大学物理电磁学作业解答:静电场中的能量
- 格式:ppt
- 大小:655.00 KB
- 文档页数:27
第十章静电场中的能量1电势能和电势一、静电力做功的特点1.静电力做功:在匀强电场中,静电力做功W=qEl cos θ.其中θ为静电力与位移方向之间的夹角.2.特点:在静电场中移动电荷时,静电力所做的功与电荷的起始位置和终止位置有关,与电荷经过的路径无关.(1)静电力做的功与电荷的起始位置和终止位置有关,但与具体路径无关,这与重力做功特点相似.(2)无论是匀强电场还是非匀强电场,无论是直线运动还是曲线运动,静电力做功均与路径无关.二、电势能1.电势能:电荷在电场中具有的势能,用E p表示.2.静电力做功与电势能变化的关系:静电力做的功等于电势能的减少量.表达式:W AB=E p A-E p B.(1)静电力做正功,电势能减少;(2)静电力做负功,电势能增加.3.电势能的大小:电荷在某点(A点)的电势能,等于把它从这点移动到零势能位置时静电力做的功E p A=W A0.4.电势能具有相对性电势能零点的规定:通常把电荷在离场源电荷无限远处或把电荷在大地表面的电势能规定为零.(1)电势能E p是由电场和电荷共同决定的,是电荷和电场所共有的,我们习惯上说成电荷在电场中某点的电势能.(2)电势能是相对的,其大小与选定的参考点有关。
确定电荷的电势能,首先应确定参考点,也就是零势能点的位置。
(3)电势能是标量,有正负但没有方向。
在同一电场中,电势能为正值表示电势能大于零势能点的电势能,电势能为负值表示电势能小于零势能点的电势能。
5.静电力做功与电势能变化的关系(1)W AB=E p A-E p B.静电力做正功,电势能减少;静电力做负功,电势能增加.(2)在同一电场中,正电荷在电势高的地方电势能大,而负电荷在电势高的地方电势能小.三、电势1.定义:电荷在电场中某一点的电势能与它的电荷量之比.2.公式:φ=E p q。
(1)φ取决于电场本身;(2)公式中的E p 、q 均需代入正负号。
3.单位:国际单位制中,电势的单位是伏特,符号是V ,1 V =1 J/C.4.电势高低的判断:(1)电场线法:沿电场线方向,电势越来越低.(2)电势能判断法:由φ=E p q知,对于正电荷,电势能越大,所在位置的电势越高;对于负电荷,电势能越小,所在位置的电势越高.5.电势的相对性:只有规定了零电势点才能确定某点的电势,一般选大地或离场源电荷无限远处的电势为0.6.电势是标量,只有大小,没有方向,但有正、负之分,同一电场中电势为正表示比零电势高,电势为负表示比零电势低.7.电场中某点的电势是相对的,它的大小和零电势点的选取有关.在物理学中,常取离场源电荷无限远处的电势为零,在实际应用中常取大地的电势为零.8.电势虽然有正负,但电势是标量.在同一电场中,电势为正值表示该点电势高于零电势,电势为负值表示该点电势低于零电势,正负号不表示方向.2 电势差一、电势差1.定义:电场中两点之间电势的差值,也叫作电压.U AB =φA -φB ,U BA =φB -φA ,U AB =-U BA .2.电势差是标量,有正负,电势差的正负表示电势的高低.U AB >0,表示A 点电势比B 点电势高.3.单位:在国际单位制中,电势差与电势的单位相同,均为伏特,符号是V .4.静电力做功与电势差的关系(1)公式:W AB =qU AB 或U AB =W AB q. (2)U AB 在数值上等于单位正电荷由A 点移到B 点时静电力所做的功.二、电势差的理解1.电势差反映了电场的能的性质,决定于电场本身,与试探电荷无关.2.电势差可以是正值也可以是负值,电势差的正负表示两点电势的高低,且U AB =-U BA ,与零电势点的选取无关.3.电场中某点的电势在数值上等于该点与零电势点之间的电势差.三、静电力做功与电势差的关系1.公式U AB=W ABq或W AB=qU AB中符号的处理方法:把电荷q的电性和电势差U的正负代入进行运算,功为正,说明静电力做正功,电荷的电势能减小;功为负,说明静电力做负功,电荷的电势能增大.2.公式W AB=qU AB适用于任何电场,其中W AB仅是电场力做的功,不包括从A到B移动电荷时其他力所做的功.3.电势和电势差的比较1.定义:电场中电势相同的各点构成的面.2.等势面的特点(1)在同一等势面上移动电荷时静电力不做功.(2)等势面一定跟电场线垂直,即跟电场强度的方向垂直.(3)电场线总是由电势高的等势面指向电势低的等势面.3.等势面的特点及应用(1)在等势面上移动电荷时静电力不做功,电荷的电势能不变.(2)电场线跟等势面垂直,并且由电势高的等势面指向电势低的等势面,由此可以绘制电场线,从而可以确定电场的大致分布.(3)等差等势面密的地方,电场强度较强;等差等势面疏的地方,电场强度较弱,由等差等势面的疏密可以定性确定场强大小.(4)任意两个等势面都不相交.4.几种常见电场的等势面(如图1所示)图1(1)点电荷的等势面是以点电荷为球心的一簇球面.(2)等量异种点电荷的等势面:点电荷的连线上,从正电荷到负电荷电势越来越低,两点电荷连线的中垂线是一条等势线.(3)等量同种点电荷的等势面①等量正点电荷连线的中点电势最低,两点电荷连线的中垂线上该点的电势最高,从中点沿中垂线向两侧,电势越来越低.②等量负点电荷连线的中点电势最高,两点电荷连线的中垂线上该点的电势最低.从中点沿中垂线向两侧,电势越来越高.(4)匀强电场的等势面是垂直于电场线的一簇平行等间距的平面.3 电势差与电场强度的关系一、匀强电场中电势差与电场强度的关系1.在匀强电场中,两点间的电势差等于电场强度与这两点沿电场方向的距离的乘积.2.公式:U AB =Ed .二、公式E =U AB d的意义 1.意义:在匀强电场中,电场强度的大小等于两点间的电势差与这两点沿电场强度方向距离之比.2.电场强度的另一种表述:电场强度在数值上等于沿电场方向单位距离上降低的电势.3.电场强度的另一个单位:由E =U AB d可导出电场强度的另一个单位,即伏每米,符号为V /m.1 V/m =1 N/C.三、匀强电场中电势差与电场强度的关系1.公式E =U AB d及U AB =Ed 的适用条件都是匀强电场. 2.由E =U d可知,电场强度在数值上等于沿电场方向单位距离上降低的电势. 式中d 不是两点间的距离,而是两点所在的等势面间的距离,只有当此两点在匀强电场中的同一条电场线上时,才是两点间的距离.3.电场中电场强度的方向就是电势降低最快的方向.4.电势差的三种求解方法(1)应用定义式UAB =φA -φB 来求解.(2)应用关系式UAB =WAB q来求解. (3)应用关系式UAB =Ed(匀强电场)来求解.5.在应用关系式UAB =Ed 时可简化为U =Ed ,即只把电势差大小、场强大小通过公式联系起来,电势差的正负、电场强度的方向可根据题意另作判断.四、利用E =U d定性分析非匀强电场 U AB =Ed 只适用于匀强电场的定量计算,在非匀强电场中,不能进行定量计算,但可以定性地分析有关问题.(1)在非匀强电场中,公式U =Ed 中的E 可理解为距离为d 的两点间的平均电场强度.(2)当电势差U 一定时,场强E 越大,则沿场强方向的距离d 越小,即场强越大,等差等势面越密.(3)距离相等的两点间的电势差:E 越大,U 越大;E 越小,U 越小.五、用等分法确定等势线和电场线1.在匀强电场中电势差与电场强度的关系式为U =Ed ,其中d 为两点沿电场方向的距离. 由公式U =Ed 可以得到下面两个结论:结论1:匀强电场中的任一线段AB 的中点C 的电势φC =φA +φB 2,如图1甲所示. 图1结论2:匀强电场中若两线段AB ∥CD ,且AB =CD ,则U AB =U CD (或φA -φB =φC -φD ),同理有U AC =U BD ,如图乙所示。
§1、5 静电场的能量1.5.1、 带电导体的能量一带电体的电量为Q ,电容为C ,则其电势C Q U =。
我们不妨设想带电体上的电量Q ,是一些分散在无限远处的电荷,在外力作用下一点点搬到带电体上的,因此就搬运过程中,外力克服静电场力作的功,就是带电体的电能。
该导体的电势与其所带电量之间的函数关系如图1-5-1所示,斜率为C 1。
设每次都搬运极少量的电荷Q ∆,此过程可认为导体上的电势不变,设为i U ,该过程中搬运电荷所做的功为Q U W i i ∆=,即图中一狭条矩形的面积(图中斜线所示)因此整个过程中,带电导体储存的能量为 ∑∑∆==Q U W W i i其数值正好等于图线下的许多小狭条面积之和,若Q ∆取得尽可能小,则数值就趋向于图线下三角形的面积。
2221221CU C Q QU Q U W i ===∆=∑上述带电导体的静电能公式也可推广到带电的电容器,因为电容器两板间的电势差与极板上所带电量的关系也是线性的。
1.5.2、 电场的能量 由公式221CU W =,似乎可以认为能量与带电体的电量有关,能量是集中在电荷上的。
其实,前面只是根据功能关系求得带电导体的静电能,并未涉及能量的分布问题。
由于在静电场范围内,电荷与电场总是联系在一起的,因此电能究竟与电荷还是与电场联系在一起,尚无法确定。
以后学习了麦克斯韦的电磁场理论可知,电场可以脱离电荷而单独存在,并以有限的速度在空间传播,形成电磁波,而电磁波携带能量早已被实践所证实。
因此我们说,电场是电能的携带者,电能是电场的能量。
下面以平行板电容器为例,用电场强度表示能量公式。
k Sd E d E kd S CU W πεπε8421212222=⋅==单位体积的电场能量称为电场的能量密度,用ω来表示 k E V W πεω82==上式是一个普遍适用的表达式,只要空间某点的电场强度已知,该处的能量密度即可求出,而整个电场区的电场能量可以通过对体积求和来求得。
静电场的能量静电场的能量一个物体带了电是否就具有了静电能?为了回答这个问题,让我们把带电体的带电过程作下述理解:物体所带电量是由众多电荷元聚集而成的,原先这些电荷元处于彼此无限离散的状态,即它们处于彼此相距无限远的地方,使物体带电的过程就是外界把它们从无限远聚集到现在这个物体上来。
在外界把众多电荷元由无限远离的状态聚集成一个带电体系的过程中,必须作功。
根据功能原理,外界所作的总功必定等于带电体系电势能的增加。
因为电势能本身的数值是相对的,是相对于电势能为零的某状态而言的。
按照通常的规定,取众多电荷元处于彼此无限远离的状态的电势能为零,所以带电体系电势能的增加就是它所具有的电势能。
于是我们就得到这样的结论:一个带电体系所具有的静电能就是该体系所具有的电势能,它等于把各电荷元从无限远离的状态聚集成该带电体系的过程中,外界所作的功。
那么带电体系所具有的静电能是由电荷所携带呢,还是由电荷激发的电场所携带?也就是,能量定域于电荷还是定域于电场?在静电学范围内我们无法回答这个问题,因为在一切静电现象中,静电场与静电荷是相互依存,无法分离的。
随时间变化的电场和磁场形成电磁波,电磁波则可以脱离激发它的电荷和电流而独立传播并携带了能量。
太阳光就是一种电磁波,它给大地带来了巨大的能量。
这就是说,能量是定域于场的,静电能是定域于静电场的。
既然静电能是定域于电场的,那么我们就可以用场量来量度或表示它所具有的能量。
,式中C是电容器的电容。
电容器所带电量从零增大到Q的整个过程中,外力所作的总功为.外力所作的功A等于电容器这个带电体系的电势能的增加,所增加的这部分能量,储存在电容器极板之间的电场中,因为原先极板上无电荷,极板间无电场,所以极板间电场的能量,在数值上等于外力所作的功A,即. (9-77)若电容器带电量为Q时两极板间的电势差为U AB ,则平行板电容器极板间电场的能量还可以表示为,(9-78)和(9-79)设电容器极板上所带自由电荷的面密度为s,极板间充有电容率为e的电介质,电场强度可以表示为,极板上的电量可以表示为Q = s S = e E S , (9-80)式中S是电容器极板的面积。
静电场中的能量静电场是一种由电荷积聚所形成的电场,具有辐射状的特点。
在静电场中,电荷之间会相互作用,并产生电势能和电场能量。
本文将探讨静电场中的能量转化和计算方法。
一、静电场的基本概念静电场是由带电粒子或物体所产生的电场,其特点是电荷不进行移动,所以称为“静电”场。
静电场的强度与电荷的分布有关,通常通过电场强度来描述。
电场强度的方向与电荷的正负性及其位置有关。
二、电静场能量的定义在静电场中,电荷之间由于存在电场而具有势能。
电静场能量是静电场中电荷与电场之间相互作用而具有的能量,用符号U表示。
电静场能量可以用来描述电荷在电场中的粒子之间的相互作用。
三、电势能的计算公式电势能是静电场中电荷所具有的能量,它可以通过电荷的电势差来计算。
根据电势能的定义,可以得到电荷在静电场中的电势能计算公式:U = k * q1 * q2 / r其中,U为电势能,k为电场常数(通常取为 8.99 × 10^9 N·m^2/C^2),q1和q2为两个电荷的大小,r为两个电荷之间的距离。
四、静电场能量的转化静电场能量可以在电荷之间进行转化,也可以转化为其他形式的能量。
例如,当两个电荷之间产生电势差时,静电场能量可以转化为电动势能,从而使电荷发生位移。
静电场能量也可以转化为热能,当电荷在与其他物质接触时,静电场能量的转化会产生热量。
五、电场能量密度电场能量密度是指静电场中单位体积内的能量。
在某一点的电场能量密度可以通过以下公式计算:u = 1/2 * ε * E^2其中,u为电场能量密度,ε为真空介质常数(通常取为 8.85 ×10^-12 C^2/N · m^2),E为电场强度。
六、电场能量的保守性静电场能量是保守的,即不随着电荷的移动而改变。
这是因为在静止的电荷之间,电场是由静电荷产生的,而静电荷的电场是不随时间变化的,所以电场能量保持不变。
七、实际应用静电场的能量在日常生活和工业生产中有着广泛的应用。
静电场中的能量静电场是一种特殊的电场,它存在于没有电流流动的情况下。
在静电场中,带电物体之间会产生电势差,从而储存了一定的能量。
本文将探讨静电场中的能量及其相关的概念和应用。
我们来了解一下静电场的基本概念。
静电场是由带电物体产生的一种力场,其特点是电场力和电场能都是静止的。
当两个带电物体之间存在电势差时,它们之间就会产生电场力,从而使得带电物体发生相互作用。
这个相互作用的结果就是带电物体之间的能量转移。
静电场中的能量主要包括电势能和电场能。
电势能是带电粒子由于其所处位置的不同而具有的能量。
在静电场中,带电物体的电势能与其所处位置的电势有关,电势越高,电势能越大。
电场能则是电荷在电场中的能量,它与电荷的分布和电场强度有关。
在静电场中,电场能可以通过计算电荷在电场中的位移所做的功来确定。
电场能也可以看作是带电物体所具有的能量储存形式,当带电物体发生运动时,电场能可以转化为动能或其他形式的能量。
静电场中的能量在生活中有着广泛的应用。
一个常见的应用是静电的储存和释放。
例如,静电能储存在电容器中,当电容器两极之间的电势差达到一定值时,静电能可以迅速释放,产生强烈的电火花或放电现象。
这种现象在雷击、静电放电等场景中都有所应用。
静电场中的能量还可以用于驱动一些设备的运行。
例如,在喷墨打印机中,静电场可以控制墨滴的喷射。
当墨滴通过电场时,静电场会对墨滴施加一定的力,使其按照预定的轨迹飞行,并最终着陆在纸张上。
这种利用静电场能量的喷墨技术具有高精度和高速度的特点,广泛应用于打印行业。
静电场中的能量还可以用于静电除尘。
静电除尘是一种利用静电力将粉尘颗粒从气体中分离的方法。
在静电除尘器中,通过给除尘器施加高电压,产生强大的静电场,将带电的粉尘颗粒吸附在带电板上,从而实现对气体中的粉尘颗粒进行过滤和净化。
静电场中的能量是一种重要的物理现象,它储存了带电物体之间的相互作用能量。
静电场中的能量不仅存在于物理实验室中的科学研究中,还广泛应用于生活中的各个领域。
第十章静电场中的能量B.A点的电势为,电场强度为;C.B点的电势为,电场强度为;D.A点的电势为,电场强度也为。
答案:ABD二、XXX答题1.静电场中的能量是如何计算的?静电场中的能量可以通过电场中电荷所具有的电势能来计算。
在电场中,电荷由高电势能处移动到低电势能处,电势能的差值就是电荷所具有的动能。
根据能量守恒定律,电荷的动能减少的同时,电场中的能量会增加。
因此,静电场中的能量可以表示为电荷在电场中移动所释放的电势能总和。
2.电势能和电势的区别是什么?电势能是指电荷在电场中由于位置发生变化而具有的能量。
电势是指电场中某一点的电势能与单位正电荷之间的比值,也可以理解为单位电荷在该点所具有的电势能。
电势能是一种物理量,而电势是一种描述电场性质的物理量。
3.什么情况下电势差为零?电势差是指两点间电势的差值。
当两点间的电势相等时,电势差为零。
在静电场中,如果两点间的电场强度和距离都相等,则两点间的电势相等,电势差为零。
此外,在一些特殊情况下,如电荷分布对称、电场中存在等势面等情况下,也可能出现电势差为零的情况。
B。
在点A处,正试探电荷的电势能较高,受到的静电力的方向是向右的。
C。
将正试探电荷从点O移动到点A需要克服静电力做功。
D。
当将同一正试探电荷从点O和点B移动到点A时,后者的电势能变化更大。
8.电子在经过点A时具有4.8×10^-17J的电势能和3.2×10^-17J的动能,在经过点B时,它的电势能降至3.2×10^-17J。
如果电子只受到静电力作用,则:B。
从点A到点B的静电力做功为100eV。
C。
在点B处,电子的动能为1.6×10^-17J。
9.在图中,C点是线段AB的中点,A和B处的等势线分别为30V和10V。
因此,C点的电势φc:A。
φc=20V。
10.在图中,点电荷Q产生了电场,M、N、P和F是四个点,其中M、N、P是直角三角形的三个顶点,F是MN的中点,∠M=30°。