切的联系,方程f (x )=0的根就是函数y =f (x )的图象与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0.然后通过方程进行研究,许多有关方程的问题可以用函数的方法解决.反之,许多函数问题也可以用方程的方法来解决.【例2】 (1)m 为何值时,f (x )=x 2+2mx +3m +4.①有且仅有一个零点?②有两个零点且均比-1大?(2)若函数F (x )=|4x -x 2|+a 有4个零点,求实数a 的取值范围.拓展延伸已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,那么在区间[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R 且k ≠-1)有4个不同的根,求k 的取值范围.热点三 函数的实际应用该类题目解题的关键是认真审题,将实际语言抽象转化为函数、方程、不等式等数学语言,从而用相关数学知识求解.【例3】 通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f (t )表示学生注意力随时间t (分钟)的变化规律(f (t )越大,表明学生注意力越集中),经过试验分析得知:f (t )=⎩⎪⎨⎪⎧ -t 2+24t +100,0<t ≤10.240,10<t ≤20.-7t +380,20<t ≤40.(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?拓展延伸某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用f (x );(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.第3讲 导数及其应用1.已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln x x -1. 2.设f (x )=ln x ,g (x )=f (x )+f ′(x ).(1)求g (x )的单调区间和最小值;(2)讨论g (x )与g (1x)的大小关系; (3)求a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立. 3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ).A .y =x -1B .y =-x +1C .y =2x -2D .y =-2x +24.(2010课标全国卷,文21)设函数f (x )=x (e x -1)-ax 2.(1)若a =12,求f (x )的单调区间; (2)若当x ≥0时f (x )≥0,求a 的取值范围.5.曲线y =x e x +2x +1在点(0,1)处的切线方程为__________.热点一 利用导数研究曲线的切线确定或应用曲线的切线斜率或切线方程是近几年高考命题的热点,常与函数的图象、性质、几何图形性质交汇命题.主要以选择题、填空题的形式来考查.有时也渗透在解答题之中.难度一般不大.【例1】 设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求y =f (x )的解析式;(2)证明曲线y =f (x )上任一点处的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.拓展延伸设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =__________.热点二 利用导数研究函数的单调性利用导数研究函数的单调性问题,常与函数的其他性质相结合,且函数中一般含有参数,填空题为中低档难度,一般还是以解答题的形式出现,属于中高档题.【例2】 已知函数f (x )=x 2+a ln x .(1)当a =-2时,求函数f (x )的单调递减区间;(2)若函数g (x )=f (x )+2x在[1,+∞)上单调,求实数a 的取值范围. 拓展延伸已知函数f (x )=x -2x+a (2-ln x ),a >0.讨论f (x )的单调性. 热点三 利用导数研究函数极值和最值问题该类型题目近几年高考主要考查以下内容:求给定函数的最大值、最小值与极值问题;已知给定函数的最大值、最小值、极值,求函数中参数的取值范围问题.命题时常与函数的其他性质相结合,选择题、填空题一般为中低档难度,解答题多属中高档题.【例3】 已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围.(2)若x =-13是f (x )的极值点,求f (x )在[1,a ]上的最大值. (3)在(2)的条件下,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点?若存在,请求出实数b 的取值范围;若不存在,试说明理由.拓展延伸已知函数f (x )=x (ln x +m ),g (x )=a 3x 3+x . (1)当m =-2时,求f (x )的单调区间;(2)若m =32时,不等式g (x )≥f (x )恒成立,求实数a 的取值范围. 热点四 利用导数解决实际生活中的优化问题解决实际应用问题的关键在于建立数学模型和目标函数,把“问题情景”译为数学语言,找出问题的主要关系,并把问题的主要关系近似化、形象化,抽象成数学问题,再化归为常规问题,选择合适的数学方法求解,不同的设参方法会得到不同的数学模型.【例4】 甲方是一农场,乙方是一工厂,乙方生产需占用甲方的资源,甲方每年向乙方索赔以弥补经济损失并获得一定的净收入.乙方在赔付甲方前,年纯收入P (元)与年产量t (吨)满足函数关系P =2 000t ;若乙方每生产一吨产品必须赔付甲方S (元)(以下称S 为赔付价格),则其年利润为Q (元).(1)求乙方的年利润Q (元)关于年产量t (吨)的函数表达式,并求出当年利润Q (元)最大时的年产量;(2)甲方每年受乙方生产影响的经济损失为y =0.002t 2(元),在乙方按照获得最大年利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格S 是多少?(净收入=获赔金额-经济损失)思路点拨:(1)将Q 表示成t 的函数,用换元法求最值;(2)将甲方净收入表示成S 的函数,利用函数求最大值.拓展延伸(2011江苏高考,17)请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm ).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.。
第1讲二次函数的图象和性质本讲内容包括二次函数的图象和性质,二次函数在给定区间上的最值。
二次函数是具有典型意义的初等函数,它的图象是以垂直于轴的直线为对称轴的抛物线。
其中,二次项系数决定了抛物线的形状(的符号和||的大小分别确定抛物线的开口方向和开口大小);常数是抛物线在轴上的截距(抛物线与轴的交点的纵坐标);一次项系数与图象的左右平移有关。
二次函数中,当时,若,即,则函数值随着自变量的增加而减少;若,即,则函数值随着自变量的增加而增加;当时,若,即,则函数值随着自变量的增加而增加;若,即,则函数值随着自变量的增加而减少。
当时,二次函数取最小值()或最大值()。
其中,为叙述方便,我们用符号表示的函数。
表示时,函数的值。
如,则A类例题例1如图,直线是二次函数的图象的对称轴,则()分析由于所给的条件是二次函数的图象即函数的“形”的特征,欲求的结论是关于系数的不等式即函数的“数”的性质。
因此,解题的关键在于确定结论中系数及其表达式的几何意义,进而通过图象进行判断。
解1设,则。
由图象可知,,故可以排除A 、B。
由,,得。
又,因此,又可以排除D。
所以,本题应选C。
解2 由,,得。
又,即,因此,,所以,本题应选C。
例2 二次函数的图象的对称轴是直线,试比较的大小。
分析二次函数的图象是开口向上的抛物线,且对称轴为。
若时,函数值随着自变量的增加而减少;若时,函数值随着自变量的增加而增加。
为便于比较函数值的大小,首先运用图象的对称性将所求的函数值对应的值移入同一个单调区间,以利于运用函数的增减性质求解。
解由是二次函数的图象的对称轴,得。
又二次函数中,因而当时,函数值随着自变量的增加而增加。
所以,。
评注对于二次函数,若,二次函数图象上的点到对称轴距离越近,此点对应的函数值越小,在顶点处取得最小值;反之,若,二次函数图象上的点到对称轴距离越近,此点对应的函数值越大,在顶点处取得最大值。
例3 二次函数的最大值是14,且,求二次函数。
第1讲一次函数的图像与性质1、一次函数的解析式:2、一次函数的图像:3、一次函数的性质:K决定函数的增减性: k 0,y随x增大而增大(增函数);k 0,y随x增大而减小(减函数)。
b决定直线与y轴的交点: b 0,直线交于y的正半轴;b 0,直线交于y的负半轴。
b 0,直线过原点。
精练题:1.如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为千米∕小时.2.园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为平方米.3.图象中所反映的过程是:小强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示小强离家的距离.图象提供的信息,有以下四个说法:①体育场离小强家2.5千米②在体育场锻炼了15分钟③体育场离早餐店4千米④小强从早餐店回家的平均速度是3千米/小时.其中正确的说法为(只需填正确的序号.).4.为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是.5.小明骑车外出,所行的路程S(千米)与时间t(小时)的关系如图所示,现有下列四种说法:①第3小时的速度比第1小时的速度快;②第3小时的速度比第1小时慢;③第三小时已停止前进;④第三小时后保持匀速前进.其中说法正确的是.6.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示,当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为.7.若一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,则k的取值范围是.8.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是.9.已知一次函数y=(1﹣m)x+m﹣2,当m时,y随x的增大而增大.10.设0<k<1,关于x的一次函数,当1≤x≤2时y的最大值是.11.若一次函数的图象过点(0,2),且函数y随自变量x的增大而增大,请写出一个符合要求的一次函数表达式:.12.请写出一个经过第一、二、三象限,并且与y轴交于点(0,1)的直线表达式.13.某一次函数的图象经过点(1,﹣2),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:.14.直线过点(0,﹣1),且y随x的增大而减小.写出一个满足条件的一次数解析式..15.已知一次函数y=3x﹣6.(1)画出函数的图象;(2)求图象与x轴、y轴的交点A、B的坐标;(3)求A、B两点间的距离;(4)求△AOB的面积;(5)利用图象直接写出,当x为何值时,y≥0.16.画出直线y=的图象,利用图象求:(1)当x≥2时,y的取值范围;(2)当y<0时,x的取值范围;(3)当﹣1≤y≤2时,对应x的取值范围.17.一次函数y=ax﹣a+1(a为常数,且a≠0).(1)若点在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,请求出a的值.18.已知一次函数y=(m+3)x+m﹣4,y随x的增大而增大,(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象与y轴正半轴有交点,求m的值.19.已知一次函数y=(2m+4)x+(3﹣n).(1)当m、n是什么数时,y随x的增大而增大;(2)当m、n是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求m、n的取值范围20.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.21.在直角坐标系中,已知点A(4,0),B(0,2),点P(x,y)在第一象限内,且x+2y=4,设△AOP 的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)当S=3时,求点P的坐标;(3)若直线OP平分△AOB的面积时,求点P的坐标..。
第一讲函数的图象与性质A组基础题组+的定义域为()1.函数f(x)=-A.[0,+∞)B.(1,+∞)C.[0,1)∪(1,+∞)D.[0,1)2.已知函数f(x)=3x-,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数3.(2018湖北武汉调研)函数f(x)=log2(x2-4x-5)的单调递增区间是()A.(-∞,-2)B.(-∞,-1)C.(2,+∞)D.(5,+∞)4.(2018河北石家庄模拟)已知f(x)=(0<a<1),且f(-2)=5,f(-1)=3,则f(f(-3))=()A.-2B.2C.3D.-35.(2018湖南益阳、湘潭调研)函数f(x)=的图象大致是()-6.(2018陕西质量检测一)设x∈R,定义符号函数sgn x=则函数f(x)=|x|sgn x的图象大-致是()7.(2018贵州贵阳模拟)已知函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=log2(x+2)-1,则f(-6)=()A.2B. 4C.-2D.-48.已知函数f(x)=则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)9.奇函数f(x)的定义域为R,若f(x+2)为偶函数,则f(8)=()A.-1B.0C.1D.-210.已知函数f(x)=,则下列结论正确的是()-A.函数f(x)的图象关于点(1,0)中心对称B.函数f(x)在(-∞,1)上是增函数C.函数f(x)的图象关于直线x=1对称D.函数f(x)的图象上至少存在两点A,B,使得直线AB∥x轴11.(2018四川成都模拟)已知定义在R上的奇函数f(x)的图象关于直线x=1对称,且当x∈[0,1]时,f(x)=log2(x+1),则下列不等式正确的是()A.f(log27)<f(-5)<f(6)B.f(log27)<f(6)<f(-5)C.f(-5)<f(log27)<f(6)D.f(-5)<f(6)<f(log27)12.(2018广东惠州模拟)已知函数f(x)=---若函数f(x)的图象上关于原点对称的点有2对,则实数k的取值范围是()A.(-∞,0)B.C.(0,+∞)D.(0,1)13.已知函数f(x)=若f(a)+f(1)=0,则实数a的值为.14.(2018广东惠州模拟)已知f(x)=x+-1,f(a)=2,则f(-a)=.15.(2018河南洛阳第一次统考)若函数f(x)=ln(e x+1)+ax为偶函数,则实数a=.16.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是.B组提升题组1.(2018重庆六校联考)函数f(x)=的大致图象为()2.已知函数f(x)=e|ln x|--,则函数y=f(x+1)的大致图象为()3.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是()4.函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<05.(2018河南开封模拟)已知f(x)是定义在R上周期为4的奇函数,当x∈(0,2]时,f(x)=2x+log2x,则f(2015)=()A.5B.C.2D.-26.设函数f(x)=若f=2,则实数n的值为()A.-B.-C.D.7.∀x∈,8x≤log a x+1恒成立,则实数a的取值范围是()A. B. C. D.8.设曲线y=f(x)与曲线y=x2+a(x>0)关于直线y=-x对称,且f(-2)=2f(-1),则a=()A.0B.C.D.19.(2018福建福州模拟)已知函数f(x)=e x+e2-x,若关于x的不等式[f(x)]2-af(x)≤0恰有3个整数解,则实数a的最小值为()A.1B.2eC.e2+1D.e3+10.已知函数f(x)的定义域为R,且满足下列三个条件:>0;①对任意的x1,x2∈[4,8],当x1<x2时,都有--②f(x+4)=-f(x);③y=f(x+4)是偶函数.若a=f(6),b=f(11),c=f(2017),则a,b,c的大小关系正确的是()A.a<b<cB.b<a<cC.a<c<bD.c<b<a11.已知函数f(x)=-的值域为R,则实数a的取值范围是.12.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2,若对任意的x∈[m-2,m],不等式f(x+m)-9f(x)≤0恒成立,则实数m的取值范围是.13.已知函数f(x)=-若f(x-1)<f(2x+1),则x的取值范围为.14.(2018陕西西安八校联考)函数f(x)在定义域R内可导,若f(x)=f(2-x),且(x-1)f'(x)<0,设a=f(0),b=f,c=f(3),则a,b,c的大小关系是.答案精解精析A组基础题组1.C由题意知-即0≤x<1或x>1.∴f(x)的定义域为[0,1)∪(1,+∞).2.B易知函数f(x)的定义域为R,∵f(-x)=3-x--=-3x=--=-f(x),∴f(x)为奇函数.又∵y=3x在R上为增函数,y=-在R上为增函数,∴f(x)=3x-在R上是增函数.故选B.3.D由x2-4x-5>0得x∈(-∞,-1)∪(5,+∞).原函数f(x)=log2(x2-4x-5)由t=x2-4x-5与y=log2t复合而成,当x∈(-∞,-1)时,t=x2-4x-5为减函数;当x∈(5,+∞)时,t=x2-4x-5为增函数.又y=log2t为增函数,所以函数f(x)=log2(x2-4x-5)的单调递增区间是(5,+∞).故选D.4.B由题意得f(-2)=a-2+b=5①,f(-1)=a-1+b=3②.联立①②,结合0<a<1,得a=,b=1,所以f(x)=则f(-3)=-+1=9,所以f(f(-3))=f(9)=log39=2.故选B.5.B易知函数f(x)的定义域为{x|x≠±1},f(-x)=---=--=-f(x),所以函数f(x)为奇函数.当x∈(0,1)时,f(x)=->0,排除D;当x∈(1,+∞)时,f(x)=-<0,排除A,C.故选B.6.C函数f(x)=|x|sgn x=即f(x)=x,故函数f(x)=|x|sgn x的图象为直线y=x.故选C.7.C由题意,知f(-6)=-f(6)=-(log28-1)=-3+1=-2,故选C.8.D由f(-x)≠f(x)知f(x)不是偶函数,当x≤0时,f(x)不是增函数,显然f(x)也不是周期函数,故选D.9.B由奇函数f(x)的定义域为R,可得f(0)=0,由f(x+2)为偶函数,可得f(-x+2)=f(x+2),故f(x+4)=f((x+2)+2)=f(-(x+2)+2)=f(-x)=-f(x),则f(x+8)=f((x+4)+4)=-f(x+4)=-[-f(x)]=f(x),即函数f(x)的周期为8,所以f(8)=f(0)=0.故选B.的图象是由函数y=的图象向右平移1个单位长度得到的,可得函10.A由题知,函数f(x)=-数f(x)的图象关于点(1,0)中心对称,选项A正确;函数f(x)在(-∞,1)上是减函数,选项B错误;易的图象不关于直线x=1对称,选项C错误;由函数f(x)的单调性及函数f(x)的图知函数f(x)=-象可知函数f(x)的图象上不存在两点A,B,使得直线AB∥x轴,选项D错误.11.C因为奇函数f(x)的图象关于直线x=1对称,所以函数f(x)是以4为周期的周期函数,所以f(-5)=f(-1)=-f(1)=-1,f(6)=f(2)=f(0)=0.于是,结合题意可画出函数f(x)在[-2,4]上的大致图象,如图所示.又2<log27<3,所以结合图象可知-1<f(log27)<0,故f(-5)<f(log27)<f(6).故选C.12.D依题意,函数f(x)的图象上存在关于原点对称的点,可作出函数y=-ln(-x)(x<0)的图象关于原点对称的函数y=ln x(x>0)的图象,使得它与直线y=kx-1(x>0)的交点个数为2即可,当直线y=kx-1与函数y=ln x的图象相切时,设切点为(m,ln m),又y=ln x的导函数为y'=,则-解得可得切线的斜率为1,结合图象可知k∈(0,1)时,函数y=ln x的图象与直线y=kx-1有2个交点,即函数f(x)的图象上关于原点对称的点有2对.故选D.13.答案-3解析∵f(1)=2>0,且f(1)+f(a)=0,∴f(a)=-2<0,故a≤0.依题知a+1=-2,解得a=-3.14.答案-4解析因为f(x)=x+-1,所以f(a)=a+-1=2,所以a+=3,所以f(-a)=-a--1=--1=-3-1=-4.15.答案-解析∵函数f(x)是偶函数,∴f(x)-f(-x)=ln(e x+1)+ax-ln(e-x+1)+ax=ln-+2ax=lne x+2ax=(1+2a)x=0恒成立.∴1+2a=0,即a=-.16.答案[-1,+∞)解析如图,要使f(x)≥g(x)恒成立,则-a≤1,∴a≥-1.B组提升题组1.D易知函数f(x)=为奇函数且定义域为{x|x≠0},只有选项D满足,故选D.2.A根据已知函数关系式可得f(x)=----作出其图象,然后将其向左平移1个单位即得函数y=f(x+1)的图象,结合选项知A正确.3.A若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10℃,所以当t=12时,平均气温应该为10℃,故排除B;因为在靠近12月份时其温度小于10℃,因此12月份前的一小段时间内的平均气温应该大于10℃,故排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D.故选A.4.C函数f(x)的定义域为{x|x≠-c},由题中图象可知-c=x P>0,即c<0,排除B.令f(x)=0,可得x=-,则x N=-.又x N>0,所以<0.所以a,b异号,排除A,D.故选C.5.D由题意得f(2015)=f(4×504-1)=f(-1)=-f(1).又当x∈(0,2]时,f(x)=2x+log2x,故f(1)=2+log21=2,所以f(2015)=-2.故选D.6.D因为f=2×+n=+n,当+n<1,即n<-时,f=2+n=2,解得n=-,不符合题意;当+n≥1,即n≥-时,f=log2=2,即+n=4,解得n=.故选D.7.C由各选项及题意可得解得≤a<1.8.C依题意得曲线y=f(x)即为-x=(-y)2+a(其中-y>0,即y<0,注意到点(x0,y0)关于直线y=-x的对称点是点(-y0,-x0)),化简后得y=---,即f(x)=---,于是有--=-2-,由此解得a=.故选C.9.C因为f(x)=e x+e2-x>0,所以由[f(x)]2-af(x)≤0可得0<f(x)≤a.令t=e x,g(t)=t+(t>0),画出函数g(t)的大致图象,如图所示,结合图象分析易知原不等式有3个整数解可转化为0<g(t)≤a的3个解分别为1,e,e2.又当t=e x的值分别为1,e,e2时,x=0,1,2.画出直线y=e2+1,故结合函数图象可知a的最小值为e2+1.故选C.10.B∵对任意的x1,x2∈[4,8],当x1<x2时,都有->0,-∴函数f(x)在区间[4,8]上为增函数.∵f(x+4)=-f(x),∴f(x+8)=-f(x+4)=f(x),∴函数f(x)是周期为8的周期函数.∵y=f(x+4)是偶函数,∴函数f(x)的图象关于直线x=-4对称,又函数f(x)的周期为8,∴函数f(x)的图象也关于直线x=4对称.∴b=f(11)=f(3)=f(5),c=f(2017)=f(252×8+1)=f(1)=f(7).又a=f(6),函数f(x)在区间[4,8]上为增函数,∴b<a<c.故选B.11.答案-2019版《3年高考2年模拟》(二轮)专有资源11 / 11解析 要使函数f(x)的值域为R,则有 - - ∴ -∴-1≤a< .12.答案 [4,+∞)解析 依题意知函数f(x)在R 上单调递增,且当x ∈[m-2,m]时, f(x+m)≤9f(x)=f(3x),所以x+m ≤3x,即x ≥ 恒成立,于是有 ≤m-2,解得m ≥4,即实数m 的取值范围是[4,+∞).13.答案 (-∞,-2)∪(0,+∞)解析 若x>0,则-x<0, f(-x)=3(-x)2+ln( 2+ln( 同理可得,当x<0时, f(-x)=f(x),且x=0时,f(0)=f(-0),所以f(x)是偶函数.因为当x>0时,函数f(x)单调递增,所以不等式f(x-1)<f(2x+1)等价于|x-1|<|2x+1|,整理得x(x+2)>0,解得x>0或x<-2.14.答案 b>a>c解析 因为f(x)=f(2-x),所以函数f(x)的图象关于直线x=1对称.因为(x-1)f '(x)<0,所以当x>1时, f '(x)<0,所以函数f(x)在(1,+∞)上单调递减;当x<1时, f '(x)>0,所以函数f(x)在(-∞,1)上单调递增.取符合题意的函数f(x)=-(x-1)2,则a=f(0)=-1,b=f =- ,c=f(3)=-4,故b>a>c.。
第二篇 专题六 第1讲一、选择题1.(2021·全国甲卷)设f (x )是定义域为R 的奇函数,且f (1+x )=f (-x ).若f ⎝⎛⎭⎫-13=13,则f ⎝⎛⎭⎫53=( C )A .-53B .-13C .13D .53【解析】 方法一:由题意得f (-x )=-f (x ), 又f (1+x )=f (-x )=-f (x ), 所以f (2+x )=f (x ),又f ⎝⎛⎭⎫-13=13, 则f ⎝⎛⎭⎫53=f ⎝⎛⎭⎫2-13=f ⎝⎛⎭⎫-13=13.故选C.方法二:由f (1+x )=f (-x )知函数f (x )的图象关于直线x =12对称,又f (x )为奇函数,所以f (x )是周期函数,且T =4⎪⎪⎪⎪0-12=2, 则f ⎝⎛⎭⎫53=f ⎝⎛⎭⎫53-2=f ⎝⎛⎭⎫-13=13,故选C.2.设函数f (x )=⎩⎪⎨⎪⎧log 2(1-x ),x <0,22x -1,x ≥0,则f (-3)+f (log 2 3)等于( B )A .112B .132C .152D .10【解析】依题意f (-3)+f (log 2 3)=log 2 4+22log 2 3-1=2+2log 2 92=2+92=132.3.设函数f (x )=4x 23|x |,则函数f (x )的图象大致为( A )【解析】观察函数解析式发现,x 是以平方、绝对值的形式出现的,所以f (x )为偶函数,排除B ;当x >0时,f (x )=4x 23x ,当x →+∞时,f (x )→0,排除C ;因为f (2)=4×2232=169<2,选项D 中f (2)>2,所以D 不符合题意.4.(2022·济宁模拟)函数y =f (x )是定义域为R 的奇函数,且对于任意的x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<1成立.如果f (m )>m ,则实数m 的取值集合是( C )A .{0}B .{m |m >0}C .{m |m <0}D .R【解析】令g (x )=f (x )-x , 因为f (x )为奇函数,所以g (x )为R 上的奇函数,不妨设x 1<x 2, 由f (x 1)-f (x 2)x 1-x 2<1成立可得f (x 1)-f (x 2)>x 1-x 2,即f (x 1)-x 1>f (x 2)-x 2,所以g (x 1)>g (x 2),即g (x )在R 上单调递减, 由f (m )>m 得g (m )>0=g (0), 所以m <0.故选C.5.定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[-1,0]时,f (x )=-x -2,则( B ) A .f ⎝⎛⎭⎫sin π6>f ⎝⎛⎭⎫cos π6 B .f (sin 3)<f (cos 3) C .f ⎝⎛⎭⎫sin 4π3<f ⎝⎛⎭⎫cos 4π3 D .f (2 020)>f (2 019)【解析】由f (x +2)=f (x ),得f (x )是周期函数且周期为2,根据f (x )在x ∈[-1,0]上的图象和f (x )是偶函数可得f (x )在[0,1]上是增函数.对于A ,0<sin π6<cos π6<1,∴f ⎝⎛⎭⎫sin π6<f ⎝⎛⎭⎫cos π6,A 错误; 对于B ,0<sin 3<-cos 3<1,∴f (sin 3)<f (-cos 3)=f (cos 3),B 正确; 对于C ,0<-cos4π3<-sin 4π3<1, ∴f ⎝⎛⎭⎫cos 4π3<f ⎝⎛⎭⎫sin 4π3,C 错误; 对于D ,f (2 020)=f (0)<f (2 019)=f (1),D 错误.6.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值为( C )A .-1B .1C .6D .12【解析】当-2≤x ≤1时,f (x )=x -2; 当1<x ≤2时,f (x )=x 3-2.又∵y =x -2,y =x 3-2在R 上都为增函数,且f (x )在x =1处连续, ∴f (x )的最大值为f (2)=23-2=6.7.(2020·全国Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )( D ) A .是偶函数,且在⎝⎛⎭⎫12,+∞单调递增 B .是奇函数,且在⎝⎛⎭⎫-12,12单调递减 C .是偶函数,且在⎝⎛⎭⎫-∞,-12单调递增 D .是奇函数,且在⎝⎛⎭⎫-∞,-12单调递减 【解析】f (x )=ln |2x +1|-ln |2x -1|的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠±12. 又f (-x )=ln |-2x +1|-ln |-2x -1| =ln |2x -1|-ln |2x +1| =-f (x ),∴f (x )为奇函数,故排除A ,C. 当x ∈⎝⎛⎭⎫-12,12时, f (x )=ln (2x +1)-ln (1-2x )=ln 2x +11-2x =ln ⎝⎛⎭⎫-1+21-2x . ∵y =-1+21-2x 在⎝⎛⎭⎫-12,12单调递增, ∴由复合函数的单调性可得f (x )在⎝⎛⎭⎫-12,12上单调递增.故排除B. 当x ∈⎝⎛⎭⎫-∞,-12时, f (x )=ln (-2x -1)-ln (1-2x )=ln -2x -11-2x=ln2x +12x -1=ln ⎝⎛⎭⎫1+22x -1,∵y =1+22x -1在⎝⎛⎭⎫-∞,-12上单调递减, ∴由复合函数的单调性可得f (x )在⎝⎛⎭⎫-∞,-12上单调递减. 故选D.8.对任意实数a ,b ,定义运算“⊙”:a ⊙b =⎩⎪⎨⎪⎧a ,a -b ≤2,b ,a -b >2.设f (x )=3x +1⊙(1-x ),若函数f (x )与函数g (x )=x 2-6x 在区间(m ,m +1)上均为减函数,则实数m 的取值范围是( C )A .[-1,2]B .(0,3]C .[0,2]D .[1,3]【解析】由题意得f (x )=⎩⎪⎨⎪⎧-x +1,x >0,3x +1,x ≤0,∴f (x )在(0,+∞)上单调递减,函数g (x )=(x -3)2-9在(-∞,3]上单调递减.若函数f (x )与g (x )在区间(m ,m +1)上均为减函数,则⎩⎪⎨⎪⎧m ≥0,m +1≤3,得0≤m ≤2.故选C.二、填空题9.设函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,4x ,x >0,则满足f (x )+f (x -1)≥2的x 的取值范围是__⎣⎡⎭⎫12,+∞__.【解析】∵函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,4x ,x >0,∴当x ≤0时,x -1≤-1,f (x )+f (x -1)=2x +1+2(x -1)+1=4x ≥2,无解;当⎩⎪⎨⎪⎧x >0,x -1≤0,即0<x ≤1时, f (x )+f (x -1)=4x +2(x -1)+1=4x +2x -1≥2,得12≤x ≤1;当x -1>0,即x >1时,f (x )+f (x -1)=4x +4x -1≥2,得x >1. 综上,x 的取值范围是⎣⎡⎭⎫12,+∞.10.(2021·山西太原模拟)若a >0且a ≠1,且函数f (x )=⎩⎪⎨⎪⎧a x ,x ≥1,ax +a -2,x <1,在R 上单调递增,那么a 的取值范围是__(1,2]__.【解析】 a >0且a ≠1,函数f (x )=⎩⎪⎨⎪⎧a x ,x ≥1,ax +a -2,x <1在R 上单调递增,可得⎩⎪⎨⎪⎧a >1,a ≥2a -2,解得a ∈(1,2].11.对于函数y =f (x ),若存在x 0使f (x 0)+f (-x 0)=0,则称点(x 0,f (x 0))是曲线f (x )的“优美点”.已知f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,kx +2,x ≥0,若曲线f (x )存在“优美点”,则实数k 的取值范围是__(-.【解析】当x <0时,f (x )=x 2+2x 关于原点对称的函数是y =-x 2+2x (x >0), 由题意得,y =-x 2+2x (x >0)与y =kx +2有交点, 即-x 2+2x =kx +2(x >0)有解,∴k =-x -2x +2(x >0)有解,又-x -2x +2≤-22+2,当且仅当x =2时等号成立,∴k ≤2-2 2.12.(2020·全国Ⅲ)关于函数f (x )=sin x +1sin x 有如下四个命题:①f (x )的图象关于y 轴对称; ②f (x )的图象关于原点对称; ③f (x )的图象关于直线x =π2对称;④f (x )的最小值为2.其中所有真命题的序号是__②③__. 【解析】∵f (x )=sin x +1sin x的定义域为{x |x ≠k π,k ∈Z }, f (-x )=sin (-x )+1sin (-x )=-sin x -1sin x =-f (x ),∴f (x )为奇函数,关于原点对称,故①错误,②正确. ∵f ⎝⎛⎭⎫π2-x =cos x +1cos x , f ⎝⎛⎭⎫π2+x =cos x +1cos x , ∴f ⎝⎛⎭⎫π2-x =f ⎝⎛⎭⎫π2+x ,∴f (x )的图象关于直线x =π2对称,故③正确.当x ∈⎝⎛⎭⎫-π2,0时,f (x )<0,故④错误. 三、解答题13.(2020·江苏省南京市高三联考)已知f (x )是定义在区间(-1,1)上的奇函数,当x <0时,f (x )=x (x -1).已知m 满足不等式f (1-m )+f (1-m 2)<0,求实数m 的取值范围.【解析】当x <0时,f (x )=x (x -1),可得f (x )在(-1,0)上单调递减;由f (x )是定义在区间(-1,1)上的奇函数,可得f (x )也是区间(-1,1)上的减函数. 因为f (1-m )+f (1-m 2)<0, 所以f (1-m )<f (m 2-1),可得如下不等式组:⎩⎪⎨⎪⎧-1<1-m <1,-1<m 2-1<1,1-m >m 2-1,得⎩⎪⎨⎪⎧0<m <2,0<m <2或-2<m <0,-2<m <1,解得:0<m <1.所以实数m 的取值范围为(0,1).。