高考数学总复习 7-1 不等式的性质及解法但因为测试 新人教B版
- 格式:doc
- 大小:195.50 KB
- 文档页数:11
【走向高考】2021届高考数学一轮总温习 7-1不等式的性质及解法课后强化作业 新人教B 版基础巩固强化一、选择题1.不等式⎪⎪⎪⎪⎪⎪x -2x >x -2x 的解集是( ) A .(0,2) B .(-∞,0)C .(2,+∞)D .(-∞,0)∪(0,+∞)[答案] A[解析] ∵⎪⎪⎪⎪⎪⎪x -2x >x -2x ,∴x -2x <0,即x (x -2)<0.解得0<x <2,选A. 2.(文)假设a <b <0,那么以下不等式中不必然成立的是( ) A.1a >1bB.1a -b >1bC.-a >-bD .|a |>-b[答案] B[解析] 取a =-2,b =-1,一一查验即可知选B. (理)设0<b <a <1,那么以下不等式成立的是( ) A .ab <b 2<1B.12<(12)a <(12)b C .a 2<ab <1D .log 12b <log 12a <0[答案] B[解析] 依题意得ab -b 2=b (a -b )>0,∴ab >b 2,因此A 不正确;同理可知C 不正确;由函数y =(12)x 在R 上是减函数得,当0<b <a <1时,有(12)0>(12)b >(12)a >(12)1,即12<(12)a <(12)b ,因此B 正确;同理可知D 不正确.综上所述,选B.[点评] 可取特值a =12,b =14查验.3.(文)已知不等式ax 2-bx -1≥0的解集是[-12,-13],那么不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C .(13,12)D .(-∞,13)∪(12,+∞)[答案] A[解析] 由题意知-12、-13是方程ax 2-bx -1=0的根,由韦达定理得,-12+(-13)=b a ,-12×(-13)=-1a .∴a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,∴2<x <3.(理)关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,那么a 的最大值与最小值的和是( ) A .2 B .1 C .0 D .-1 [答案] C[解析] 方程x 2-ax -20a 2=0的两根是x 1=-4a ,x 2=5a ,那么由关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,得|x 1-x 2|=|9a |≤9,即-1≤a ≤1,且a ≠0,应选C.4.已知a 1<a 2<a 3<0,那么使得(1-a i x )2<1(i =1,2,3)都成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫1a 1,0 B.⎝ ⎛⎭⎪⎫2a 1,0 C.⎝ ⎛⎭⎪⎫1a 3,0 D.⎝ ⎛⎭⎪⎫2a 3,0 [答案] B[解析]由题意得⎩⎪⎨⎪⎧-1<1-a 1x <1,-1<1-a 2x <1,-1<1-a 3x <1,∴⎩⎪⎨⎪⎧2a 1<x <0,2a2<x <0,2a3<x <0.∵a 1<a 2<a 3<0,∴0>2a 1>2a 2>2a 3,∴2a 1<x <0,应选B.5.(文)(2021·北京东城区统一检测)“x 2-2x -3>0成立”是“x >3成立”的( ) A .充分没必要要条件 B .必要不充分条件C .充要条件D .既不充分也没必要要条件[答案] B[解析] 由x 2-2x -3>0得x <-1或x >3,因此x 2-2x -3>0是x >3成立的必要不充分条件.(理)(2021·汉中一模)假设a 、b 均为不等于零的实数,给出以下两个条件.条件甲:关于区间[-1,0]上的一切x 值,ax +b >0恒成立;条件乙:2b -a >0,那么甲是乙的( )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件 [答案] A[解析] ∵当x ∈[-1,0]时,恒有ax +b >0成立, ∴当x =-1时,b -a >0,当x =0时,b >0, ∴2b -a >0,∴甲⇒乙;但乙推不出甲, 例如:a =32b ,b >0时,那么2b -a =12b >0,可是,当x =-1时,a ·(-1)+b =-32b +b =-12b <0,∴甲是乙的充分没必要要条件.6.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,那么M 与N 的大小关系是( ) A .M <N B .M >N C .M =N D .不确信[答案] B[解析] 由题意得M -N =a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1)>0,故M >N ,选B. 二、填空题7.(文)(2021·扬州期末)若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________. [答案] a 1b 1+a 2b 2>a 1b 2+a 2b 1[解析] 作差可得(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)(b 1-b 2),∵a 1<a 2,b 1<b 2,∴(a 1-a 2)(b 1-b 2)>0,即a 1b 1+a 2b 2>a 1b 2+a 2b 1.(理)(2021·南京一模)给出以下四个命题: ①若a >b >0,那么1a >1b;②若a >b >0,那么a -1a >b -1b;③若a >b >0,那么2a +b a +2b >ab;④设a ,b 是互不相等的正数,那么|a -b |+1a -b≥2.其中正确命题的序号是________(把你以为正确命题的序号都填上). [答案] ②[解析] ①作差可得1a -1b =b -a ab ,而a >b >0,那么b -a ab <0,∴①错误.②若a >b >0,那么1a <1b,进而可得-1a >-1b ,因此可得a -1a >b -1b 正确.∵2a +ba +2b-a b=b 2a +b -a a +2ba +2b b=b 2-a 2a +2b b=b -a b +aa +2b b<0,∴③错误.④当a -b <0时此式不成立,∴④错误.8.(2021·河南洛阳统考)已知函数f (x )=x 2+2x ,g (x )=(12)x -m ,假设∀x 1∈[1,2],∃x 2∈[-1,1],使得f (x 1)≥g (x 2),那么实数m 的取值范围是________.[答案] [-52,+∞)[解析] 要使对∀x 1∈[1,2],∃x 2∈[-1,1],使得f (x 1)≥g (x 2),只需使f (x )在区间[1,2]上的最小值大于等于g (x )在区间[-1,1]上的最小值即可.因为f ′(x )=2x 3-1x2≥0对x ∈[1,2]恒成立,因此函数f (x )在区间[1,2]上单调递增,从而函数f (x )在区间[1,2]上的最小值为f (1)=3.易知函数g (x )在区间[-1,1]上单调递减,故函数g (x )在区间[-1,1]上的最小值为g (1)=12-m .由题意得3≥12-m ,解得m ≥-52.9.(文)已知f (x )=⎩⎪⎨⎪⎧1x ≥0,0 x <0,那么不等式xf (x )+x ≤2的解集是________.[答案] (-∞,1][解析] 原不等式化为①⎩⎪⎨⎪⎧ 2x ≤2x ≥0或②⎩⎪⎨⎪⎧x ≤2,x <0它们的解集别离为[0,1],(-∞,0),取并集得原不等式的解集为(-∞,1].(理)已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,那么不等式x 2-(x +1)sgn x -1>0的解集是________.[答案] {x |x <-1或x >2}[解析] 不等式x 2-(x +1)sgn x -1>0化为⎩⎪⎨⎪⎧ x >0,x 2-x -2>0,或⎩⎪⎨⎪⎧ x =0,x 2-x +1×0-1>0,或⎩⎪⎨⎪⎧x <0,x 2+x >0.∴x >2或x <-1. 三、解答题10.某产品生产厂家依照以往的生产销售体会取得下面有关生产销售的统计规律:每生产产品x (百台),其总本钱为G (x )(万元),其中固定本钱为2万元,而且每生产1百台的生产本钱为1万元(总本钱=固定本钱+生产本钱);销售收入R (x )(万元)知足:R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.80≤x ≤510.2 x >5,假定该产品产销平稳,那么依照上述统计规律. (1)要使工厂有获利,产量x 应操纵在什么范围内? (2)工厂生产多少台产品时,可使获利最多? [解析] 依题意,G (x )=x +2 设利润函数为f (x ),那么f (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.80≤x ≤5,8.2-x x >5.(1)要使工厂有获利,即解不等式f (x )>0,当0≤x ≤5时,解不等式-0.4x 2+3.2x -2.8>0 即x 2-8x +7<0,得1<x <7, ∴1<x ≤5.当x >5时,解不等式8.2-x >0,得 x <8.2, ∴5<x <8.2综上所述,要使工厂获利,x 应知足1<x <8.2,即产品产量应操纵在大于100台,小于820台的范围内. (2)0≤x ≤5时,f (x )=-0.4(x -4)2+3.6 故当x =4时,f (x )有最大值3.6 而当x >5时,f (x )<8.2-5=3.2因此,当工厂生产400台产品时,获利最多. 能力拓展提升 一、选择题11.(文)已知a >b >0,且ab =1,设c =2a +b,P =log c a ,N =log c b ,M =log c (ab ),那么有( )A .P <M <NB .M <P <NC .N <P <MD .P <N <M[答案] A[解析] 因为a >b >0,且ab =1,因此a >1,0<b <1,a +b >2ab =2,c =2a +b<1,因此log c a <log c (ab )<log c b , 即P <M <N ,选A.(理)已知0<a <b ,且a +b =1,那么以下不等式中,正确的选项是( ) A .log 2a >0B .2a -b <12C .2b a +a b <12D .log 2a +log 2b <-2[答案] D[解析] 当a =14,b =34时A 不成立;对B 有2a -b <12⇒2a -b <2-1⇒a -b <-1, 又a +b =1,可得a <0,与a >0矛盾;对C 有2b a +a b <12⇒2b a +a b <2-1⇒b a +a b <-1,与b a +ab>2(∵a ≠b ,且a >0,b >0)矛盾,应选D.12.(文)已知x ∈R ,A =(x +3)(x +7),B =x 2+9x +20,那么A 、B 的大小关系为( ) A .A >B B .A =B C .A <B D .与x 有关[答案] D[解析] A -B =(x +3)(x +7)-(x 2+9x +20)=x -1,当x >1时A >B ,当x =1时A =B ,当x <1时A <B ,应选D.(理)已知实数a 、b 、c 知足b +c =6-4a +3a 2,c -b =4-4a +a 2,那么a 、b 、c 的大小关系是( ) A .c ≥b >a B .a >c ≥b C .c >b >a D .a >c >b [答案] A[解析] 解法1:特值法:令a =0,那么b =1,c =5, ∴c >b >a ,排除B 、D ;令c =b ,那么a =2,∴b =c =5,也知足b >a ,排除C ,选A. 解法2:c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b ,已知两式作差得2b =2+2a 2,即b =1+a 2, ∵1+a 2-a =⎝ ⎛⎭⎪⎫a -122+34>0, ∴1+a 2>a ,∴b >a ,∴c ≥b >a .13.(2021·安徽名校模拟)已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,那么x 的取值范围为( )A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3) [答案] C[解析] 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4),那么f (a )>0关于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0且f (1)=x 2-3x +2>0即可,联立方程并解得x <1或x >3.二、填空题14.(文)假设关于x 的不等式2x 2-(2a +1)x +a <0的整数解有且仅有一、2,那么实数a 的取值范围是________.[答案] (2,3][解析] 将不等式变形为:(2x -1)(x -a )<0, 由题设条件知a >12,∴12<x <a ,∵不等式的整数解有且仅有一、2,∴2<a ≤3.(理)已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,比较S 3a 3与S 5a 5的大小,结果为________.[答案]S 3a 3<S 5a 5[分析] 能够利用等比数列前n 项和公式将两个式子表示出来,再作差进行比较,但应注意对公比的分类讨论.[解析] 当q =1时,S 3a 3=3,S 5a 5=5,因此S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 11-q 3a 1q 21-q-a 11-q 5a 1q 41-q=q 21-q 3-1-q 5q 41-q=-q -1q4<0,因此有S 3a 3<S 5a 5.综上可知S 3a 3<S 5a 5.三、解答题15.已知b >a >0,x >y >0,求证:xx +a >yy +b.[解析] ∵x >y >0,∴0<1x <1y,∵b >a >0,∴0<a x <b y,∴1<1+a x<1+b y,即1<x +a x<y +b y,∴xx +a >yy +b.16.(文)已知函数f (x )=(ax -1)e x ,a ∈R . (1)当a =1时,求函数f (x )的极值;(2)假设函数f (x )在区间(0,1)上是单调增函数,求实数a 的取值范围. [解析] (1)因为f ′(x )=(ax +a -1)e x ,因此当a =1时,f ′(x )=x e x ,令f ′(x )=0,那么x =0, 因此f (x ),f ′(x )的转变情形如下表:x (-∞,0) 0 (0,+∞) f ′(x ) - 0 + f (x )↘极小值↗因此x =0(2)因为f ′(x )=(ax +a -1)e x ,函数f (x )在区间(0,1)上是单调增函数, 因此f ′(x )≥0对x ∈(0,1)恒成立.又e x >0,因此只要ax +a -1≥0对x ∈(0,1)恒成立,解法一:设g (x )=ax +a -1,那么要使ax +a -1≥0对x ∈(0,1)恒成立,只要⎩⎪⎨⎪⎧g 0≥0,g 1≥0,成立,即⎩⎪⎨⎪⎧a -1≥0,2a -1≥0,解得a ≥1. 解法二:要使ax +a -1≥0对x ∈(0,1)恒成立, 因为x >0,因此a ≥1x +1对x ∈(0,1)恒成立,因为函数g (x )=1x +1在(0,1)上单调递减,∴g (x )≤1,∴a ≥1.(理)(2021·金华模拟)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)假设m =-1,n =2,求不等式F (x )>0的解集; (2)假设a >0,且0<x <m <n <1a,比较f (x )与m 的大小.[解析] (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n )(a ≠0), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m . 考纲要求1.了解现实世界和日常生活中的不等关系. 2.了解不等式(组)的实际背景.3.了解证明不等式的大体方式——比较法. 4.会从实际情境中抽象出一元二次不等式模型.5.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.6.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.补充材料1.实际应用中不等关系与数学语言间的转换将实际问题中的不等关系写成相应的不等式(组)时,应注意关键性的文字语言与对应数学符号之间的正确转换.2.利用不等式性质求数(式)的取值范围应用不等式的性质求多个变量线性组合的范围问题时,由于变量间彼此制约,“取等号”的条件会有所不同,故解此类题目要专门警惕.一样来讲,可采纳整体换元或待定系数法解决.3.数的大小比较比较数或式的大小时,能够利用不等式的性质进行比较;也能够作差(与0比)和作商(与1比)比较;还能够利用函数的单调性进行比较,要注意结合题目的特点选取适当的方式.4.含参数的不等式问题一样分为两类:一类是已知参数的取值范围,求不等式的解;另一类是求使不等式有解(或恒成立)的参数的取值范围,求解时要注意分类讨论.关于含参数的一元二次不等式,往往既要按二次项系数a 的正负分类,又要按判别式Δ的符号分类.5.恒成立问题一样地,a >f (x )恒成立,f (x )的最大值为M ,那么a >M ;a <f (x )恒成立,f (x )的最小值为m ,那么a <m .6.求解含参不等式恒成立问题的经常使用方式(1)变换主元,转化为一次函数问题;(2)转化为二次函数或二次方程,利用根的判别式或数形结合思想求解.(3)分离参变量,构造函数求最值.7.不等式的解法(1)分式不等式的解法先通分化为一边为f x g x ,一边为0的形式,再等价转化为整式不等式.注意A B >0⇔A ·B >0;A B<0⇔A ·B <0;A B ≥0⇔⎩⎪⎨⎪⎧ A ·B ≥0B ≠0;A B ≤0⇔⎩⎪⎨⎪⎧ A ·B ≤0B ≠0. 若是用去分母的方式,必然要考虑分母的符号.(2)高次不等式的解法只要求会解可化为一边为0,另一边可分解为一次或二次的积式的,解法用穿根法,要注意穿根时“奇过偶只是”.(3)含绝对值不等式的解法:一是令每一个绝对值式为0,找出其零点作为分界点,分段讨论;二是平方式.(4)含根号的不等式解法,一是换元法,二是平方式.(5)解含参数的不等式时,要对参数分类讨论(常见的有一次项系数含字母、二次项系数含字母、二次不等式的判别式Δ、指对不等式中的底数含参数等).(6)超越不等式讨论解的个数可用图解法.8.(1)无理不等式和含绝对值的不等式多数题目都能够用平方式求解,平方后要注意取值范围是不是发生转变.(2)关于不等式解集的选择题,大多能用查验排除法求解.(3)去掉绝对值号时能够用绝对值的概念.(4)含无理式时,必需注意概念域的制约.(5)注意方程的根、函数的零点,不等式解集的端点三者之间的关系.备选习题1.设a =log 32,b =ln2,c =5-12,那么( ) A .a <b <cB .b <c <aC .c <a <bD .c <b <a[答案] C[解析] a =log 32=ln2ln3<ln2=b , 又c =5-12 =15<12, a =log 32>log 33=12,因此c <a <b . 2.(2021·南昌市调研)假设存在实数x ∈[2,4],使x 2-2x +5-m <0成立,那么m 的取值范围为( )A .(13,+∞)B .(5,+∞)C .(4,+∞)D .(-∞,13)[答案] B [解析] ∵x ∈[2,4]时,x 2-2x +5=(x -1)2+4∈[5,13],又存在x ∈[2,4]时,使m >x 2-2x +5成立,∴m >5,应选B.3.设a +b <0,且b >0,那么( )A .b 2>a 2>abB .b 2<a 2<-abC .a 2<-ab <b 2D .a 2>-ab >b 2 [答案] D[解析] 由a +b <0,b >0,可得a <0,0<b <-a ,则b 2-a 2=(b -a )(a +b )<0,可知A 、C 错误,a 2+ab =a (a +b )>0,b 2+ab =b (b +a )<0,可知B 错误,D 正确.[点评] 可对a 、b 取特值查验.4.(2021·山东莱州一中质检)不等式ax 2+bx +c >0的解集为{x |2<x <4},那么不等式cx 2+bx +a <0的解集为( )A .{x |x >12或x <14} B .{x |x <14} C .{x |x >12} D .{x |12<x <14} [答案] A[解析] 由条件知a <0且b a =-6,c a=8,∴b =-6a ,c =8a ,∴不等式cx 2+bx +a <0化为8ax 2-6ax +a <0,∴8x 2-6x +1>0,∴x <14或x >12,应选A. 5.(2021·西安模拟)设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( ) A .(0,5π6) B .(-π6,5π6) C .(0,π)D .(-π6,π) [答案] D[解析] 由题设得0<2α<π,0≤β3≤π6, ∴-π6≤-β3≤0,∴-π6<2α-β3<π. 6.设A =log 202120141111+120142222+1,B =log 202120142222+120143333+1,那么A 与B 的大小关系为________. [答案] A >B[解析] 设20211111=x ,那么x >1, A =log 2021x +1x 2+1,B =log 2021x 2+1x 3+1, ∵x +1x 2+1-x 2+1x 3+1=x x -12x 2+1x 3+1>0,y =log 2021x 为增函数,∴log 2021x +1x 2+1>log 2021x 2+1x 3+1,即A >B .。
不等式的基本性质与解法总结不等式是数学中常见的一种数值关系表达形式,它描述了两个数或者数值表达式之间大小关系的不同情况。
在解决实际问题中,我们经常会遇到需要研究不等式的性质并解决不等式的问题。
本文将总结不等式的基本性质和解法,帮助读者更好地理解和运用不等式。
一、不等式的基本性质1. 加法性质:如果a<b,那么对于任意的实数c,a+c<b+c仍然成立;如果a>b,那么对于任意的实数c,a+c>b+c仍然成立。
2. 减法性质:如果a<b,那么对于任意的实数c,a-c<b-c仍然成立;如果a>b,那么对于任意的实数c,a-c>b-c仍然成立。
3. 乘法性质:如果a<b且c>0,那么ac<bc仍然成立;如果a<b且c<0,那么ac>bc仍然成立。
4. 除法性质:如果a<b且c>0,那么a/c<b/c仍然成立;如果a<b且c<0,那么a/c>b/c仍然成立。
5. 等式的性质:如果a=b且b=c,那么a=c仍然成立。
可以在不等式的两边加上或者减去相等的数值,不等式的关系仍然保持不变。
二、不等式的分类与解法不等式可以分为一元不等式和二元不等式两类。
一元不等式指只有一个变量的不等式,而二元不等式指含有两个变量的不等式。
下面将分别介绍一元不等式和二元不等式的解法。
1. 一元不等式的解法(1)图像法:将一元不等式转化为二元不等式,绘制出二元不等式的图像,通过观察图像得到一元不等式的解集。
(2)数线法:将一元不等式表示在数轴上,根据不等式的性质,确定不等式的解集。
(3)代数法:通过变形和运算等方式将不等式转化为更简单的形式,进而得到不等式的解集。
2. 二元不等式的解法(1)图像法:将二元不等式表示为平面上的区域,通过观察图像确定变量的取值范围,得到不等式的解集。
(2)代数法:利用一元不等式的解法,将一个变量表示成另一个变量的函数,通过求解一元不等式得到二元不等式的解集。
2022版新高考数学总复习--第七章 不等式§7.1 不等式及其解法— 五年高考 —考点1 不等式的概念和性质1.(多选题)(2020新高考Ⅰ,11,5分)已知a >0,b >0,且a +b =1,则 ( ) A.a 2+b 2≥12 B.2a -b>12C.log 2a +log 2b ≥-2D.√a +√b ≤√2 答案 ABD2.(2018天津文,5,5分)已知a =log 372,b =(14)13,c =lo g 1315,则a ,b ,c 的大小关系为 ( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b 答案 D3.(2017山东理,7,5分)若a >b >0,且ab =1,则下列不等式成立的是 ( )A .a +1b <b2a <log 2(a +b ) B .b2a <log 2(a +b )<a +1b C .a +1b<log 2(a +b )<b 2a D .log 2(a +b )<a +1b <b 2a 答案 B4.(2019北京理,14,5分)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 答案 ①130 ②15 以下为教师用书专用(1—3)1.(2019课标Ⅰ理,4,5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5-12√5-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 ( )A.165 cmB.175 cmC.185 cmD.190 cm答案 B 本题主要考查学生的数学应用意识、抽象概括能力、运算求解能力,以及方程思想;考查的核心素养为数学抽象、数学建模以及数学运算.由人体特征可知,头顶至咽喉的长度应小于头顶至脖子下端的长度,故咽喉至肚脐的长度应小于260.618≈42 cm ,可得到此人的身高应小于26+42+26+420.618≈178 cm ;同理,肚脐至足底的长度应大于腿长105 cm ,故此人的身高应大于105+105×0.618≈170 cm ,结合选项可知,只有B 选项符合题意,故选B . 一题多解 用线段代替人,如图.已知a b =c d =√5-12≈0.618,c <26,b >105,c +d =a ,设此人身高为h cm ,则a +b =h ,由{b >105,a ≈0.618b⇒a >64.89,由{c <26,c ≈0.618d⇒d <42.07,所以c +d <26+42.07=68.07,即a <68.07, 由{a <68.07,a ≈0.618b⇒b <110.15, 整理可得64.89+105<a +b <68.07+110.15, 即169.89<h <178.22(单位:cm ).故选B .2.(2015浙江文,6,5分)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c.在不同的方案中,最低的总费用(单位:元)是 ( )A.ax +by +czB.az +by +cxC.ay +bz +cxD.ay +bx +cz答案 B 用粉刷费用最低的涂料粉刷面积最大的房间,且用粉刷费用最高的涂料粉刷面积最小的房间,这样所需总费用最低,最低总费用为(az +by +cx )元,故选B .3.(2015北京文,10,5分)2-3,312,log 25三个数中最大的数是 .答案 log 25 解析 ∵2-3=18<1,1<312<2,log 25 >2,∴这三个数中最大的数为log 25.考点2 不等式的解法1.(2020浙江,9,4分)已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x -a )(x -b )(x -2a -b )≥0,则 ( ) A.a <0 B.a >0 C.b <0 D.b >0 答案 C2.(2019天津文,10,5分)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为 . 答案 (-1,23)以下为教师用书专用(1—7)1.(2014大纲全国文,3,5分)不等式组{x (x +2)>0,|x |<1的解集为( )A.{x|-2<x<-1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|x>1}答案C由x(x+2)>0得x>0或x<-2;由|x|<1得-1<x<1,所以不等式组的解集为{x|0<x<1},故选C.2.(2014浙江文,7,5分)已知函数f(x)=x3+ax2+bx+c,且0<f(-1)=f(-2)=f(-3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9答案C由0<f(-1)=f(-2)=f(-3)≤3,得0<-1+a-b+c=-8+4a-2b+c=-27+9a-3b+c≤3,由-1+a-b+c=-8+4a-2b+c,得3a-b-7=0①,由-1+a-b+c=-27+9a-3b+c,得4a-b-13=0②,由①②,解得a=6,b=11,∴0<c-6≤3,即6<c≤9,故选C.3.(2013重庆,7,5分)关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2-x1=15,则a= ()A.52B.72C.154D.152答案A解法一:∵不等式x2-2ax-8a2<0的解集为(x1,x2),∴x1,x2是方程x2-2ax-8a2=0的两根.由根与系数的关系知{x1+x2=2a,x1x2=-8a2,∴x2-x1=√(x1+x2)2-4x1x2=√(2a)2-4(-8a2)=15,又∵a>0,∴a=52,故选A.解法二:由x2-2ax-8a2<0,得(x+2a)(x-4a)<0,∵a>0,∴不等式x2-2ax-8a2<0的解集为(-2a,4a),又∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2),∴x 1=-2a ,x 2=4a.∵x 2-x 1=15,∴4a -(-2a )=15, 解得a =52,故选A .4.(2015江苏,7,5分)不等式2x 2-x<4的解集为 .答案 {x |-1<x <2} 解析 不等式2x 2-x<4可转化为2x2-x<22,利用指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.5.(2015广东,11,5分)不等式-x 2-3x +4>0的解集为 .(用区间表示) 答案 (-4,1)解析 不等式-x 2-3x +4>0等价于x 2+3x -4<0,解得-4<x <1.6.(2014湖南文,13,5分)若关于x 的不等式|ax -2|<3的解集为x -53<x <13,则a = . 答案 -3解析 依题意,知a ≠0.|ax -2|<3⇔-3<ax -2<3⇔-1<ax <5,当a >0时,不等式的解集为(-1a ,5a ),从而有{5a=13,-1a=-53,此方程组无解. 当a <0时,不等式的解集为(5a ,-1a ),从而有{5a=-53,-1a=13,解得a =-3.7.(2013广东理,9,5分)不等式x 2+x -2<0的解集为 . 答案 {x |-2<x <1}解析 x 2+x -2=(x +2)(x -1)<0,解得-2<x <1,故不等式的解集是{x |-2<x <1}.— 三年模拟 —A 组 考点基础题组考点1 不等式的概念和性质1.(2019福建厦门一模,4)已知a >b >0,x =a +b e b,y =b +a e a,z =b +a e b,则 ( )A.x <z <yB.z <x <yC.z <y <xD.y <z <x 答案 A2.(2021上海杨浦一模,13)设a >b >0,c ≠0,则下列不等式恒成立的是 ( )A.1a >1bB.ac 2>bc 2C.ac >bcD.c a <cb答案 B3.(多选题)(2020海南三模,9)设a ,b ,c 为实数且a >b ,则下列不等式一定成立的是 ( ) A.1a >1b B.2 020a -b>1C.ln a >ln bD.a (c 2+1)>b (c 2+1) 答案 BD考点2 不等式的解法1.(2021湖北4月调研,5)下列对不等关系的判断,正确的是 ( ) A.若1a <1b ,则a 3>b 3B.若|a |a 2>|b |b2,则2a<2bC.若ln a 2>ln b 2,则2|a |>2|b |D.若tan a >tan b ,则a >b 答案 C2.(2020山东全真模拟,5)若不等式ax 2+bx +c >0的解集是(-4,1),则不等式b (x 2-1)+a (x +3)+c >0的解集为( )A.(-43,1) B.(-∞,1)∪(43,+∞) C.(-1,4) D.(-∞,-2)∪(1,+∞) 答案 A3.(2021河北石家庄一模,4)“a >2”是“a +2a >3”的 ( ) A.充要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件 答案 C4.(多选题)(2021山东枣庄二模,9)已知a >0,b >0,a +b 2=1,则 ( )A.a +b <54 B.a -b >-1 C.√a ·b ≤12 D.√ab -2≥-√33 答案 BCDB 组 综合应用题组时间:20分钟 分值:35分一、单项选择题(每小题5分,共25分)1.(2020广东佛山质检一,2)已知x ,y ∈R ,且x >y >0,则 ( ) A.cos x -cos y >0 B.cos x +cos y >0 C.ln x -ln y >0 D.ln x +ln y >0 答案 C2.(2021广东揭阳4月联考,8)已知函数f (x )的定义域为R ,满足f (x )=f (2-x ),且对任意1≤x 1<x 2均有(x 1-x 2)·[f (x 1)-f (x 2)]<0成立,则满足f (2x -1)-f (3-x )≥0的x 的取值范围是 ( ) A.(-∞,-2)∪[23,+∞) B.(-∞,0)∪[43,+∞) C.[-2,23] D.[0,43] 答案 D3.(2020重庆巴蜀中学月考,7)已知实数a >b >0,则下列不等关系中错误的是 ( ) A.b a <b+4a+4 B.lga+b 2>lga+lgb2 C.a +1b >b +1a D.√a -√b >√a -b 答案 D4.(2020山东泰安一中月考,6)设m 为实数,若函数f (x )=x 2-mx +2在区间(-∞,2)上是减函数,对任意的x 1,x 2∈[1,m2+1],总有|f (x 1)-f (x 2)|≤4,则m 的取值范围为 ( ) A.[4,6] B.(4,6) C.(4,6] D.[4,6) 答案 A5.(2021浙江绍兴一模,10)已知a ,b ,c ∈R ,若关于x 的不等式0≤x +ax +b ≤cx -1的解集为[x 1,x 2]∪{x 3}(x 3>x 2>x 1>0),则 ( )A.不存在有序数组(a ,b ,c ),使得x 2-x 1=1B.存在唯一有序数组(a ,b ,c ),使得x 2-x 1=1C.有且只有两组有序数组(a ,b ,c ),使得x 2-x 1=1D.存在无穷多组有序数组(a ,b ,c ),使得x 2-x 1=1 答案 D二、多项选择题(共5分)6.(2021山东烟台一模,9)若0<a <b <1,c >1,则 ( )A.c a<c bB.ba c<ab cC.b -ac -a <bcD.log a c <log b c答案 ABC三、填空题(共5分)7.(2020江苏扬州江都大桥高级中学月考,15)已知1+2x+4x·a >0对一切x ∈(-∞,1]恒成立,则实数a 的取值范围是 . 答案 (-34,+∞)— 一年原创 —1.(2021 5·3原创题)下列命题中真命题的个数为 ( ) ①√e >32 ②ln π<23 ③ln 3<3e④20.1>log 32>lo g 13eA.0B.1C.2D.3 答案 D2.(2021 5·3原创题)已知函数f (x )={|x |-1,x ≤1,log 2x +2,x >1,则满足f (x )+f (x +1)>1的x 的取值范围为 ( )A.x <-2或x ≥0B.x >-2C.x <-2或x >0D.-2<x <0 答案 C3.(2021 5·3原创题)若关于x 的不等式3mx 2-2|x |+m ≥0的解集为R ,则实数m 的取值范围是 . 答案 [√33,+∞)4.(2021 5·3原创题)已知函数f (x )=2x+k ·2-x为奇函数,若关于x 的不等式f (4ax 2-2x-1)+f (1-2ax -2)<0只有一个整数解,则实数a 的取值范围为 . 答案 [1,2)5.(2021 5·3原创题)设函数f (x )=x 2-2mx +2m ,g (x )=mx -2m ,m ∈R . (1)当m >0时,对任意x 1,x 2∈[-2,0],恒有f (x 1)>-mg (x 2),求m 的取值范围;(2)若存在x 0∈R ,使得f (x 0)+g (x 0)<0与f (x 0)·g (x 0)>0同时成立,求m 的取值范围.解析 (1)f (x )=x 2-2mx +2m 图象的对称轴为直线x =m ,因为m >0,所以f (x )在[-2,0]上单调递减,所以在区间[-2,0]上, f (x )min =f (0)=2m. 因为-mg (x )=-m 2x +2m 2在[-2,0]上单调递减,所以在区间[-2,0]上,[-mg (x )]max =-mg (-2)=4m 2.由题意可知,在区间[-2,0]上, f (x )min >[-mg (x )]max ,所以2m >4m 2,又m >0,故0<m <12,故m 的取值范围为(0,12). (2)由f (x 0)+g (x 0)<0与f (x 0)·g (x 0)>0同时成立, 得f (x 0)<0且g (x 0)<0.①若m =0,则g (x )=0,不合题意,舍去. ②若m <0,则由g (x )<0可得x >2.原题可转化为在区间(2,+∞)上存在x 0,使得f (x 0)<0, 因为f (x )=x 2-2mx +2m 图象的对称轴为直线x =m (m <0),所以f (x )在(2,+∞)上单调递增, 所以f (2)<0,可得m >2,不合题意. ③若m >0,则由g (x )<0可得x <2.原题可转化为在区间(-∞,2)上存在x 0,使得f (x 0)<0. 当m ≥2时,由f (2)<0,解得m >2; 当0<m <2时,由f (m )<0, 解得m >2或m <0,不合题意.综上,m >2.故m 的取值范围是(2,+∞).解题思路 (1)分析函数f (x )和g (x )在区间[-2,0]上的单调性,将恒成立问题转化为最值问题,进而求解实数m 的取值范围.(2)问题转化为存在x 0,使得f (x 0)和g (x 0)同时小于0,由g (2)=0和函数g (x )的单调性,将问题转化为f (x )的零点问题.。
高考数学复习讲义 不等式【要点提炼】考点一 不等式的性质与解法1.不等式的倒数性质(1)a>b ,ab>0⇒1a <1b. (2)a<0<b ⇒1a <1b. (3)a>b>0,0<c<d ⇒a c >b d. 2.不等式恒成立问题的解题方法(1)f(x)>a 对一切x ∈I 恒成立⇔f(x)min >a ,x ∈I ;f(x)<a 对一切x ∈I 恒成立⇔f(x)max <a ,x ∈I.(2)f(x)>g(x)对一切x ∈I 恒成立⇔当x ∈I 时,f(x)的图象在g(x)的图象的上方.(3)解决恒成立问题还可以利用分离参数法.【热点突破】【典例】1 (1)若p>1,0<m<n<1,则下列不等式正确的是( )A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <m n C .m -p <n -p D .log m p>log n p(2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b)x -3b<0的解集是( )A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)【拓展训练】1 (1)已知函数f(x)=⎩⎪⎨⎪⎧ 3,x<12,1x ,x ≥12,则不等式x 2f(x)+x -2≤0的解集是________________. (2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2,65B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2}【要点提炼】考点二 基本不等式基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +A g x+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式求最值. 【典例】2 (1)下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +a b≥2b a ·a b =2 B .若a<0,则a +4a ≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2(2)(2019·天津)设x>0,y>0,x +2y =5,则x +12y +1xy 的最小值为________.【拓展训练】2 (1)(2020·北京市中国人民大学附属中学模拟)已知a>0,b>0,且a -b =1,则2a +1b的最小值为________. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 专题训练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( )A .{x|-1<x<3}B .{x|1<x<3}C .{x|x<-1或x>3}D .{x|x<1或x >3}2.下列命题中正确的是( )A .若a>b ,则ac 2>bc 2B .若a>b ,c<d ,则a c >b dC .若a>b ,c>d ,则a -c>b -dD .若ab>0,a>b ,则1a <1b 3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f(x)<0的解集为{x|x<-2或x>3},则f(10x)>0的解集为( )A .{x|x<-2或x>lg 3}B .{x|-2<x<lg 3}C .{x|x>lg 3}D .{x|x<lg 3} 4.若a>b>0,且ab =1,则下列不等式成立的是( )A .a +1b <b 2a <log 2(a +b) B.b 2a <log 2(a +b)<a +1bC .a +1b <log 2(a +b)<b 2aD .log 2(a +b)<a +1b <b 2a 5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( )A .a +b<ab<0B .ab<a +b<0C .a +b<0<abD .ab<0<a +b6.已知x>0,y>0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1127.已知a>-1,b>-2,(a +1)(b +2)=16,则a +b 的最小值是( )A .4B .5C .6D .78.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c的最大值为( )A .3 B.94C .1D .0 二、多项选择题9.设f(x)=ln x,0<a<b ,若p =f(ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f(a)+f(b)],则下列关系式中正确的是( )A .q =rB .p<qC .p =rD .p>q10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A .6B .7C .8D .911.(2020·威海模拟)若a ,b 为正实数,则a>b 的充要条件为( )A.1a >1bB .ln a>ln bC .aln a<bln bD .a -b<e a -e b12.(2020·新高考全国Ⅰ)已知a>0,b>0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2三、填空题 13.对于0<a<1,给出下列四个不等式:①log a (1+a)<log a ⎝ ⎛⎭⎪⎫1+1a ;②log a (1+a)>log a ⎝ ⎛⎭⎪⎫1+1a ;③a 1+a <11a a +;④a 1+a >a1+1a.其中正确的是________.(填序号) 14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m>0恒成立,则实数m 的取值范围是________.15.已知函数f(x)=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f(a -1)+f(2a 2)≤0,则实数a 的取值范围是________.16.已知实数x ,y 满足x>1,y>0且x +4y +1x -1+1y =11,则1x -1+1y 的最大值为________.。
第四节不等式的性质与基本不等式考试要求:1.理解不等式的概念,掌握不等式的性质.2.掌握基本不等式푎 ≤푎+2(a >0,b >0),能用基本不等式解决简单的最值问题.一、教材概念·结论·性质重现1.两个实数比较大小的依据(1)a -b >0⇔a >b .(2)a -b =0⇔a =b .(3)a -b <0⇔a <b .2.不等式的性质(1)对称性:a >b ⇔b <a .(2)传递性:a >b ,b >c ⇒a >c .(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇒a +c >b +d .(同向可加性)(4)可乘性:a >b ,c >0⇒ac >bc ,a >b >0,c >d >0⇒ac >bd .(正数同向可乘性)(5)可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥2).(6)可开方性:a >b >0푎(1)a >b ,ab >0⇒ 3.基本不等式푎 ≤푎+2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中푎+2称为正数a ,b 的算术平均数,푎 称为正数a ,b 的几何平均数.4.利用基本不等式求最值已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2�(简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是�24(简记:和定积最大).1.使用基本不等式求最值时,2.“当且仅当(1)푎2+ 22≥(a ,b ∈R ).(2) 푎+푎≥2(ab >0)(当且仅当a =b 时取等号).(3)21푎+1≤푎 ≤푎+2≤a >0,b >0).(4)若a >b >0,m >0,则 푎<+�푎+�; 푎>−�푎−�(b -m >0).二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)一个不等式的两边同时加上或乘同一个数,不等号方向不变.(×)(2)一个非零实数越大,则其倒数就越小.(×)(3)不等式a 2+b 2≥2ab 与푎+2≥푎 成立的条件是相同的.(×)(4)函数f (x )=sinx +4sin �的最小值为4.(×)2.设b <a ,d <c ,则下列不等式中一定成立的是()A.a -c <b -d B.ac <bd C.a +c >b +dD.a +d >b +cC 解析:由同向不等式具有可加性可知C 正确.3.当x >0时,函数f (x )=2��2+1有()A.最小值1B.最大值1C.最小值2D.最大值2B 解析:f (x )=2�+1�≤x =1�(x >0),即x =1时取等号,所以f (x )有最大值1.4.已知a ,b 为正实数,且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的关系是()A.P ≤Q B.P <Q C.P ≥Q D.P >QA解析:不妨取a =b =12,则P -Q =14(x +y )2-12x 2-12y 2=-14(x -y )2≤0,所以P ≤Q .5.若0<a<b,且a+b=1,将a,b,12,2ab,a2+b2从小到大排列为_______________.a<2ab<12<a2+b2<b解析:令a=13,b=23,代入2ab=49,a2+b2=59,所以a<2ab<12<a2+b2<b.考点1不等式的性质——基础性1.下列命题正确的是()A.若a>b,则1푎<1B.若a>b,则a2>b2C.若a>b,c<d,则a-c>b-dD.若a>b,c>d,则ac>bdC解析:对于A,若a>b,取a=1,b=-1,则1푎<1 不成立;对于B,若a>b,取a=0,b =-1,则a2>b2不成立;对于C,若a>b,c<d,则a-c>b-d,正确;对于D,若a>b,c>d,取a=1,b=-1,c=1,d=-2,则ac>bd不成立.2.(多选题)对于实数a,b,c,下列命题是真命题的为()A.若a>b,则ac<bcB.若ac2>bc2,则a>bC.若a<b<0,则a2>ab>b2D.若a>0>b,则|a|<|b|BC解析:当c=0时,ac=bc,A为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,B为真命题;若a<b<0,则a2>ab且ab>b2,即a2>ab>b2,C为真命题;当a=1,b=-1时,|a|=|b|,故D为假命题.3.(2022·济南质量检测)已知实数a,b,c满足a<b<c,且ab<0,那么下列各式中一定成立的是()A.푎 >푎�B.a(c-b)<0C.ac2>bc2D.ab(b-a)>0B解析:因为a<b<c,且ab<0,所以a<0<b<c.所以c-b>0,a<0,可得a(c-b)<0,选项B 正确;取a=-1,b=1,c=2,则푎 <푎�,ac2<bc2,ab(b-a)<0,即选项A,C,D都不正确.4.已知实数b>a>0,m<0,则mb________ma, −�푎−�______ 푎.(填“>”或“<”)<<解析:因为b >a >0,m <0,所以b -a >0.因为mb -ma =m (b -a )<0,所以mb <ma .因为−�푎−�−푎=<0,所以 −�푎−�< 푎.解决这类问题一是要充分利用不等式的性质,作差法比较两个代数式的大小.考点2利用基本不等式求最值——综合性考向1配凑法求最值(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________;23解析:因为0<x <1,所以4-3x >0,所以x (4-3x )=13·3�4−3�≤13=43,当且仅当3x =4-3x ,即x =23时,等号成立.(2)当�+�+1x =_______.4解析:��+1+9-1=5,当且仅当�+1=x =4时,等号成立.(1)依据:基本不等式.(2)技巧:通过添项、拆项、变系数、凑因子等方法凑成和为定值或积为定值的形式,即符合(1)已知a >0,b >0,a +b =1,则1푎+1的最小值为_________.4解析:因为a +b =1,所以1푎+1=+a +b a =b =12时,等号成立.(2)已知x +2y =xy (x >0,y >0),则2x +y 的最小值为_________.9解析:由x+2y =xy 得2�+1�=1,所以2x +y =(2x +y +=5+2��+2��≥5+2=9,当且仅当2��=2��,即x =y 时,等号成立,所以2x +y 的最小值为9.(1)根据已知条件或其变形确定定值(常数).(2)把确定的定值(常数)变形为(1)已知正数a ,b ,c 满足2a -b +c =0,则푎�2的最大值为()A.8B.2C.18D .16C 解析:因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以푎�2=푎�4푎2+4푎�+�2=14푎�+�푎+4≤=18,当且仅当c =2a >0时,等号成立.(2)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是_________.45解析:方法一:由5x 2y 2+y 4=1,可得x2=1−�45�2,由x 2≥0,可得y 2∈(0,1],则x 2+y2=1−�45�2+y 2=1+4�45�2=154�2+≥15·2=45,当且仅当y 2=12,x 2=310时,等号成立,故x 2+y 2的最小值为45.方法二:4=(5x 2+y 2)·4y 2=254(x 2+y 2)2,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310,等号成立,故x 2+y 2≥45,即x 2+y 2的最小值为45.(1)消元法,即根据条件建立两个量之间的函数关系,(2)如果出现多元的问题,(多选题)设正实数m ,n 满足m +n =2,则()A.1�+2�的最小值为22B.�+�的最小值为2C.��的最大值为1D.m 2+n 2的最小值为2CD 解析:因为正实数m ,n 满足m +n =2,所以1�+2�=m +n )×12=123+��+≥123+=3+222,当且仅当��=2��且m +n =2,即m =22-2,n =4-22时取等号,A 错误;(�+�)2=m +n +2��=2+2��≤2+2×�+�2=4,当且仅当m =n =1时取等号,所以�+�≤2,即最大值为2,B 错误;由mn=1,当且仅当m =n =1时取等号,此时��2取最大值12,C 正确;m 2+n 2=(m +n )2-2mn =4-2mn ≥2,当且仅当m =n =1时取等号,即m 2+n 2的最小值为2,D 正确.考点3利用基本不等式解决实际问题——应用性某公司生产的商品A ,当每件售价为5元时,年销售10万件.(1)据市场调查,价格每提高1元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的销售价格最多可提高多少元?(2)为了扩大该商品的影响力,公司决定对该商品的生产进行技术革新,将技术革新后生产的商品售价提高到每件x 元,公司拟投入12(x 2+x )万元作为技改费用,投入�4万元作为宣传费用.试问:技术革新后生产的该商品销售量m 至少应达到多少万件时,才能使技术革新后的该商品销售收入等于原销售收入与总投入之和?解:(1)设商品的单价提高a 元,则(10-a )·(5+a )≥50,解得0≤a ≤5.所以商品的单价最多可以提高5元.(2)由题意知,技术革新后的销售收入为mx 万元,若技术革新后的销售收入等于原销售收入与总投入之和,只需满足mx =12(x 2+x )+�4+50(x >5)即可,此时m =12x +34+50�≥234=434,当且仅当12x =50�,即x =10时等号成立.故销售量m 至少应达到434万件时,才能使技术革新后的销售收入等于原销售收入与总投入之和.(1)利用基本不等式解决实际问题时,的函数关系式,然后用基本不等式求解.1.司机甲、乙加油习惯不同,甲每次加定量的油,乙每次加固定钱数的油,恰有两次甲、乙同时加同单价的油,但这两次的油价不同,则从这两次加油的均价角度分析()A.甲合适B.乙合适C.油价先高后低甲合适D.油价先低后高甲合适B解析:设甲每次加m 升油,乙每次加n 元钱的油,第一次加油x 元/升,第二次加油y元/升.甲的平均单价为��+��2�=�+�2,乙的平均单价为2���+��=2���+�.因为x ≠y ,所以�+�22���+�=�2+�2+2��4��>4��4��=1,即乙的两次平均单价低,乙的方式更合适.2.(多选题)(2022·枣庄期末)如图所示,一座小岛距离海岸线上最近的点P 的距离是2km,从P 点沿海岸线正东方向12km 处有一个城镇.假设一个人驾驶小船的平均行进速度为3km/h,步行的平均速度为5km/h,时间t (单位:h)表示他从小岛到城镇的时间,x (单位:km)表示此人将船停在海岸距点P 处的距离.设u =�2+4+x ,v =�2+4-x ,则()A.函数v =f (u )为减函数B.15t -u -4v =32C.当x =1.5时,此人从小岛到城镇花费的时间最少D.当x =4时,此人从小岛到城镇花费的时间不超过3h AC 解析:因为u =�2+4+x ,v =�2+4-x ,所以�2+4=�+�2,x =�−�2,uv =4,则v =4�,其在(0,+∞)上是减函数,A 正确;t =�2+43+12−�5=�+�6+125−�−�10,整理得15t =u +4v +36,B 错误;15t =u +16�+36≥2�·16�+36=44,当且仅当u =16�,即u =4时等号成立,则4=�2+4+x ,解得x =1.5,C 正确;当x =4时,t =253+85,t -3=253−75=105−2115=500−44115>0,则t >3,D 错误.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的年平均利润的最大值是________万元.8解析:每台机器运转x 年的年平均利润为��=18-�25�而x >0,故��≤18-225=8,当且仅当x =5时等号成立,此时每台机器为该公司创造的年平均利润最大,最大值为8万元.拓展考点绝对值三角不等式定理1如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立定理2如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )|≤3×16+2×14=1,即|x +5y |≤1.证明绝对值不等式的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.(2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明.(3)转化为函数问题,数形结合进行证明.(多选题)(2022·新高考Ⅱ卷)若实数x ,y 满足x 2+y 2-xy =1,则()A.x +y ≤1B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1[四字程序]读想算思若实数x ,y 满足x 2+y2-xy =1不等式的性质、基本不等式、配方法的应用x 2+y 2,xy ,(x ±y )2的关系转化与化归x +y ≤1;x +y ≥-2;x 2+y 2≤2;x 2+y 2≥11.构造不等式.2.代数换元.3.三角换元1.构造关于所求代数式的不等式.2.令x +y =t 消y ,依据关于x 的方程有解列不等式.3.求xy 的范围,把x +y ,x 2+y 2看作关于xy 的函数.4.三角换元1.利用基本不等式可以实现积化和、和化积、和化和.2.三角代换的适用条件和新变元范围的确定思路参考:利用xy ,xy ≤�2+�22构造关于x +y ,x 2+y2的不等式,解不等式求范围.BC 解析:由x 2+y 2-xy =1,得(x +y )2-1=3xy ,解得-2≤x +y ≤2,当且仅当x=y 时,取等号,即当x =y =-1时,x +y =-2,当x =y =1时,x +y =2,所以A 错误,B 正确.由x 2+y 2-xy =1,得(x 2+y 2)-1=xy ≤�2+�22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确.当x y x 2+y 2=23<1,D 错误.故选BC.思路参考:令x +y =t 消y ,依据关于x 的方程有解列不等式.BC 解析:令x +y =t ,则y =t -x ,代入x 2+y 2-xy =1得关于x 的方程3x 2-3tx +(t 2-1)=0,则Δ=(-3t )2-4×3×(t 2-1)≥0,解得-2≤t ≤2,即-2≤x +y ≤2.令x 2+y 2=m ,则由x 2+y 2-xy =1得xy =m -1,于是有m ≥2|m -1|,解得23≤m ≤2,即x 2+y 2232,所以AD 错误,BC 正确.故选BC.思路参考:求xy 的范围,把x +y ,x 2+y 2看作关于xy 的函数,求函数的值域得范围.BC解析:由xy +1=x 2+y 2≥2|xy |得xy ∈−13,1,则x 2+y 2=xy 232,(x +y )2=x 2+y 2+2xy =3xy +1∈[0,4],即x +y ∈[-2,2],所以AD 错误,BC 正确.故选BC.1.利用均值不等式,通过恒等变形及配凑,使“和”或“积”为定值,是求解最值问题的常用方法.其中常见的变形手段有拆项、并项、配式及配系数等.2.基于新课程标准,求最值问题一般要有对代数式的变形能力、推理能力和表达能力,本题的解答体现了逻辑推理、数学运算的核心素养.已知x >0,y >1,且x +2y =xy +1,则x +y 的最小值为_________.5解析:令x +y =t ,则x =t -y .将x =t -y 代入x +2y =xy +1,得t +y =ty -y 2+1,即y 2+(1-t )y +t -1=0,Δ=(1-t )2-4(t -1)=t 2-6t +5≥0,得t ≤1(舍去)或t ≥5.故x +y 的最小值为5.课时质量评价(四)A 组全考点巩固练1.(2023·日照模拟)若a ,b ,c 为实数,且a <b ,c >0,则下列不等关系一定成立的是()A.a +c <b +c B.1푎<1C.ac >bc D.b -a >cA解析:对于A,因为a <b ,c =c ,所以由不等式的性质可得,a +c <b +c ,故A 正确;对于B,令a =-2,b =-1,满足a <b ,1푎>1,故B 错误;对于C,令a =-2,b =1,c =1,满足a <b ,c >0,但ac <bc ,故C 错误;对于D,令a =1,b =2,c =1,满足a <b ,c >0,但b -a =c ,故D 错误.故选A.2.若x >0,y >0,则“x +2y =22��”的一个充分不必要条件是()A.x =y B.x =2y C.x =2且y =1D.x =y 或y =1C 解析:因为x >0,y >0,所以x +2y ≥22��,当且仅当x =2y 时,等号成立.故“x =2且y =1”是“x +2y =22��”的一个充分不必要条件.3.(2022·滨州三校高三联考)已知a >0,b >0,若不等式4푎+1≥�푎+恒成立,则m 的最大值为()A.10B.12C.16D.9D解析:由已知a >0,b >0,若不等式4푎+1≥�푎+ 恒成立,则ma +b )恒成立,转化成求y a +b )的最小值.y a +b )=5+4 푎+푎≥5+2当且仅当a=2b 时,等号成立,所以m ≤9.故选D.4.(多选题)已知1푎<1<0,则下列结论正确的有()A.a <b B.a +b <ab C.|a |>|b |D.ab <b 2BD 解析:由1푎<1<0,得b <a <0,所以a +b <0<ab ,|b |>|a |,b 2>ab .因此BD 正确,AC 不正确.5.《几何原本》中的几何代数法(以几何方法研究代数问题)成了后世数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示,在AB 上取一点C ,使得AC =a ,BC =b,过点C 作CD ⊥AB 交圆周于点D ,连接OD .作CE ⊥OD 交OD 于点E ,则下列不等式可以表示CD ≥DE 的是()A.푎 ≥2푎푎+(a >0,b >0)B.푎+2푎 (a >0,b >0)≥푎+2(a >0,b >0)D.a 2+b 2≥2ab (a >0,b >0)A解析:连接DB ,因为AB 是圆O 的直径,所以∠ADB =90°.在Rt△ADB 中,中线OD =퐴2=푎+2.由射影定理可得CD 2=AC ·BC =ab .所以CD =푎 .在Rt△DCO 中,由射影定理可得CD 2=DE ·OD ,即DE =��2푂�=푎푎+ 2=2푎푎+.由CD ≥DE 得푎 ≥2푎푎+.6.(2023·济南模拟)若正数a ,b 满足ab =4,则1푎+9的最小值为_________.3解析:因为a >0,b >0,且ab =4,所以1푎+9≥21푎·9 =2×푎=2×4=3,当且仅当1푎=9,即a =23,b =6时取“=”,所以1푎+9的最小值为3.7.若a >0,b >0,则1푎+푎2+b 的最小值为_________.22解析:因为a >0,b >0,所以1푎+푎2+b ≥21푎·푎 2+b =2+b ≥22· =22,当且仅当1푎=푎2且2=b ,即a =b =2时等号成立,所以1푎+푎2+b 的最小值为22.8.已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是_________.3解析:由x 2+2xy -3=0,得y =3−�22�=32�−12x ,则2x +y =2x +32�−12x =3�2+32�≥23�2·32�=3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.9.(2022·唐山模拟)已知a >0,b >0,c >0,d >0,a 2+b 2=ab +1,cd >1.(1)求证:a +b ≤2;(2)判断等式푎�+ =c +d 能否成立,并说明理由.(1)证明:由题意得(a +b )2=3ab 푎+ 2+1,当且仅当a =b 时,等号成立.解得(a +b )2≤4.又a >0,b >0,所以a +b ≤2.(2)解:不能成立.理由:a >0,b >0,c >0,d >0,由基本不等式得푎�+ ≤푎+�2++2,当且仅当a =c 且b=d 时等号成立.因为a +b ≤2,所以푎�+ ≤1+�+2.因为c >0,d >0,cd >1,所以c +d =�+2+�+2≥�+2+� >�+2+1≥푎�+ ,故푎�+ =c +d 不能成立.B 组新高考培优练10.已知正实数a ,b 满足a +b =3,则11+푎+44+的最小值为()A.1B.78C.98D.2C解析:因为a+b=3,所以(1+a)+(4+b)=8,所以11+푎+44+=18[(1+a)+(4+b=185+4+1+푎+≥18×(5+4)=98,当且仅当4+b=2(1+a),即2a-b=2,即a=53,b=43时等号成立.11.(2022·滨州联考)已知a>0,b>0,若不等式4푎+1≥�푎+ 恒成立,则m的最大值为() A.10B.12C.16D.9D解析:由已知a>0,b>0,若不等式4푎+1 ≥�푎+ 恒成立,则ma+b)恒成立,转化成求y a+b)的最小值.y a+b)=5+4 푎+푎 ≥5+2当且仅当a =2b时,等号成立,所以m≤9.故选D.12.(多选题)(2023·重庆模拟)已知正实数a,b,c满足a2-ab+4b2-c=0,当�푎 取最小值时,下列说法正确的是()A.a=4bB.c=6b2C.a+b-c的最大值为34D.a+b-c的最大值为38BD解析:对于A,由a2-ab+4b2-c=0,得c=a2+4b2-ab,则�푎 =푎 +4 푎-1≥2-1=3,当且仅当푎 =4푎,即a=2b时等号成立,故A不正确;对于B,当�푎 取最小值时,由�푎 =3,푎=2 ,得c=6b2,故B正确;对于C,D,a+b-c=2b+b-6b2=-6b2+3b=-6+38≤38,当且仅当a=12,b=14,c=38时等号成立,所以(a+b-c)max=38,故C不正确,D正确.13.若不等式1�+11−4�-m≥0对x∈0m的最大值为()A.7B.8C.9D.10C解析:将不等式化为1�+11−4�≥m,只需当x∈0m+即可.由1�+11−4�=+x+1-4x)=4+1−4��+4�1−4�+1≥5+2=5+4=9,当且仅当x =16时,等号成立,故m ≤9.故m 的最大值为9.故选C.14.(2022·贵阳模拟)已知正实数x ,y 满足等式1�+3�=2.(1)求xy 的最小值;(2)若3x +y ≥m 2-m 恒成立,求实数m 的取值范围.解:(1)2=1�+3�≥2xy ≥3,当且仅当x =1,y =3时等号成立,所以xy 的最小值为3.(2)3x +y =12(3x +y=126+9��≥126+x =1,y =3时等号成立,即(3x +y )min =6,所以m 2-m ≤6,所以-2≤m ≤3.15.已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x 件产品的销售收入是R (x )=−14�2+500x (单位:元),P (x )为每天生产x 件产品的平均利润(平均利润=总利润÷总产量).销售商从工厂每件a 元进货后又以每件b 元销售,b =a +λ(c -a ),其中c 为最高限价(a <b <c ),λ为销售乐观系数.据市场调查,λ由当b -a 是c -b ,c -a 的比例中项时来确定.(1)每天生产量x 为多少时,平均利润P (x )取得最大值?求P (x )的最大值.(2)求乐观系数λ的值.(3)若c =600,当厂家平均利润最大时,求a 与b 的值.解:(1)依题意,总利润为-14x 2+500x -100x -40000=-14x 2+400x -40000,所以P (x )=−14�2+400�−40000�=-14x -40000�+400≤-200+400=200.当且仅当14x =40000�,即x=400时,等号成立,故每天生产量为400件时,平均利润最大,最大值为200元.(2)由b =a +λ(c -a )得λ=−푎�−푎.因为b -a 是c -b ,c -a 的比例中项,所以(b -a )2=(c -b )(c -a ),两边除以(b -a )2,得−푎·�−푎−푎=−1·�−푎−푎,所以−1·1�,解得λ=5−12.(3)由(1)知,当x =400时,厂家平均利润最大,所以a =40000�+100+P (x )=40000400+100+200=400(元).每件产品的利润为b -a =λ(c -a )=100(5-1),所以b =100(5+3),所以a =400,b =100(5+3).。
第1节不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一二次不等式模型;3.通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的算法框图.知识梳理1.实数的大小顺序与运算性质的关系(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c >d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥1);(6)可开方:a>b>0⇒n∈N,n≥2).3.三个“二次”间的关系二次函数y =ax 2+bx +c (a >0)的图像一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2}∅∅[微点提醒]1.有关分数的性质(1)若a >b >0,m >0,则b a <b +m a +m ;b a >b -ma -m(b -m >0).(2)若ab >0,且a >b ⇔1a <1b.2.对于不等式ax 2+bx +c >0,求解时不要忘记a =0时的情形. 3.当Δ<0时,不等式ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)a >b ⇔ac 2>bc 2.( )(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( ) (3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R .( )(4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ac 2>bc 2.(3)若方程ax 2+bx +c =0(a <0)没有实根,则不等式ax 2+bx +c >0(a <0)的解集为∅.(4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 答案 (1)× (2)√ (3)× (4)×2.(必修5P72思考交流改编)若a >b >0,c <d <0,则一定有( )A.a d >b cB.a d <b cC.a c >b dD.a c <b d 解析 因为c <d <0,所以0>1c >1d,两边同乘-1,得-1d>-1c>0,又a >b >0,故由不等式的性质可知-a d >-bc >0.两边同乘-1,得a d <bc. 答案 B 3.(必修5P113A1改编)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12x -1≤0,B ={x |x 2-x -6<0},则A ∩B =( ) A.(-2,3) B.(-2,2) C.(-2,2]D.[-2,2]解析 因为A ={x |x ≤2},B ={x |-2<x <3},所以A ∩B ={x |-2<x ≤2}=(-2,2]. 答案 C4.(2018·抚州联考)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2B.1a <1bC.b a >a bD.a 2>ab >b 2解析 c =0时,A 项不成立; 1a -1b =b -a ab>0,选项B 错;b a -a b =b 2-a 2ab =(b +a )(b -a )ab<0,选项C 错. 由a <b <0,∴a 2>ab >b 2.D 正确. 答案 D5.(2019·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为________.解析 由2x 2-x -3>0,得(x +1)(2x -3)>0, 解得x >32或x <-1.∴不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x |x >32或x <-1.答案⎩⎨⎧⎭⎬⎫x |x >32或x <-16.(2018·汉中调研)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是______.解析 若a =0,则f (x )=-1≤0恒成立, 若a ≠0,则由题意,得⎩⎪⎨⎪⎧a <0,Δ=a 2+4a ≤0,解得-4≤a <0, 综上,得a ∈[-4,0]. 答案 [-4,0]考点一 不等式的性质多维探究角度1 比较大小及不等式性质的简单应用【例1-1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A.c ≥b >a B.a >c ≥b C.c >b >aD.a >c >b(2)(一题多解)若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b;④ln a 2>ln b 2.其中正确的不等式是( )A.①④B.②③C.①③D.②④解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎪⎫a -122+34>0, ∴b >a ,∴c ≥b >a .(2)法一 因为1a <1b<0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A ,B ,D.法二 由1a <1b<0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b <0,则-1a >-1b>0,所以a -1a >b -1b,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确. 答案 (1)A (2)C角度2 利用不等式变形求范围【例1-2】 (一题多解)设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.解析 法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4. ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10. 法二由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 法三由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示, 当f (-2)=4a -2b 过点A ⎝ ⎛⎭⎪⎫32,12时, 取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]规律方法 1.比较两个数(式)大小的两种方法2.与充要条件相结合问题,用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.3.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4.在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.【训练1】 (1)(2019·东北三省四市模拟)设a ,b 均为实数,则“a >|b |”是“a 3>b 3”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2018·天一测试)已知实数a ∈(1,3),b ∈⎝ ⎛⎭⎪⎫18,14,则ab 的取值范围是________.解析 (1)a >|b |能推出a >b ,进而得a 3>b 3;当a 3>b 3时,有a >b ,但若b <a <0,则a >|b |不成立,所以“a >|b |”是“a 3>b 3”的充分不必要条件.(2)依题意可得4<1b <8,又1<a <3,所以4<ab<24.答案 (1)A (2)(4,24)考点二 一元二次不等式的解法【例2-1】 (1)(2019·河南中原名校联考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.(2)已知不等式ax 2-bx -1>0的解集是{x |-12<x <-13},则不等式x 2-bx -a ≥0的解集是________.解析 (1)设x <0,则-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-(x 2+2x ). 又f (0)=0. 于是不等式f (x )>x等价于⎩⎪⎨⎪⎧x >0,x 2-2x >x 或⎩⎪⎨⎪⎧x <0,-x 2-2x >x ,解得x >3或-3<x <0.故不等式的解集为(-3,0)∪(3,+∞).(2)由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=ba,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.答案 (1)(-3,0)∪(3,+∞) (2){x |x ≥3或x ≤2} 【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1满足题意; 当2a<-1,即-2<a <0时,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a 或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a .规律方法 1.解一元二次不等式的一般方法和步骤 (1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R 或∅). (3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【训练2】 (1)不等式x +5(x -1)2≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12B.⎣⎢⎡⎦⎥⎤-12,3C.⎣⎢⎡⎭⎪⎫12,1∪(1,3]D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3](2)(2019·铜川一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A.(-∞,-1)∪(3,+∞) B.(1,3) C.(-1,3)D.(-∞,1)∪(3,+∞)解析 (1)不等式可化为2x 2-5x -3(x -1)2≤0,即(2x +1)(x -3)(x -1)2≤0, 解得-12≤x <1或1<x ≤3.(2)关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0, ∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3, ∴所求不等式的解集是(-1,3). 答案 (1)D (2)C考点三 一元二次不等式恒成立问题多维探究角度1 在实数R 上恒成立【例3-1】 (2018·大庆实验中学期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2)D.(-2,2]解析 当a -2=0,即a =2时,-4<0恒成立;当a -2≠0,即a ≠2时,则有⎩⎪⎨⎪⎧a -2<0,Δ=[-2(a -2)]2-4×(a -2)×(-4)<0,解得-2<a <2.综上,实数a 的取值范围是(-2,2]. 答案 D角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________.解析 要使f (x )<-m +5在[1,3]上恒成立, 故mx 2-mx +m -6<0,则m ⎝⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 法一 令g (x )=m ⎝⎛⎭⎪⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0.法二因为x 2-x +1=⎝⎛⎭⎪⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 . 答案⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞)D.(1,3)解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立, 得f (-1)=x 2-5x +6>0, 且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.答案 C规律方法 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)(2019·河南豫西南五校联考)已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( )A.[0,1]B.(0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)(2)(2019·安庆模拟)若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎥⎤0,12恒成立,则a 的最小值是( ) A.0B.-2C.-52D.-3解析 (1)当k =0时,不等式kx 2-6kx +k +8≥0可化为8≥0,其恒成立,当k ≠0时,要满足关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,只需⎩⎪⎨⎪⎧k >0,Δ=36k 2-4k (k +8)≤0,解得0<k ≤1.综上,k 的取值范围是[0,1]. (2)由于x ∈⎝⎛⎦⎥⎤0,12,若不等式x 2+ax +1≥0恒成立,则a ≥-⎝ ⎛⎭⎪⎫x +1x ,x ∈⎝⎛⎦⎥⎤0,12时恒成立,令g (x )=x +1x ,x ∈⎝⎛⎦⎥⎤0,12,易知g (x )在⎝ ⎛⎦⎥⎤0,12上是减函数,则y =-g (x )在⎝ ⎛⎦⎥⎤0,12上是增函数.∴y =-g (x )的最大值是-⎝ ⎛⎭⎪⎫12+2=-52. 因此a ≥-52,则a 的最小值为-52.答案 (1)A (2)C [思维升华]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单. [易错防范]1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.2.含参数的不等式要注意选好分类标准,避免盲目讨论.基础巩固题组 (建议用时:40分钟)一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( ) A.f (x )=g (x ) B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ). 答案 B2.(2019·北京东城区综合练习)已知x ,y ∈R ,那么“x >y ”的充要条件是( ) A.2x>2yB.lg x >lg yC.1x >1yD.x 2>y 2解析 因为2x>2y⇔x >y ,所以“2x>2y ”是“x >y ”的充要条件,A 正确;lg x >lg y ⇔x >y >0,则“lg x >lg y ”是“x >y ”的充分不必要条件,B 错误;“1x >1y”和“x 2>y 2”都是“x >y ”的既不充分也不必要条件.答案 A3.不等式|x |(1-2x )>0的解集为( )A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-∞,12C.⎝ ⎛⎭⎪⎫12,+∞D.⎝⎛⎭⎪⎫0,12解析 当x ≥0时,原不等式即为x (1-2x )>0,所以0<x <12;当x <0时,原不等式即为-x (1-2x )>0,所以x <0,综上,原不等式的解集为(-∞,0)∪⎝⎛⎭⎪⎫0,12.答案 A4.(2018·延安质检)若实数m ,n 满足m >n >0,则( ) A.-1m<-1nB.m -n <m -nC.⎝ ⎛⎭⎪⎫12m>⎝ ⎛⎭⎪⎫12nD.m 2<mn解析 取m =2,n =1,代入各选择项验证A ,C ,D 不成立.只有B 项成立(事实上2-1<2-1). 答案 B5.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)解析 易知f (x )在R 上是增函数,∵f (2-x 2)>f (x ), ∴2-x 2>x ,解得-2<x <1,则实数x 的取值范围是(-2,1). 答案 D 二、填空题6.若0<a <1,则不等式(a -x )⎝⎛⎭⎪⎫x -1a >0的解集是________.解析 原不等式可化为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a.答案⎝⎛⎭⎪⎫a ,1a7.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________. 解析 由题意知k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1, 所以-1<k <1. 答案 (-1,1)8.(2019·宜春质检)设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.解析 令t =cos x ,t ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⇒⎩⎪⎨⎪⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 答案 (-∞,-2] 三、解答题9.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.故a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解(1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝⎛⎭⎪⎫1+850x .因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,解得0≤x ≤2.所以y =f (x )=40(10-x )(25+4x ), 定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x的取值范围是⎣⎢⎡⎦⎥⎤12,2.能力提升题组 (建议用时:20分钟)11.已知0<a <b ,且a +b =1,则下列不等式中正确的是( )A.log 2a >0B.2a -b<12C.log 2a +log 2b <-2D.2a b +b a <12解析 由题意知0<a <1,此时log 2a <0,A 错误;由已知得0<a <1,0<b <1,所以-1<-b <0,又a <b ,所以-1<a -b <0,所以12<2a -b<1,B 错误;因为0<a <b ,所以a b +ba >2a b ·b a =2,所以2a b +b a>22=4,D 错误;由a +b =1>2ab ,得ab <14,因此log 2a +log 2b =log 2(ab )<log 214=-2,C 正确.答案 C12.(2019·保定调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A.(-∞,-2)B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞) 解析 因为f (x )在R 上为奇函数,且在[0,+∞)上为增函数,所以f (x )在R 上是增函数,结合题意得-4t >2m +mt 2对任意实数t 恒成立⇒mt 2+4t +2m <0对任意实数t 恒成立⇒⎩⎪⎨⎪⎧m <0,Δ=16-8m 2<0⇒m ∈(-∞,-2). 答案 A13.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是________.解析 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32, ∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232, ∴3x +2y 的取值范围为⎝ ⎛⎭⎪⎫-32,232. 答案 ⎝ ⎛⎭⎪⎫-32,232 14.(2019·济南质检)已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=e x.若对任意x ∈[a ,a +1],恒有f (x +a )≥f (2x )成立,求实数a 的取值范围.解 因为函数f (x )是偶函数,故函数图像关于y 轴对称,且在(-∞,0]上单调递减,在[0,+∞)上单调递增.所以由f (x +a )≥f (2x )可得|x +a |≥2|x |在[a ,a +1]上恒成立, 从而(x +a )2≥4x 2在[a ,a +1]上恒成立,化简得3x 2-2ax -a 2≤0在[a ,a +1]上恒成立, 设h (x )=3x 2-2ax -a 2,则有⎩⎪⎨⎪⎧h (a )=0≤0,h (a +1)=4a +3≤0,解得a ≤-34. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34.。
高考数学总复习 7-1 不等式的性质及解法但因为测试 新人教B 版1.(2011·马鞍山二中月考)设a ,b ∈R ,现给出下列五个条件:①a +b =2;②a +b>2;③a +b>-2;④ab>1;⑤log a b<0,其中能推出:“a ,b 中至少有一个大于1”的条件为( )A .②③④B .②③④⑤C .①②③⑤D .②⑤[答案] B[解析] ①a +b =2可能有a =b =1;②a +b>2时,假设a≤1,b≤1,则a +b≤2矛盾;③a +b>-2可能a<0,b<0;④ab>1,可能a<0,b<0;⑤log a b<0,∴0<a<1,b>1或a>1,0<b<1,故②⑤能推出.2.(文)(2011·湖北八校联考)若a<b<0,则下列不等式中不一定成立的是( ) A.1a >1bB.1a -b >1bC.-a>-bD.|a|>-b [答案] B[解析] 取a =-2,b =-1,逐一检验即可知选B.(理)(2011·辽宁六校模考)若a>b ,则下列不等式正确的是( ) A.1a <1b B .a 3>b 3 C .a 2>b 2 D .a>|b| [答案] B[解析] 若a =1,b =-3,则1a >1b ,a 2<b 2,a<|b|,知A 、C 、D 错误;对于函数f(x)=x 3,f ′(x)=3x 2≥0,故函数f(x)=x 3为增函数,若a>b ,则a 3>b 3,故选B.3.(2011·重庆二诊)设0<b<a<1,则下列不等式成立的是( ) A .ab<b 2<1 B.12<(12)a <(12)b C .a 2<ab<1 D .log 12 b <log 12 a <0[答案] B[解析] 依题意得ab -b 2=b(a -b)>0,∴ab>b 2,因此A 不正确;同理可知C 不正确;由函数y =(12)x 在R 上是减函数得,当0<b<a<1时,有(12)0>(12)b >(12)a >(12)1,即12<(12)a <(12)b ,因此B 正确;同理可知D 不正确.综上所述,选B.[点评] 可取特值a =12,b =14检验.4.(文)(2011·青岛模拟)已知不等式ax 2-bx -1≥0的解集是[-12,-13],则不等式x 2-bx -a<0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C .(13,12)D .(-∞,13)∪(12,+∞)[答案] A[解析] 由题意知-12、-13是方程ax 2-bx -1=0的根,由韦达定理得,-12+(-13)=ba ,-12×(-13)=-1a. ∴a =-6,b =5,不等式x 2-bx -a<0即为x 2-5x +6<0,∴2<x<3.(理)(2010·山东肥城联考)关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,则a 的最大值与最小值的和是( )A .2B .1C .0D .-1[答案] C[解析] 方程x 2-ax -20a 2=0的两根是x 1=-4a ,x 2=5a ,则由关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,得|x 1-x 2|=|9a|≤9,即-1≤a≤1,且a≠0,故选C.5.(文)(2011·湘潭月考)不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4)B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)[答案] B[解析] ①当x -2>0,即x>2时,不等式可化为(x -2)2≥4,∴x≥4;②当x -2<0,即x<2时,不等式可化为(x -2)2≤4,∴0≤x<2.[点评] 去分母解不等式必须先考虑分母的符号.(理)若关于x 的不等式(m -1)x<4x -x 2的解集为{x|0<x<2},则实数m 的值是( ) A.12 B .1 C .2 D .0[答案] C[解析] 在同一平面直角坐标系中画出函数y =4x -x 2和y =(m -1)x 的图象,结合题意及图象可知,函数y =(m -1)x 的图象必经过点(2,2),即有2(m -1)=2,求得m =2.故选C.6.(文)(2011·泉州质检)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M<NB .M>NC .M =ND .不确定[答案] B[解析] 由题意得M -N =a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1)>0,故M>N ,选B. (理)已知0<a<1b ,且M =11+a +11+b ,N =a 1+a +b 1+b ,则M 、N 的大小关系是( )A .M<NB .M>NC .M =ND .不确定 [答案] B[解析] ∵0<a<1b ,∴ab<1,a>0,b>0,∴M -N =1-a 1+a +1-b1+b=1-a 1+b +1+a 1-b 1+a 1+b =2 1-ab1+a 1+b>0,∴M>N.7.(文)不等式|x -1x +2|>x -1x +2的解集为A ,不等式|log 2x|<2的解集为B ,则A∩B =________.[答案] {x|14<x<1}[解析] ∵|x -1x +2|>x -1x +2,∴x -1x +2<0,∴-2<x<1,∵|log 2x|<2,∴-2<log 2x<2,∴14<x<4,∴A∩B ={x|14<x<1}.(理)(2010·湖北黄冈)若规定⎪⎪⎪⎪⎪⎪a bc d =|ad -bc|,则不等式log 2⎪⎪⎪⎪⎪⎪111x <0的解集为________.[答案] (0,1)∪(1,2)[解析] 据题意⎪⎪⎪⎪⎪⎪111x =|x -1|,∴不等式log 2⎪⎪⎪⎪⎪⎪111x <0化为log 2|x -1|<0, ∴0<|x -1|<1,∴1<x<2或0<x<1.8.(2011·海淀抽检)若关于x 的不等式4x -2x +1-a≥0在[1,2]上恒成立,则实数a 的取值范围为________.[答案] (-∞,0][解析] ∵4x -2x +1-a≥0在[1,2]上恒成立,∴4x -2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1.∵1≤x≤2,∴2≤2x ≤4.由二次函数的性质可知:当2x =2,即x =1时,y 有最小值0,∴a ∈(-∞,0]. 9.(文)已知f(x)=⎩⎨⎧1 x≥0 0 x <0 ,则不等式xf(x)+x≤2的解集是________.[答案] (-∞,1][解析] 原不等式化为①⎩⎨⎧ 2x≤2x≥0或②⎩⎪⎨⎪⎧x≤2,x<0它们的解集分别为[0,1],(-∞,0),取并集得原不等式的解集为(-∞,1]. (理)(2010·江西联考)已知符号函数sgnx =⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,则不等式(x +1)sgnx>2的解集是________.[答案] {x|x>1或x<-3}[解析] 当x>0时,x +1>2,所以x>1;当x =0时,无解;当x<0时,-x -1>2,所以x<-3,综上可知原不等式的解集是{x|x>1或x<-3}.10.已知关于x 的不等式x +2m >1+x -5m 2(1)解这个不等式;(2)当此不等式的解集为{x|x>5}时,求实数m 的值. [解析] (1)原不等式可化为(m -1)x>m 2-2m -5①若m<1且m≠0,则不等式的解为x<m 2-2m -5m -1;②若m>1,则不等式的解为x>m 2-2m -5m -1;③若m =1,则不等式的解为x ∈R.(2)如果原不等式的解为x>5,则⎩⎪⎨⎪⎧m>1m 2-2m -5m -1=5∴m =7即原不等式解集为{x|x>5}时,m 的值为7.11.(文)(2011·四川成都期末)已知a>b>0,且ab =1,设c =2a +b,P =log c a ,N =log c b ,M =log c a b ,则有( )A .P<M<NB .M<P<NC .N<P<MD .P<N<M[答案] A[解析] 因为a>b>0,且ab =1, 所以a>1,0<b<1,a +b>2ab =2,c =2a +b <1,所以log c a<log c ab<log c b , 即P<M<N ,选A.(理)(2011·山东临沂模拟)已知0<a<b ,且a +b =1,则下列不等式中,正确的是( ) A .log 2a>0 B .2a -b <12C .2 b a + ab <12D .log 2a +log 2b<-2[答案] D[解析] 当a =14,b =34时A 不成立;对B 有2a -b <12⇒2a -b <2-1⇒a -b<-1,又a +b =1,可得a<0,与a>0矛盾;对C 有2 b a + a b <12⇒2 b a + a b <2-1⇒b a +a b <-1,与b a +a b >2(∵a≠b ,且a>0,b>0)矛盾,故选D.12.(2011·海南三亚联考)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .m≥1B .m≤-1C .m≤-1或m≥1D .-1≤m≤1[答案] A[解析] ∵p ∨q 为假命题,∴p 和q 都是假命题. 由p :∃x ∈R ,mx 2+2≤2为假,得∀x ∈R ,mx 2+2>0, ∴m≥0. ① 由q :∀x ∈R ,x 2-2mx +1>0为假,得∃x 0∈R ,x 20-2mx 0+1≤0, ∴Δ=(-2m)2-4≥0⇒m 2≥1⇒m≤-1或m≥1. ② 由①和②得m≥1,故选A.13.(文)(2011·东营模拟)已知x ∈R ,A =(x +3)(x +7),B =x 2+9x +20,则A 、B 的大小关系为( )A .A>B B .A =BC .A<BD .与x 有关[答案] D[解析] A -B =(x +3)(x +7)-(x 2+9x +20)=x -1,当x>1时A>B ,当x =1时A =B ,当x<1时A<B ,故选D.(理)(2011·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c≥b>aB .a>c≥bC .c>b>aD .a>c>b[答案] A[解析] 解法1:特值法:令a =0,则b =1,c =5, ∴c>b>a ,排除B 、D ;令c =b ,则a =2,∴b =c =5,也满足b>a ,排除C ,选A. 解法2:c -b =4-4a +a 2=(2-a)2≥0,∴c≥b ,已知两式作差得2b =2+2a 2,即b =1+a 2, ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0, ∴1+a 2>a ,∴b>a ,∴c≥b>a.14.(2011·珠海模拟)已知b>a>0,x>y>0,求证:x x +a >yy +b .[解析] ∵x>y>0,∴0<1x <1y ,∵b>a>0,∴0<a x <by ,∴1<1+a x <1+by ,即1<x +a x <y +by ,∴x x +a >y y +b. 15.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本);销售收入R(x)(万元)满足:R(x)=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8 0≤x≤5 10.2 x >5 ,假定该产品产销平衡,那么根据上述统计规律. (1)要使工厂有赢利,产量x 应控制在什么范围内? (2)工厂生产多少台产品时,可使赢利最多? [解析] 依题意,G(x)=x +2 设利润函数为f(x),则f(x)=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8 0≤x≤5 ,8.2-x x >5 .(1)要使工厂有赢利,即解不等式f(x)>0,当0≤x≤5时,解不等式-0.4x 2+3.2x -2.8>0 即x 2-8x +7<0,得1<x<7, ∴1<x≤5.当x>5时,解不等式8.2-x>0,得 x<8.2, ∴5<x<8.2综上所述,要使工厂赢利,x 应满足1<x<8.2,即产品产量应控制在大于100台,小于820台的范围内.(2)0≤x≤5时,f(x)=-0.4(x -4)2+3.6 故当x =4时,f(x)有最大值3.6 而当x>5时,f(x)<8.2-5=3.2所以,当工厂生产400台产品时,赢利最多.*16.(文)(2011·北京海淀区诊断)已知函数f(x)=(ax -1)e x ,a ∈R.(1)当a =1时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)上是单调增函数,求实数a 的取值范围. [解析] (1)因为f ′(x)=(ax +a -1)e x , 所以当a =1时,f ′(x)=xe x , 令f ′(x)=0,则x =0,所以f(x),f ′(x)的变化情况如下表:所以(2)因为f ′(x)=(ax +a -1)e x ,函数f(x)在区间(0,1)上是单调增函数, 所以f ′(x)≥0对x ∈(0,1)恒成立.又e x >0,所以只要ax +a -1≥0对x ∈(0,1)恒成立,解法一:设g(x)=ax +a -1,则要使ax +a -1≥0对x ∈(0,1)恒成立,只要⎩⎨⎧g 0≥0g 1≥0成立,即⎩⎪⎨⎪⎧a -1≥02a -1≥0,解得a≥1. 解法二:要使ax +a -1≥0对x ∈(0,1)恒成立, 因为x>0,所以a≥1x +1对x ∈(0,1)恒成立,因为函数g(x)=1x +1在(0,1)上单调递减,∴g(x)≤1,∴a≥1.(理)已知函数f(x)=12x 4+bx 3+cx 2+dx +e(x ∈R)在x =0和x =1处取得极值.(1)求d 的值及b ,c 的关系式(用c 表示b),并指出c 的取值范围; (2)若函数f(x)在x =0处取得极大值. ①判断c 的取值范围;②若此时函数f(x)在x =1时取得最小值,求c 的取值范围. [解析] (1)∵f ′(x)=2x 3+3bx 2+2cx +d , 又∵f ′(0)=f ′(1)=0,∴⎩⎪⎨⎪⎧d =02+3b +2c +d =0,∴⎩⎪⎨⎪⎧d =0b =-2c +23.∵f ′(x)=2x 3-2(c +1)x 2+2cx , 即f ′(x)=2x(x -1)(x -c), ∵f(x)在x =0和x =1处取得极值. ∴c≠0且c≠1,即c 的取值范围是{c ∈R|c≠0且c≠1}. (2)①∵f ′(x)=2x(x -1)(x -c),∴若c<0.当x ∈(c,0)时f ′(x)>0,当x ∈(0,1)时,f ′(x)<0,∴f(x)在x =0处取得极大值; 若0<c<1,当x ∈(-∞,0)时f ′(x)<0,当x ∈(0,c)时f ′(x)>0,∴f(x)在x =0处取得极小值;若c>1,当x ∈(-∞,0)时f ′(x)<0,当x ∈(0,1)时f ′(x)>0,∴f(x)在x =0处取得极小值. 综上,若f(x)在x =0处取得极大值,则c 的范围为(-∞,0).②若c<0,当x ∈(-∞,c)时f ′(x)<0,x ∈(c,0)时f ′(x)>0,x ∈(0,1)时f ′(x)<0,x ∈(1,+∞)时f ′(x)>0,∴函数f(x)只能在x =c 或x =1处取得最小值.要使f(x)在x =1处取得最小值,只要使得f(c)≥f(1).∴12c 4-2c +2 c 33+c 3+e≥12-2c +23+c +e. ∴c 4-2c 3+2c -1≤0,即(c -1)3(c +1)≤0. ∵c<0,∴-1≤c<0,即c 的取值范围是[-1,0).1.(2010·全国Ⅰ文)设a =log 32,b =ln2,c =5-12,则( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a[答案] C[解析] 解法1:a =log 32=ln2ln3,∵0<ln2<1,ln3>1, ∴a<ln2=b ,即a<b ,又c =5- 12 =15=ln25ln2=ln2ln25,∵25>22=4>3,∴ln25>ln3,故c<a ,∴c<a<b.解法2:a<b 比较同上.a =1log 23,c =15,∵log 23<2而5>2,∴log 23<5,∴a>c ,∴c<a<b.2.(2011·山东临沂一模)xy >1的一个充分不必要条件是( )A .x>yB .x>y>0C .x<yD .y<x<0[答案] B3.(2011·海淀模拟)已知二次函数f(x)的图象过原点,且1≤f(-1)≤2,3≤f(1)≤4,则f(-2)的取值范围为( )A .[6,10]B .[4,8]C .[-10,-6]D .[-8,-4][答案] A4.(2011·河南郑州第二次模拟)设f(x)=⎩⎪⎨⎪⎧2e x -1,x<2,log 3x 2-1 ,x≥2,则不等式f(x)<2的解集为( )A .(10,+∞)B .(-∞,1)∪[2,10)C .(1,2)∪(10,+∞)D .(1,10)[答案] B[解析] f(x)<2⇔⎩⎪⎨⎪⎧ x<22e x -1<2或⎩⎪⎨⎪⎧ x≥2log 3x 2-1 <2⇔⎩⎨⎧x<2x<1或⎩⎪⎨⎪⎧x≥2x<10⇔x<1或2≤x<10,故选B.5.设a +b<0,且b>0,则( ) A .b 2>a 2>ab B .b 2<a 2<-ab C .a 2<-ab<b 2 D .a 2>-ab>b 2[答案] D[解析] 由a +b<0,b>0,可得a<0,0<b<-a ,则b 2-a 2=(b -a)(a +b)<0,可知A 、C 错误,a 2+ab =a(a +b)>0,b 2+ab =b (b +a)<0,可知B 错误,D 正确.[点评] 可对a 、b 取特值检验.6.(2011·吉林长春模拟)已知定义域为R 的偶函数f(x)在(-∞,0]上是减函数,且f ⎝⎛⎭⎫12=2,则不等式f(log 4x)>2的解集为( )A .(0,12)∪(2,+∞)B .(2,+∞)C .(0,22)∪(2,+∞) D .(0,22) [答案] A[解析] 作出函数f(x)的示意图如下,则log 4x>12或log 4x<-12,解得x>2或0<x<12.故选A.7.设A =log 201120101111+120102222+1,B =log 201120102222+120103333+1,则A 与B 的大小关系为________. [答案] A>B[解析] 设20101111=x ,则A =log 2011x +1x 2+1, B =log 2011x 2+1x 3+1,x>1, ∵x +1x 2+1-x 2+1x 3+1=x x -1 2x +1 x 3+1>0,log 2011x 为增函数, ∴log 2011x +1x 2+1>log 2011x 2+1x 3+1,即A>B.。