2019年省重点中学初升高衔接暑期辅导数学精品课程——数和式的运算之绝对值与乘法公式
- 格式:docx
- 大小:186.09 KB
- 文档页数:7
01数与式的运算高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 典型考题【典型例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x .例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +2|=3的解为 ;(2)解不等式:|x -2|<6;(3)解不等式:|x -3|+|x +4|≥9;(4)解方程: |x -2|+|x +2|+|x -5|=15.【变式训练】实数在数轴上所对应的点的位置如图所示:化简 .【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围;(2)化简:. 高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式33223()33a b a a b ab b +=+++;(5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【典型例题】(1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +--- 【变式训练】计算:(1)0221( 3.14)(4)()3π--+--(2)2(3)(2)(2)x x x --+- 【能力提升】已知10x =a ,5x =b ,求:(1)50x 的值;(2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示)高中必备知识点3:二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b ,等是无理式,而212x ++,22x y ++ 1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如,等等.一般地,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2-【变式训练】时,想起分配律,于是她按分配律完成了下列计算:+==她的解法正确吗?若不正确,请给出正确的解答过程.【能力提升】先化简,再求值:(2a ba b-+-ba b-)÷a2ba b-+,其中高中必备知识点4:分式1.分式的意义形如AB的式子,若B中含有字母,且0B≠,则称AB为分式.当M≠0时,分式AB具有下列性质:A A MB B M⨯=⨯;A A MB B M÷=÷.上述性质被称为分式的基本性质.2.繁分式像abc d+,2m n pmn p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【典型例题】先化简,再求值22122()121x x x xx x x x+++-÷--+,其中x满足x2+x﹣1=0.【变式训练】化简:22442x xy yx y-+-÷(4x2-y2)【能力提升】已知:112a b-=,则abbababa7222+---的值等于多少?专题验收测试题1.下列计算结果为a2的是()A.a8÷a4(a≠0)B.a2•aC.﹣3a2+(﹣2a)2D.a4﹣a22.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab3.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x34.下列计算正确的是()A.a3+a4=a7B.a4•a5=a9C.4m•5m=9m D.a3+a3=2a65.下列几道题目是小明同学在黑板上完成的作业,他做错的题目有()①a 3÷a ﹣1=a 2②(2a 3)2=4a 5③(12ab 2)3=16a 3b 6④2﹣5=132⑤(a +b )2=a 2+b 2 A .2道 B .3道C .4道D .5道 6.如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为( )A .1B .2C .4D .57.下列计算中,正确的是A .24±=B .a a ≥C .236·a a a =D .211-=8.下列从左到右的恒等变形中,变形依据与其它三项不同的是( )A .11111818183636⎛⎫⨯-=⨯-⨯ ⎪⎝⎭B .2(x ﹣y )=2x ﹣2yC .0.11010.33x x --= D .a (b ﹣1)=ab ﹣a9.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 10.下列运算:其中结果正确的个数为( )①a 2•a 3=a 6 ②(a 3)2=a 6 ③(ab )3=a 3b 3 ④a 5÷a 5=aA .1B .2C .3D .411.当a ,b 互为相反数,则代数式a 2+ab ﹣2的值为_____.12.已知a 2+2a=-2,则22(21)(4)a a a +++的值为________.13.计算:(﹣2)2019×0.52018=_______.14.已知23x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=⎩的解,则a 2﹣b 2=_____. 15.已知关于x 、y 的方程组31223x y a x y a +=-⎧⎨-=-⎩,则代数式32x •9y =___. 16.计算:(x ﹣y )2•(y ﹣x )3+(y ﹣x )4•(x ﹣y )=_____.17.张老师在黑板上布置了一道题:化简:2(x +1)2-(4x -5),并分别求出当x =和x =-时代数式的值.小亮和小新展开了下面的讨论,你认为他们两人谁说得对?并说明理由.18.先化简,再求值:(x +2)(x ﹣2)+(2x ﹣1)2﹣4x (x ﹣1),其中x =319.已知a+1a=3(a >1),求242241111()()()()a a a a a a a a -⨯+⨯+⨯-的值. 20.请你将下式化简,再求值:(x +2)(x ﹣2)+(x ﹣2)2+(x ﹣4)(x ﹣1),其中x 2﹣3x =1. 21.已知一组有规律的等式,它的前三项依次为:22334422,33,4112233⨯=+⨯=+⨯=+4,…, (1)写出第5个等式;(2)写出第n 个等式,并证明该等式成立.22.老师在黑板上写出三个算式:32-1=8×1,92-52=8×7,132-72=8×15。
初升高衔接暑期辅导数学精品课程一次函数、正比例函数、反比例函数的图像和性质一、知识点精讲(一)平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴叫做x 轴或横轴,铅直的数轴叫做y 轴或纵轴,x 轴与y 轴统称坐标轴,他们的公共原点O 称为直角坐标系的原点。
(二)图形的对称(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。
(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。
②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
(3)平面直角坐标系内的对称点:设11(,)M x y ,22(,)M x y 是直角坐标系内的两点,①若M 和'M 关于y 轴对称,则有1212x x y y 。
②若M 和'M 关于x 轴对称,则有1212x x y y 。
③若M 和'M 关于原点对称,则有1212x x y y 。
④若M 和'M 关于直线y x 对称,则有1212x y y x 。
⑤若M 和'M 关于直线y x 对称,则有1212x y y x 。
⑥若M 和'M 关于直线x a 对称,则有12122x a x y y 或21122x a x y y(三)函数的图像和性质(1)变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点表示自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量y ,x 间的关系式可以表示成y kx b (b 为常数,k 不等于0)的形式,则称y 是x 的一次函数。
②当b =0时,称y 是x 的正比例函数。
(3)一次函数的图象及性质①把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
初高中数学衔接知识点专题(一)★ 专题一 数与式的运算【要点回顾】 1.绝对值[1]绝对值的代数意义: .即||a = . [2]绝对值的几何意义: 的距离. [3]两个数的差的绝对值的几何意义:a b -表示 的距离. [4]两个绝对值不等式:||(0)x a a <>⇔;||(0)x a a >>⇔.2.乘法公式我们在初中已经学习过了下列一些乘法公式:[1]平方差公式: ; [2]完全平方和公式: ; [3]完全平方差公式: . 我们还可以通过证明得到下列一些乘法公式: [公式1]2()a b c ++=[公式2]33a b =+(立方和公式) [公式3]33a b =- (立方差公式)说明:上述公式均称为“乘法公式”. 3.根式[1]0)a ≥叫做二次根式,其性质如下:(1) 2= ;= ;= ;= . [2]平方根与算术平方根的概念: 叫做a的平方根,记作0)x a =≥,其(0)a ≥叫做a 的算术平方根.[3]立方根的概念: 叫做a的立方根,记为x =4.分式[1]分式的意义 形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: (1) ; (2) . [2]繁分式 当分式A B 的分子、分母中至少有一个是分式时,AB就叫做繁分式,如2m n p m n p+++,说明:繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质. [3]分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程【例题选讲】例1 解下列不等式:(1)21x -< (2)13x x -+->4.例2 计算:(1)221()3x + (2)2211111()()5225104m n m mn n -++(3)42(2)(2)(416)a a a a +-++ (4)22222(2)()x xy y x xy y ++-+例3 已知2310x x -==,求331x x +的值.例4 已知0a b c ++=,求111111()()()a b c b c c a a b+++++的值.例5 计算(没有特殊说明,本节中出现的字母均为正数):(1)(2)1)x ≥(3) (4)例6设x y ==,求33x y +的值.例7 化简:(1)11xx x x x -+- (2)222396127962x x x x x x x x ++-+---+ (1)解法一:原式=222(1)11(1)1(1)(1)11x x x x x x x x x x x x x x x x x x x x x x x x x ++=====--⋅+-++--+-++ 解法二:原式=22(1)1(1)(1)111()x x x x x x x x x x x x x x x x x x x x x x x++====-⋅-+-++--+-⋅ (2)解:原式=2223961161(3)(39)(9)2(3)3(3)(3)2(3)x x x x x x x x x x x x x x x ++--+-=---++-+-+--22(3)12(1)(3)(3)32(3)(3)2(3)(3)2(3)x x x x x x x x x x +-------===+-+-+说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式 .【巩固练习】1. 解不等式 327x x ++-<2.设x y ==,求代数式22x xy y x y +++的值.3. 当22320(0,0)a ab b a b +-=≠≠,求22a b a b b a ab+--的值.4. 设x=,求4221x x x ++-的值.5. 计算()()()()x y z x y z x y z x y z ++-++-++-6.化简或计算:(1)3÷ (2)(4) ÷+1AC |x -1||x -3|● 各专题参考答案 ●专题一数与式的运算参考答案例1 (1)解法1:由20x -=,得2x =;①若2x >,不等式可变为21x -<,即3x <; ②若2x <,不等式可变为(2)1x --<,即21x -+<,解得:1x >.综上所述,原不等式的解为13x <<.解法2: 2x -表示x 轴上坐标为x 的点到坐标为2的点之间的距离,所以不等式21x -<的几何意义即为x 轴上坐标为x 的点到坐标为2的点之间的距离小于1,观察数轴可知坐标为x 的点在坐标为3的点的左侧,在坐标为1的点的右侧.所以原不等式的解为13x <<.解法3:2112113x x x -<⇔-<-<⇔<<,所以原不等式的解为13x <<.(2)解法一:由10x -=,得1x =;由30x -=,得3x =; ①若1x <,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4, 解得x >4.又x ≥3,∴x >4. 综上所述,原不等式的解为x <0,或x >4.解法二:如图,1x -表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|PA |+|PB |>4.由|AB |可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. 所以原不等式的解为x <0,或x >4.例2(1)解:原式=221[()]3x ++222222111()()()2(22()333x x x x =++++⨯+⨯⨯43281339x x x =-+-+ 说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列. (2)原式=33331111()()521258m n m n -=-(3)原式=24222336(4)(44)()464a a a a a -++=-=-(4)原式=2222222()()[()()]x y x xy y x y x xy y +-+=+-+3326336()2x y x x y y =+=++ 例3解:2310x x -== 0x ∴≠ 13x x∴+= 原式=22221111()(1)()[()3]3(33)18x x x x x x x x+-+=++-=-= 例4解:0,,,a b c a b c b c a c a b ++=∴+=-+=-+=-∴原式=b c a c a b a b c bc ac ab+++⋅+⋅+⋅222()()()a ab bc c a b c bc ac ab abc ---++=++=- ① 33223()[()3](3)3a b a b a b ab c c ab c abc +=++-=--=-+3333a b c abc ∴++= ②,把②代入①得原式=33abcabc-=-例5解:(1)原式6==- (2)原式=(1)(2)2 3 (2)|1||2|(1)(2) 1 (1x 2) x x x x x x x x -+-=->⎧-+-=⎨---=≤≤⎩说明||a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.(3)原式ab =(4) 原式===例6解:22(277 14,123x y x y xy ===+=-⇒+==- 原式=2222()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量. 【巩固练习】1.43x -<< 2. 3.3-或2 4.3-5.444222222222x y z x y x z y z ---+++ 6.()(((13,23,4-。
2022年人教版暑假小升初数学衔接知识讲练精编讲义专题05《绝对值》教学目标1.理解绝对值的概念及性质.(难点、重点)2.会求一个有理数的绝对值.新课导入课堂引入新课讲授知识点01:绝对值的意义及求法甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作+10 km,乙车向西行驶10km到达B处,记做 -10 km.以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示. 例:知识点02:绝对值的性质及应用观察与思考|5|=5 |-10|=10|3.5|= 3.5 |100|=100|-3|=3 |50|=50|-4.5|=4.5 |-5000|=5000|0|=0 …..思考:一个正数的绝对值是什么?一个负数的绝对值是什么?0的绝对值是什么?结论1:一个正数的绝对值是正数.一个负数的绝对值是正数.0的绝对值是0.|a|≥0.任何一个有理数的绝对值都是非结论2:一个正数的绝对值是它本身.一个负数的绝对值是它的相反数.思考:若字母a表示一个有理数,你知道a的绝对值等于什么吗?典例分析【典例分析01】(2022•南充)下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5| 【思路引导】根据相反数判断A,B,C选项;根据绝对值判断D选项.【完整解答】解:A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【考察注意点】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.【典例分析02】(2020秋•相城区校级月考)已知|x|=6,|y|=2.①若x,y异号,直接写出x与y的差为±8 ;②若x<y,直接写出x与y的和为﹣8或﹣4 .【思路引导】(1)根据绝对值的定义解决此题.(2)根据绝对值的定义解决此题.【完整解答】解:(1)∵|x|=6,|y|=2,∴x=±6,y=±2.∵x,y异号,∴当x=6时,则y=﹣2,此时x﹣y=8;当x=﹣6时,则y=2,此时x+y=﹣8.综上:x﹣y=±8.故答案为:±8.(2)由(1)知:x=±6,y=±2.∵x<y,﹣6<﹣2<2<6,∴x=﹣6,则y=﹣2或2.∴x+y=﹣8或﹣4.故答案为:﹣8或﹣4.【考察注意点】本题主要考查绝对值的定义,熟练掌握绝对值的定义以及分类讨论的思想方法是解决本题的关键.【变式训练01】(2021秋•鲤城区校级期末)若|m﹣1|=1﹣m,则m一定()A.大于1 B.小于1 C.不小于1 D.不大于1【思路引导】根据绝对值的性质即可求出答案.【完整解答】解:由题意可知:1﹣m≥0,∴m≤1,故选:D.【考察注意点】本题考查绝对值,解题的关键是正确运用绝对值的性质,本题属于基础题型.【变式训练02】(2021秋•龙泉市期末)若实数a,b满足|a|=2,|4﹣b|=1﹣a,则a+b=﹣1或5 .【思路引导】根据绝对值的定义求出a、b的值,再代入计算即可.【完整解答】解:∵|a|=2,∴a=±2,当a=2时,|4﹣b|=1﹣2=﹣1,此时b不存在;当a=﹣2时,|4﹣b|=3,所以4﹣b=3或4﹣b=﹣3,即b=1或b=7,当a=﹣2,b=1时,a+b=﹣1;当a=﹣2,b=7时,a+b=5,故答案为:﹣1或5.【考察注意点】本题考查绝对值,理解绝对值的定义是正确解答的前提,求出a、b的值是正确解答的关键.【变式训练03】(2021秋•封丘县期末)若a=|﹣2|,|b+1|=3,则a+5b的值为﹣18或12 .【思路引导】直接利用绝对值的性质得出a,b的值,进而得出答案.【完整解答】解:∵a=|﹣2|,|b+1|=3,∴a=2,b+1=±3,解得:b=﹣4或2,当a=2,b=2时,则a+5b=2+5×2=12;当a=2,b=﹣4时,则a+5b=2+5×(﹣4)=﹣18,综上所述:a+5b的值为:﹣18或12.故答案为:﹣18或12.【考察注意点】此题主要考查了绝对值,正确得出a,b的值是解题关键.课堂巩固基础达标一.选择题1.(2022•红河州二模)已知|a|=1,b是的相反数,则a+b的值为()A.或B.C.D.或【完整解答】解:∵|a|=1,∴a=±1,∵b是的相反数,∴b=,∴当a=1,b=时,a+b=1+=,当a=﹣1,b=时,a+b=﹣1+=﹣,综上所述:a+b=或﹣.故选:A.2.(2021秋•包头期末)如果|a+1|=0,那么a2022的值是()A.﹣2022 B.2022 C.﹣1 D.1 【完整解答】解:∵|a+1|=0,∴a=﹣1,∴a2022=(﹣1)2022=1.故选:D.3.(2021秋•武侯区期末)﹣6的绝对值是()A.B.C.D.【完整解答】解:负数的绝对值等于其相反数,故|﹣6|=6.故选:B.4.(2022•娄底模拟)2021的绝对值是()A.2021 B.﹣2021 C.D.﹣【完整解答】解:2021的绝对值即为:|2021|=2021.故选:A.5.(2022•陵城区模拟)下列四个数中,最小的是()A.﹣2 B.|﹣4| C.﹣(﹣1)D.0【完整解答】解:|﹣4|=4,﹣(﹣1)=1,∵﹣2<0<1<4,∴﹣2<0<﹣(﹣1)<|﹣4|,∴四个数中,最小的数是﹣2.故选:A.二.填空题6.(2021秋•义乌市期末)若|m|=2022,则m=±2022 .【完整解答】解:|m|的几何意义表示数轴上到原点距离为2022的点,这样的点在正半轴与负半轴各有一个,表示的数分别为2022与﹣2022.所以m=±2022.故答案为:±2022.7.(2021秋•平罗县期末)若|﹣x|=7,则x=±7 .【完整解答】解:∵|±7|=7,∴﹣x=±7,∴x=±7,故答案为:±7.8.(2021秋•博白县期末)|﹣|=.【完整解答】解:因为|﹣|=,故答案为:.9.(2021秋•越城区期末)2的相反数是﹣2 ,﹣3的绝对值是 3 .【完整解答】解:2的相反数是﹣2;﹣3的绝对值是3.故答案为:﹣2;3.10.(2021秋•阳新县期末)已知a与﹣1互为相反数,则式子|﹣(a﹣2)|= 1 .【完整解答】解:∵a与﹣1互为相反数,∴a=1,∴|﹣(a﹣2)|=|﹣(1﹣2)|=1,故答案为:1.11.(2021秋•沙坪坝区校级期末)有理数a,b,c在数轴上表示的点如图所示,化简|a+b|﹣|a﹣c|﹣2|b+c|=﹣3b﹣3c.【完整解答】解:根据数轴可知,a<b<0<c,且b+c>0,故a+b<0,a﹣c<0,b+c>0,|a+b|=﹣a﹣b,|a﹣c|=c﹣a,|b+c|=b+c,∴原式=﹣(a+b)﹣(c﹣a)﹣2(b+c)=﹣a﹣b﹣c+a﹣2b﹣2c=﹣3b﹣3c.故答案为:﹣3b﹣3c.三.解答题12.(2021秋•富县期中)已知|x|=2,|y﹣1|=5,且x>y,求2(x﹣y)的值.【完整解答】解:∵|x|=2,∴x=±2,∵|y﹣1|=5,∴y=﹣4或6,∵x>y,∴y=﹣4,当x=2,y=﹣4时,2(x﹣y)=2×6=12,当x=﹣2,y=﹣4时,2(x﹣y)=2×2=4.13.(2019秋•惠安县期末)已知a是2的相反数,计算|a﹣2|的值.【完整解答】解:∵a是2的相反数,∴a=﹣2,∴|a﹣2|=4.14.(2019秋•解放区校级月考)已知|a|=3,|b|=,且a<0<b,试求a,b的值.【完整解答】解:∵|a|=3,|b|=,∴a=±3,b=±,∵a<0<b,∴a=﹣3,b=.15.(2020秋•江阴市校级月考)阅读下面的例题:我们知道|x|=2,则x=±2请你那么运用“类比”的数学思想尝试着解决下面两个问题.(1)|x+3|=2,则x=﹣5或﹣1 ;(2)5﹣|x﹣4|=2,则x=1或7 .【完整解答】解:(1)因为)|x+3|=2,则x=﹣5或﹣1;(2)因为5﹣|x﹣4|=2,可得:|x﹣4|=3,解得:x=1或7;故答案为:(1)﹣5或﹣1(2)1或716.(2020秋•兴化市月考)列式计算:的相反数比的绝对值大多少?【完整解答】解:∵的相反数为:2,的绝对值为:,∴的相反数比的绝对值大:2﹣=.17.(2019秋•袁州区校级月考)列式并计算:求﹣0.8的绝对值的相反数与的相反数的差.【完整解答】解:﹣|﹣0.8|﹣(﹣)=﹣0.8+6=﹣=提优巩固一.选择题1.(2021秋•济南期中)下列各组数中,互为相反数的是()A.2与B.﹣(﹣2)与﹣2 C.|﹣3|与3 D.﹣|﹣3|与﹣3 【完整解答】解:A、这两个数互为倒数,故此选项不符合题意;B、﹣(﹣2)=2,﹣2 只有符号不同的数互为相反数,故此选项符合题意;C、这两个数的结果是同一个数3,故此选项不符合题意;D、这两个数的结果是同一个数﹣3,故此选项不符合题意;故选:B.2.(2021秋•安阳县月考)若|a|>﹣a,则a的值可以是()A.﹣4 B.﹣2 C.0 D.4【完整解答】解:当a=﹣4时,|a|=4,﹣a=4,有|a|=﹣a,因此选项A不符合题意;当a=﹣2时,|a|=2,﹣a=2,有|a|=﹣a,因此选项B不符合题意;当a=0时,|a|=0,﹣a=0,有|a|=﹣a,因此选项C不符合题意;当a=4时,|a|=4,﹣a=﹣4,有|a|>﹣a,因此选项D符合题意;故选:D.3.(2021秋•嘉祥县期中)已知|﹣3|=|﹣a|,则a﹣4=()A.﹣7 B.1 C.﹣1 D.﹣7或﹣1【完整解答】解:∵|﹣3|=|﹣a|,∴|﹣a|=3.∴a=±3.∴a﹣4=﹣1或﹣7.故选:D.4.(2021秋•高州市月考)下列各对数中,互为相反数的是()A.﹣|﹣7|和+(﹣7)B.+(﹣7)和﹣(+7)C.﹣(﹣7)和﹣(+7)D.+(﹣7)和﹣7【完整解答】解:A、﹣|﹣7|=﹣7,+(﹣7)=﹣7,两数相等,故此选项不符合题意;B、+(﹣7)=﹣7,﹣(+7)=﹣7,两数相等,故此选项不符合题意;C、﹣(﹣7)=7,﹣(+7)=﹣7,两数互为相反数,故此选项符合题意;D、+(﹣7)=﹣7,两数相等,故此选项不符合题意,故选:C.5.(2020秋•城厢区期末)若|a|=|b|,则a,b的关系是()A.a=b B.a=﹣bC.a=0且b=0 D.a+b=0或a﹣b=0【完整解答】解:根据绝对值性质可知,若|a|=|b|,则a与b相等或相反,即a+b=0或a﹣b=0.故选:D.二.填空题6.(2020秋•赤峰期末)已知|a|=3,则a的值是±3..【完整解答】解:∵|a|=3表示:在数轴上,一个数a表示的点到原点的距离是3,∴这个数a=±3,故答案为:±3.7.(2021秋•平谷区校级期中)计算:|﹣23|=23 ;﹣(﹣3)= 3 ;﹣[﹣(﹣4)]=﹣4 ;+(﹣5)=﹣5 .【完整解答】解:|﹣23|=23,﹣(﹣3)=3;﹣[﹣(﹣4)]=﹣4;+(﹣5)=﹣5.故答案为:23,3,﹣4,﹣5.8.(2021秋•天门期中)当x=﹣8 时,代数式|x+8|+|﹣7|取最小值,最小值等于7 .【完整解答】解:∵|x+8|≥0,|﹣7|=7,∴|x+8|+|﹣7|≥7.∴当|x+8|=0,即x=﹣8时,代数式|x+8|+|﹣7|取最小值7.故答案为:﹣8,7.9.(2021秋•蒙阴县期中)如果|m|=|﹣6|,那么m=±6 .【完整解答】解:∵|m|=|﹣6|=6,|6|=|﹣6|=6,∴m=±6.故答案为:±6.10.(2021秋•庐江县期末)﹣的绝对值是.【完整解答】解:﹣的绝对值是.故答案为:.11.(2021秋•庄浪县期中)若|a+3|=5,则a=2或﹣8 .【完整解答】解:∵|a+3|=5,∴a+3=±5,∴a=2或﹣8,故答案为2或﹣812.(2021•商河县校级模拟)有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=0 .【完整解答】解:由图知,a>0,b<0,c>a,且a+b=0,∴|a﹣c|﹣|b+c|=c﹣a﹣c﹣b=﹣(a+b)=0.三.解答题13.(2018秋•将乐县期中)用文字表述(不含字母):“当a<0时,|a|=﹣a”的含义:负数的绝对值等于它的相反数.【完整解答】解:根据绝对值的定义,“当a<0时,|a|=﹣a”的含义是负数的绝对值等于它的相反数.故答案为:负数的绝对值等于它的相反数.14.(2018秋•南木林县校级期中)a=﹣5,b=3,求|a|﹣|b|的值.【完整解答】解:∵a=﹣5,b=3,∴|a|=|﹣5|=5,|b|=|3|=3,∴|a|﹣|b|=5﹣3=2,即|a|﹣|b|的值是2.15.(2018秋•江城区期中)已知|x|=2,求x与﹣3的和.【完整解答】解:∵|x|=2,∴x=2或x=﹣2,∴x+(﹣3)=2﹣3=﹣1或x+(﹣3)=﹣2﹣3=﹣5.16.(2018秋•大连期中)将下列各数填在相应的集合里.﹣,9,0,+4.3,|﹣0.5|,﹣(+7),18%,(﹣3)4,﹣(﹣2)5,﹣62正有理数集合:{…};正分数集合:{…};负整数集合:{…};自然数集合:{…}.【完整解答】解:正有理数集合:{9,+4.3,|﹣0.5|,18%,(﹣3)4,﹣(﹣2)5…}正分数集合:{+4.3,|﹣0.5|,18%…}负整数集合:{﹣(+7),﹣62…}自然数集合:{9,0,(﹣3)4,﹣(﹣2)5…}故答案为:{9,+4.3,|﹣0.5|,18%,(﹣3)4,﹣(﹣2)5…};{+4.3,|﹣0.5|,18%…};{﹣(+7),﹣62…};{9,0,(﹣3)4,﹣(﹣2)5…}.17.(2017秋•宜宾县校级月考)如图,化简|a|﹣|b|﹣|c|.【完整解答】解:由数轴可得:a>0,b<0,c<0,故原式=a﹣(﹣b)﹣(﹣c)=a+b+c.18.(2017秋•利辛县月考)(1)写出绝对值不大于4的所有整数;(2)求满足(1)中条件的所有整数的和.【完整解答】解:(1)绝对值不大于4的所有整数有0,±1,±2,±3,±4;(2)(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3+4=0。
第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a|0, a 0,a, a 0.(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.(3)两个数的差的绝对值的几何意义: a b 表示在数轴上,数a和数b之间的距离.2、绝对值不等式的解法(1)含有绝对值的不等式① f (x) a(a 0), 去掉绝对值后,保留其等价性的不等式是 a f ( x) a 。
② f (x) a(a 0) , 去掉绝对值后,保留其等价性的不等式是 f (x) a或f (x) a 。
③ 2 2f (x) g(x) f (x)g (x)。
(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n+1 段进行讨论.③将分段求得解集,再求它们的并集.例1. 求不等式3x 5 4的解集例2. 求不等式2x 1 5的解集例3. 求不等式x 3 x 2 的解集例4. 求不等式| x+2| +| x-1| >3 的解集.1例5. 解不等式| x-1| +|2 -x| >3-x.例6. 已知关于x 的不等式| x-5| +| x-3| <a 有解,求 a 的取值范围.练习解下列含有绝对值的不等式:(1)x 1 x 3 >4+x(2)| x+1|<| x-2|(3)| x-1|+|2 x+1|<4(4)3x 2 7(5) 5x 7 83、因式分解乘法公式(1)平方差公式 2 2(a b)( a b) a b(2)完全平方公式 2 2 2(a b) a 2ab b(3)立方和公式 2 2 3 3(a b)(a ab b ) a b(4)立方差公式 2 2 3 3(a b)(a ab b ) a b(5)三数和平方公式 2 2 2 2(a b c) a b c 2(ab bc ac)(6)两数和立方公式 3 3 2 2 3(a b) a 3a b 3ab b2(7)两数差立方公式 3 3 2 2 3(a b) a 3a b 3ab b因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2(1)x -3x+2;(2)26x 7x 2(3) 2 ( ) 2x a b xy aby ;(4)xy 1 x y .2.提取公因式法例2. 分解因式:2 (2)x3 9 3x2 3x (1)ab 5 a 5 b3.公式法例3. 分解因式:(1)a4 16 (2) 23x 2y x y2 4.分组分解法2例4. (1)x xy 3y 3x (2)2 22x xy y 4x 5y 65.关于x 的二次三项式ax2+bx+c( a≠0) 的因式分解.若关于x 的方程 2 0( 0)ax bx c a 的两个实数根是x1 、x2 ,则二次三项式2 ( 0)ax bx c a 就可分解为a(x x )(x x ).1 2例5. 把下列关于x 的二次多项式分解因式:(1) 2 2 1x x ;(2)2 4 4 2 x xy y .3练习 (1) 25 6xx (2) 21 x ax a(3) 2 11 18xx (4)24m 12m 9(5)25 7x 6x(6) 2212xxy 6y2q p ( 7) 6 2p q 1123( 8 )35a 2b 6ab2a( 9 )24 2 4 xx2(10) x 42x 2 1 (11) x 2 y 2 a 2 b 2 2ax 2by(12) a 24ab 4b 2 6a 12b 9(13) x 2-2x -1(14) 31a;(15)4 24x 13x 9 ;(16)2 22 2 2b cab ac bc ;(17)2 23x 5xy 2y x 9y 4第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1) 根的判别式2对于一元二次方程 ax +bx +c =0(a ≠0),有:(1) 当Δ>0 时,方程有两个不相等的实数根x 1,2=,2=24 bbac 2a;(2)当 Δ=0 时,方程有两个相等的实数根 x 1=x 2=- b 2a;(3)当 Δ<0 时,方程没有实数根. (2) 根与系数的关系(韦达定理)2如果 ax +bx +c =0(a ≠0)的两根分别是 x 1,x 2,那么 x 1+x 2=b a ,x 1· x 2=c a.这一关系也被称为韦达 定理.2、二次函数2y ax bx c 的性质1. 当 a 0 时,抛物线开口向上,对称轴为xb 2a,顶点坐标为 2b4ac b , 。
2022年暑假 数学 初升高衔接 专题资料05 绝对值与绝对值不等式◇◇ 知知 识识 链链 接接 ◇◇知识链接01 绝对值的定义在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.知识链接02 绝对值的代数意义正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即: ,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩知识链接03 绝对值的几何意义一个数的绝对值就是表示这个数的点到原点的距离. 离原点的距离越远,绝对值越大; 离原点的距离越近,绝对值越小.知识链接04 绝对值的性质(1)除0外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.知识链接05 两个数的差的绝对值的几何意义b a -表示:在数轴上,数a 和数b 之间的距离.知识链接06 绝对值不等式的解法(1)绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解. (2)绝对值不等式的常见类型及其解法:①||x a <(0a >)的解集为:a x a -<<; (绝对值定义法)||x a >(0a >)的解集为:x a <-或x a >;②||||x a <⇔22x a <⇔; (平方法或零点讨论法)③||||ax b cx d e +++< (零点讨论法)◇◇ 典典 例例 剖剖 析析 ◇◇典例剖析01 (1)若42a b -=-+,则_______a b +=.(2)若()2120a b ++-=,则a =________;b =__________. (3)若7322102m n p ++-+-=,则23_______p n m +=+.典例剖析02 (1)已知|x |=5,|y |=2,且xy >0,则x -y = .(2)已知:abc ≠0,且M =a b ca b c++,当a ,b ,c 取不同值时,M = .(3)已知a b c ,,是非零整数,且0a b c ++=,则a b c abca b c abc+++= .典例剖析03 (1)解不等式:(ⅰ)3x <; (ⅱ)3x >; (ⅲ)2x ≤.(2)解不等式:(ⅰ)103x -<;(ⅱ)252x ->;(ⅲ)325x -≤.(3)(ⅰ)解不等式组2405132x x ⎧--≤⎪⎨-+>⎪⎩;(ⅱ)解不等式1215x ≤-<.典例剖析04 (1)解不等式:4321x x ->+.(2)解不等式:215x x ++-<.典例剖析05 画出下列函数的图像:(1)1y x =-; (2)122y x x =-+-;(3)223y x x =-++; (4)232y x x =-+.◇◇ 小小 试试 牛牛 刀刀 ◇◇小试牛刀01 (1)已知2(2)210x y -+-=,则2x y +=_______.(2)如图,化简22a b b c a c +------=_____________.(3)若0a a +=,那么a 一定是( )A .正数B .负数C .非正数D .非负数 (4)若x x >,那么x 是____ ____数. (5)已知6a <-,化简26a ( )A. 6a -B. 6a --C. 6a +D. 6a -小试牛刀02 (1)不等式23x +<的解是________ ______;(2)不等式1211<-x 的解是______________;(3)不等式830x -≤的解是______________.小试牛刀03 解下列不等式:(1)1235x ≤-<;(2)3412x x ->+;(3)122x x x -+-<+.小试牛刀04 化简12x x +++,并画出12y x x =+++的图象.小试牛刀05 (1)画出23y x =+的图像; (2)画出223y x x =-++的图像.小试牛刀06 若对于某一范围内的x 的任意值,|1﹣2x |+|1﹣3x |+…+|1﹣10x |的值为定值,则这个定值为 .小试牛刀06 已知实数a ,b ,c 满足:a +b +c =﹣2,abc =﹣4.(1)求a ,b ,c 中的最小者的最大值; (2)求|a |+|b |+|c |的最小值.2022年暑假 数学 初升高衔接 专题资料05 绝对值与绝对值不等式◇◇ 知知 识识 链链 接接 ◇◇知识链接01 绝对值的定义在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.知识链接02 绝对值的代数意义正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即: ,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩知识链接03 绝对值的几何意义一个数的绝对值就是表示这个数的点到原点的距离. 离原点的距离越远,绝对值越大; 离原点的距离越近,绝对值越小.知识链接04 绝对值的性质(1)除0外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.知识链接05 两个数的差的绝对值的几何意义b a -表示:在数轴上,数a 和数b 之间的距离.知识链接06 绝对值不等式的解法(1)绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解. (2)绝对值不等式的常见类型及其解法:①||x a <(0a >)的解集为:a x a -<<; (绝对值定义法)||x a >(0a >)的解集为:x a <-或x a >;②||||x a <⇔22x a <⇔; (平方法或零点讨论法)③||||ax b cx d e +++< (零点讨论法)◇◇ 典典 例例 剖剖 析析 ◇◇典例剖析01 (1)若42a b -=-+,则_______a b +=.(2)若()2120a b ++-=,则a =________;b =__________. (3)若7322102m n p ++-+-=,则23_______p n m +=+.【解析】(1)424204,2a b a b a b -=-+⇒-++=⇒==-,所以2a b +=.(2)1,2a b =-=.(3)由题意,713,,22m n p =-==,所以13237922p n m m +==+-=-+.典例剖析02 (1)已知|x |=5,|y |=2,且xy >0,则x -y = .(2)已知:abc ≠0,且M =a b ca b c++,当a ,b ,c 取不同值时,M = . (3)已知a b c ,,是非零整数,且0a b c ++=,则a b c abca b c abc+++= .【解析】(1)3或-3.(2)当a 、b 、c 都是正数时,M = 3;当a 、b 、c 中有一个负数时,则M =1; 当a 、b 、c 中有2个负数时,则M = -1; 当a 、b 、c 都是负数时,M = -3. 综上:M =1±或3±.(3)由于0a b c ++=,且a b c ,,是非零整数,则a b c ,,一正二负或一负二正,当a b c ,,一正二负时,不妨设000a b c ><<,,,原式11110=--+=; 当a b c ,,一负二正时,不妨设000a b c <>>,,,原式11110=-++-=. 综上:a b c abca b c abc+++0=.典例剖析03 (1)解不等式:(ⅰ)3x <; (ⅱ)3x >; (ⅲ)2x ≤.(2)解不等式:(ⅰ)103x -<;(ⅱ)252x ->;(ⅲ)325x -≤.(3)(ⅰ)解不等式组2405132x x ⎧--≤⎪⎨-+>⎪⎩;(ⅱ)解不等式1215x ≤-<.【解析】(1)(ⅰ)33x -<<; (ⅱ)33x x <->或; (ⅲ)22x -≤≤.(2)(ⅰ)由题意,3103x -<-<,解得713x <<.(ⅱ)由题意,252x ->或252x -<-,解得72x >或32x <. (ⅲ)由题意,5325x -<-≤,解得14x -≤<.(3)(ⅰ)由240x --≤,得424x -≤-≤,解得26x -≤≤①,由5132x -+>,得133x +<,即3133x -<+<,解得4233x -<<②, 由①②得原不等式的解集为:4233x -<<. (ⅱ)方法一:由215x -<,解得23x -<<①,由121x ≤-得,0x ≤或1x ≥②,由①②得原不等式的解集为:2013x x -<<≤<或.方法二:12151215x x ≤-<⇔≤-<或5211x -<-≤-,解得2013x x -<<≤<或.典例剖析04 (1)解不等式:4321x x ->+.(2)解不等式:215x x ++-<.【解析】(1)法一:(零点讨论法)(ⅰ)当34x ≤时,原不等式变为:(43)21x x -->+,解得13x <,所以13x <; (ⅱ)当34x >时,原不等式变为:4321x x ->+,解得2x >,所以2x >;综上所述,原不等式的解集为123x x <>或.法二:43214321x x x x ->+⇔->+或43(21)x x -<-+,解得13x <或2x >.(2)(ⅰ)当2x <-时,得2(1)(2)5x x x <-⎧⎨---+<⎩,解得:23-<<-x ;(ⅱ)当12≤≤-x 时,得21(1)(2)5x x x -≤≤⎧⎨--++<⎩,解得:12≤≤-x ;(ⅲ)当1x >时,得1(1)(2)5x x x >⎧⎨-++<⎩,解得:21<<x .综上,原不等式的解集为32x -<<.典例剖析05 画出下列函数的图像:(1)1y x =-; (2)122y x x =-+-; (3)223y x x =-++; (4)232y x x =-+.【解析】(1)①关键点是1x =,此点又称为界点;②接着是要去绝对值:当1x ≤时,1y x =-;当1x >时,1y x =-. ③图象如右图所示. (2)①关键点是1x =和2x =;②接着是要去绝对值: 当1x ≤时,53y x =-; 当12x <<时,3y x =-; 当2x ≥时,35y x =-. ③图象如右图所示. (3)①关键点是0x =;②接着是要去绝对值:当0x ≥时,223y x x =-++; 当0x <时,223y x x =--+. ③图象如右图所示. (4)①关键点是1x =和2x =;②接着是要去绝对值:当1x ≤或2x ≥时,232y x x =-+; 当12x <<时,232y x x =-+- ③图象如右图所示.◇◇ 小小 试试 牛牛 刀刀 ◇◇小试牛刀01 (1)已知2(2)210x y -+-=,则2x y +=___3____.(2)如图,化简22a b b c a c +------=______-4_______.(3)若0a a +=,那么a 一定是( C )A .正数B .负数C .非正数D .非负数(4)若x x >,那么x 是____负____数. (5)已知6a <-,化简26a -得( B )A. 6a -B. 6a --C. 6a +D. 6a -小试牛刀02 (1)不等式23x +<的解是________ ______; 51x -<<(2)不等式1211<-x 的解是______________; 04x << (3)不等式830x -≤的解是______________.38小试牛刀03 解下列不等式:(1)1235x ≤-<; 1124x x -<≤≤<或(2)3412x x ->+; 355x x <>或(3)122x x x -+-<+.153x <<小试牛刀04 化简12x x +++,并画出12y x x =+++的图象. 【解析】23,21,2123,1x x y x x x --≤-⎧⎪=-<<-⎨⎪+≥-⎩,图象如右.小试牛刀05 (1)画出23y x =+的图像; (2)画出223y x x =-++的图像.【解析】 (1)如图所示: (2)如图所示:小试牛刀06 若对于某一范围内的x 的任意值,|1﹣2x |+|1﹣3x |+…+|1﹣10x |的值为定值,则这个定值为 .【解析】∵P 为定值,∴P 的表达式化简后x 的系数和为0;由于2+3+4+5+6+7=8+9+10;∴x 的取值范围是:1﹣7x ≥0且1﹣8x ≤0,即1187x ≤≤, 所以P =(1﹣2x )+(1﹣3x )+…+(1﹣7x )﹣(1﹣8x )﹣(1﹣9x )﹣(1﹣10x )=6﹣3=3.小试牛刀06 已知实数a ,b ,c 满足:a +b +c =﹣2,abc =﹣4.(1)求a ,b ,c 中的最小者的最大值;(2)求|a |+|b |+|c |的最小值.【解析】(1)不妨设a 是a ,b ,c 中的最小者,即a ≤b ,a ≤c ,由题设知a <0,且b +c =﹣2﹣a ,4bc a=-, 于是b ,c 是一元二次方程24(2)0x a x a----=的两实根, 即24(2)40a a∆=++⋅≥,a 3+4a 2+4a +16≤0,(a 2+4)(a +4)≤0, 所以a ≤﹣4;又当a =﹣4,b =c =1时,满足题意.故a ,b ,c 中最小者的最大值﹣4.(2)因为abc <0,所以a ,b ,c 为全小于0或二正一负.①当a ,b ,c 为全小于0,则由(1)知,a ,b ,c 中的最小者不大于﹣4,这与a +b +c =﹣2矛盾.②若a ,b ,c 为二正一负,设a <0,b >0,c >0,则|a |+|b |+|c |=﹣a +b +c =﹣2a ﹣2≥8﹣2=6,当a =﹣4,b =c =1时,满足题设条件且使得不等式等号成立.故|a |+|b |+|c |的最小值为6.。
一、比例与齐次式我们在式的运算中,常常会碰到比例关系或齐次等式、齐次分式,这就要求我们掌握比例关系具有哪些性质和它的一般转化方向;齐次式常常会同除以某一个数,转化过程在本质上起到消元作用,从而会出现整体思想.例1 已知三角形的三边长之比为3∶4∶5.求证:此三角形为直角三角形.例2 已知:a b =c d. 求证:(1)a -b b =c -d d ;(2)a +b b =c +d d; (3)a b =c d =a +c b +d .例3 已知△ABC 中,有AB AD =AC AE ,求证:AD DB =AE EC . 例4 已知:a +b =1且1b =2a,求a 和b . 例5 已知y =2x (x ≠0).(1)求x 2-3xy +y 2xy +y 2的值. (2)求证:x 2+32xy -y 2=0. 例6 已知:x ∶y ∶z =1∶2∶3.求x 3-yz 2+3z 3xyz的值.二、二次根式 一般地,形如a (a ≥0)的代数式叫做二次根式.其运算性质如下:1.(a )2=a (a ≥0).2.a 2=|a |.3.ab =a ·b (a ≥0,b ≥0).4. b a =b a(a >0,b ≥0). 例7 将下列式子化为最简根式. (1)12b ;(2)a 2b (a ≥0); (3)4x 6y (x <0).例8 试比较下列各组数的大小. (1)12-11和11-10; (2)26+4和22- 6. 例9 化简:(3+2)2 012·(3-2)2 013.例10 化简:(1)9-45;(2) x 2+1x 2-2(0<x <1). 例11 已知:x =3-23+2,y =3+23-2. 求:3x 2-5xy +3y 2的值.例12 已知:x >0,y >0,x +2xy -15y =0. 求x -y x +xy的值. 例13 化简:x 2+6x +9+x 2-4x +4.1.若a b +c =b c +a =c a +b=k ,则k =________. 2.已知:x 2-3xy +2y 2=0,则x y=________. 3.已知x ∶y =1∶2,求:x 2-3xy +4y 2x 2+y 2的值.4.已知:x 2+5xy -6y 2=0,求:2x +3y 2x -y的值.5.已知三角形的三边之比为5∶12∶13.求证:此三角形为直角三角形.6.已知:a 2=b 2+c 2(a >0,b >0,c >0).(1)b a =12,求c a 的值.(2)b a ≥12,求c a 的取值范围.7.已知:a 2+b 2=c 2(a >0,b >0,c >0).(1)c a =2,求b a的值. (2)c a ≥2,求b a的取值范围.8.已知a ∶b ∶c =2∶3∶4,求a 2+b 2-c 22ab的值.9.化简下列各式.(1) 8-28; (2)12+1+13+2+14+3+…+1100+99.10.已知:x =3-52,求x 2x 4+x 2+1的值.11.计算:23×6-(2-5)2+15+2.12.已知:x =a +1a (a >0),化简:x +2+x -2x +2-x -2.答案精析例1 证明 设三角形的三边分别为a ,b ,c ,∵a ∶b ∶c =3∶4∶5,设a =3k ,b =4k ,c =5k ,k >0,∵a 2+b 2=9k 2+16k 2=(5k )2=c 2,∴三角形为直角三角形.例2 证明 (1)∵a b =c d ,∴a b -1=c d -1,a -b b =c -d d. (2)∵a b +1=c d +1,∴a +b b =c +d d. (3)设a b =c d=k ,则a =kb ,c =kd , a +cb +d =kb +kd b +d=k ,∴a b =c d =a +c b +d . 例3 证明 ∵AB AD =AC AE ,由例2可知:AB -AD AD =AC -AE AE ,∴DB AD =EC AE ,即AD DB =AE EC . 例4 解 ∵1b =2a =1+2a +b =3,∴b =13,a =23. 例5 (1)解 原式=1-3y x +(y x )2y x +(y x)2=-16. (2)证明 原式=x 2[1+32(y x )-(y x)2]=0. 例6 解 设x =k ,y =2k ,z =3k ,原式=k 3-2k ·(3k )2+3(3k )3k ·2k ·3k =323. 例7 解 (1)23b (2)a b (3)-2x 3y .例8 解 (1)∵12+11>11+10>0, ∴112+11<111+10,∴12-11<11-10.(2)∵22-6=222+6,又∵4>22, ∴24+6<222+6=22- 6. 例9 解 原式=(3+2)2 012(3-2)2 012(3-2)=3- 2.例10 解 (1)原式= 22-45+52 =(2-5)2=|2-5|=5-2. (2)原式=(x -1x )2=|x -1x |=1x -x (∵0<x <1). 例11 解 xy =1,x +y =10,原式=289.例12 解 x +2xy -15y =0,(x +5y )(x -3y )=0,∵x +5y >0,∴x =9y ,原式=23. 例13 解 原式=|x +3|+|x -2|=⎩⎪⎨⎪⎧ -2x -1 (x ≤-3)5 (-3<x <2)2x +1 (x ≥2).强化训练1.122.2或1 3.解 由y =2x ,得:原式=x 2-3x ×(2x )+4(2x )2x 2+(2x )2=115. 4.解 由条件得:x =-6y 或x =y ,∴原式=913或5. 5.证明 设a ∶b ∶c =5∶12∶13,则a =5k ,b =12k ,c =13k (k >0) a 2+b 2=(25+144)k 2=(13k )2=c 2.所以三角形为直角三角形.6.解 (1)c a =32 (2)0<c a ≤327.解 (1)c 2a 2=2,1+(b a )2=2,(b a )2=1,b a=1(∵a >0,b >0) (2)c 2a 2≥2,1+b 2a 2≥2,(b a )2≥1,b a≥1(∵a >0,b >0). 8.解 设a =2k ,b =3k ,c =4k ,原式=-14.9.解 (1)7-1;(2)910.解 x 2=7-352,1x 2=7+352,x 2+1x 2=7,原式=1x 2+1x 2+1=18. 11.解 原式=23×2×3-|5-2|+(5-2)=2. 12.解 x +2=(a +1a )2=a +1a,x -2=|a -1a |, a >1时,x -2=a -1a ,原式=a +1a +(a -1a )a +1a -(a -1a)=a .a =1时,x =2,原式=1. 0<a <1时,x -2=1a -a ,原式=a +1a +1a -a a +1a +a -1a =1a .∴原式=⎩⎪⎨⎪⎧ a a >11 a =11a 0<a <1。
初升高衔接暑期辅导数学精品课程 专题01 数和式的运算之绝对值与乘法公式一、知识点精讲(一)绝对值⑴在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
⑵正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩⑶两个负数比较大小,绝对值大的反而小⑷两个绝对值不等式:||(0)x a a a x a <>⇔-<<;||(0)x a a x a >>⇔<-或x a >(5)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.(6)两个数的差的绝对值的几何意义:|a-b|表示在数轴上,数a 和数b 之间的距离.二、典例精析【典例1】化简下列各式(1)|3x-2|; (2)|x+1|+|x-3|;【答案】见解析 【答案】见解析 【解析】232,()332223,()3x x x x x ⎧+≥⎪⎪-=⎨⎪-<⎪⎩ 【解析】 22,(1)134,(13)22,(3)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩;【答案】见解析 【答案】见解析=2,(2)22,(2)x x x x x -≥⎧-=⎨-<⎩ 【解析】=2222t t +=+【典例2】解下列方程(1)11x -= (2)211x -=【解析】(1)11x -=111120x x x x ⇔-=-=-⇔==或或(2)211x -=22221111200x x x x x x ⇔-=-=-⇔==⇔==或或【典例3】解下列不等式 (1)232x +≤【答案】见解析 【解析】232x +≤152********x x x ⇔-≤-≤⇔≤≤⇔≤≤ (2) 13x x -+->4.【答案】见解析【解法一】由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4, 解得x >4.又x≥3,∴x >4.综上所述,原不等式的解为 x <0,或x >4.【解法二】如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA|,即|PA|=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB|,即|PB|=|x -3|.所以,不等式13x x -+->4的几何意义即为|PA|+|PB|>4.由|AB|=2,可知点P 在点C(坐标为0)的左侧、或点P 在点D(坐标为4)的右侧. x <0,或x >4.【典例4】画出下列函数的图像 (1)y x = (2) 22y x x =-++【答案】见解析【解析】(二)乘法公式(1)平方差公式 22()()a b a b a b -=+-;(2)完全平方公式 222()2a b a ab b ±=±+. (3)立方和公式 3322()()a b a b a ab b +=+-+;(4)立方差公式 3322()()a b a b a ab b -=-++;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++;(6)两数和立方公式 33223()33a b a a b ab b +=+++; (7)两数差立方公式 33223()33a b a a b ab b -=-+-【典例5】分解下列因式(1)31x -【答案】见解析【解析】321(1)(1)x x x x -=-++(2)31x +【答案】见解析【解析】321(1)(1)x x x x +=+-+【典例6】计算:22(1)(1)(1)(1)x x x x x x +--+++【答案】见解析【解析】22336(1)(1)(1)(1)(1)(1)1x x x x x x x x x +--+++=-+=-【典例7】已知:331,3x y x y xy +=++求 的值.【答案】见解析【解析】33222223()()32()1x y xy x y x xy y xy x xy y x y ++=+-++=++=+=【典例8】已知:3331310,.x x x x -+=+求的值 【答案】见解析【解析】3310x x -+=322321111113()(1)()[()3]18x x x x x x x x x x x x ⇒+=⇒+=+-+=++-= 【典例9】设33x y x y ==+求的值. 【答案】见解析【解析】332222214,1,()()2()[()3]14(143)2702x y x y xy x y x y x xy y x y x y xy +==∴+===∴+=+-+-=++-=-=三、对点精练1.下列叙述正确的是( )A.若|a|=|b|,则a=bB.若|a|>|b|,则a>bC.若a<b,则|a|<|b|D.若|a|=|b|,则a=±b【答案】D【解析】方法一:根据绝对值的意义可得。
方法二:取特殊数验证可选出答案。
2.如果|a|+|b|=5,且a=-1,则b=________________ ;若|1-c|=2,则c=______________ .【答案】4,3-1±或,【解析】5,1,4, 4.12121-213a b a b b c c c c c +==-∴=∴=±-=⇒-==-⇒=-=或或3.若|x|=5,则x=________________ ;若|x|=|-4|,则x=____________________ .【答案】54±±,【解析】根据绝对值的意义可得4.解不等式|x 2-1|≤2.【答案】见解析 【解析】2221221213x x x x -≤⇔-≤-≤⇔-≤≤⇔≤5.解方程3115x +-=【答案】见解析 【解析】311531612121=-213x x x x x x +-=⇔+=⇔+=⇔+=+⇔=-或或6.化简:+1-2x x -【答案】见解析 【解析】3,(1)+1-221,(12)3,(2)x x x x x x -≤-⎧⎪-=--<<⎨⎪≥⎩7. 画出下列函数的图像 (1)1y x =-+(2) 1y x x =+-【答案】见解析【解析】 8.计算:(1)2(4)(164m m m +-+)(2)22222(2)()x xy y x xy y ++-+ (3)223()()()a b a ab b a b +-+-+ (4)221(4)(4)4a b a b ab -++ 【答案】见解析【解析】(1)2(4)(164m m m +-+)=364m - (2)22222(2)()x xy y x xy y ++-+=22223326336()()()2x y x xy y x y x x y y +-+=+=++ (3)223()()()a b a ab b a b +-+-+=33322-()33a b a b a b ab ++=--(4)221(4)(4)4a b a b ab -++=322232331141641644a ab a b a b b ab a b ++---=- 9.已知2510x x -+=,求331x x +的值 【答案】见解析 【解析】23323321111111510+5(+)33(+)3(+)12515110x x x x x x x x x x x x x x x x-+=⇒=⇒+=-⨯-⨯=-=-=10.已知111111+0,()()()a b c a b c b c a c b a+=+++++求的值 【答案】见解析 【解析】111111()()()3a a b b c c b c a a b c b c a c b a b c a c b a b c a---+++++=+++++=++=- 11.已知3320,3,x xxx x a a a a a a --+>=+求的值. 【答案】见解析 【解析】33322-2()3()17()3+2+-3=3+2+-3=33x x x x x x x x x x x x x x a a a a a a a a a a a a a a ------++-+==+-=++ 12.已知2410,a a -+=求24251a a a ++的值. 【答案】见解析【解析】22211410,4,16214,a a a a a a -+=∴+=∴+=-=2422211=151195a a a a a∴=++++ 13.已知222222222111+0,a b c b c a a b c c a b +=+++-+-+-求的值. 【答案】见解析 【解析】222222222222222111111()2()2()211111()()022b c a a b c c a b b c bc a a b ab c c a ac b a b c bc ab ac abc++=+++-+-+-+--+--+--++=-++=-=14.已知3223+0,0a b c a a c b c abc b +=++-+=求证:【答案】见解析【解析】32232222==()()()0a a c b c abc b a a c b c b abc a b ab abc ab a b c ++-++++-=---=-++==左右。