高考数学一元二次不等式及其解法一轮复习
- 格式:ppt
- 大小:4.19 MB
- 文档页数:5
一元二次不等式及其解法【课标要求】熟练运用转化与化归的思想,反复思考一元二次不等式与二次函数的关系.【学习目标】(1).理解一元二次方程、一元二次不等式与二次函数的关系.(2).掌握图象法解一元二次不等式的方法.(3).培养数形结合、分类讨论思想方法.【重难点】一元二次不等式的解法.【知识回顾】1、二次方程ax2+bx+c=0(a≠0)在Δ=b2-4ac>0时,有两不等实根,此时对应的二次函数y=ax2+bx+c与x轴有两个公共点,Δ=0时,有两相等实根,此时,对应二次函数y=ax2+bx+c与x轴有一个公共点;当Δ<0时,没有实数根,此时,对应二次函数y=ax2+bx+c与x轴没有公共点.2、只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.“元”是未知数,“一元”就是含有一个未知数注意:(1)在一元二次不等式的表达式中,一定有条件a≠0,即二次项的系数不为零.(2)对于ax2+bx+c>0(或<0)的形式,如果不指明是二次不等式,那么它也可能是一次不等式,应特别注意分类讨论.3、利用二次函数图像解一元二次不等式设一元二次方程ax2+bx+c=0(a>0)的两个不等实根分别为x1,x2(x1<x2),则不等式ax2+bx+c>0(a>0)的解集为{x|x<x1或x>x2},不等式ax2+bx+c<0(a>0)的解集为{x|x1<x<x2}.当一元二次方程ax2+bx+c=0(a>0)的判别式Δ<0时,此方程无实数根,y=ax2+bx+c的图象位于x轴上方,所以ax2+bx+c>0的解集是R,而ax2+bx+c<0的解集是∅.注意:(1)上述给出的解集形式是在a>0的情况下的解集形式.若a<0,应将不等式两边同时乘-1,化为二次项系数大于0的一元二次不等式再解.(2)若ax2+bx+c=0(a>0)的判别式Δ=0,则方程有两个相等的实根,此时不等式ax2+bx+c>0(a>0)的解集为{x|x≠-b2a},ax2+bx+c<0(a>0)的解集为∅.一元二次不等式的解集、二次方程的根与二次函数的图象之间的关系见下表:x1,2=-b±Δ2ax1=x2=-b2a没有实数根|x<x或x>x{x|x≠-b2a}R4、解一元二次不等式的一般步骤:[方法规律总结]第一步,将一元二次不等式化为一端为0的形式(习惯上二次项系数大于0).第二步,求出相应二次方程的根,或判断出方程没有实根.第三步,画出相应二次函数示意草图,方程有根的将根标在图中.第四步,观察图象中位于x轴上方或下方的部分,对比不等式中不等号的方向,写出解集.5、含参一元二次不等式的解法解答含参数的不等式时,一般需对参数进行讨论,常见的有以下几种情况:(1)二次项系数含参数时,根据二次不等式化标准形式需要化二次项系数为正,所以要对参数符号进行讨论.(2)解“Δ”的过程中,若“Δ”表达式含有参数且参数的取值影响“Δ”符号,这时根据“Δ”符号确定的需要,要对参数进行讨论.(3)方程的两根表达式中如果有参数,必须对参数讨论才能确定根的大小,这时要对参数进行讨论.总之,参数讨论有三个方面:①二次项系数;②“Δ”;③根.但未必在这三个地方都进行讨论,是否讨论要根据需要而定.6、穿根法解高阶不等式解法:穿根法解高次不等式的步骤①将f(x)最高次项系数化为正数;②将f(x)分解为若干个一次因式的积或二次不可分因式的积;③将每一个一次因式的根标在数轴上,自上而下,从右向左依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根穿过);④观察曲线显现出的f(x)的值的符号变化规律,写出不等式的解集.7、分式不等式等)(或00<>++dcx bax 的解法 [方法规律总结]1.对于不等号一端为0的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项、通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解. 8、一元二次不等式恒成立问题 [方法规律总结](1)ax 2+bx +c >0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧ a >0Δ<0;(2)ax 2+bx +c ≥0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧ a >0Δ≤0;(3)ax 2+bx +c <0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧a <0Δ<0;(4)ax 2+bx +c ≤0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧a <0Δ≤0.2.不等式有解问题(1)若ax 2+bx +c >0(a ≠0)有解,则a >0或⎩⎨⎧a <0,Δ>0.(2)若ax 2+bx +c ≥0(a ≠0)有解,则a >0,或⎩⎨⎧a <0,Δ≥0.【随堂练习一】1.不等式9x 2+6x +1≤0的解集是( )A .{x |x ≠-13}B .{x |-13≤x ≤13}C .∅D .{-13} 2.不等式3x 2-x +2<0的解集为( )A .∅B .RC .{x |-13<x <12}D .{x ∈R |x ≠16} 3.函数y =x 2+x -12的定义域是( ) A .{x |x <-4,或x >3} B .{x |-4<x <3} C .{x |x ≤-4,或x ≥3}D .{x |-4≤x ≤3}4.(2015·东北三校二模)设集合M={x|x2-2x-3<0,x∈Z},则集合M的真子集个数为()A.8 B.7 C.4 D.3 5.不等式x2-4x-5>0的解集是()A.{x|x≥5或x≤-1} B.{x|x>5或x<-1}C.{x|-1<x<5} D.{x|-1≤x≤5}6.已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则下图阴影部分表示的集合是()A.[-1,1)B.(-3,1]C.(-∞,-3)∪[-1,+∞)D.(-3,-1)7.不等式2x2+mx+n>0的解集是{x|x>3或x<-2},则m、n的值分别是() A.2,12 B.2,-2 C.2,-12 D.-2,-128.函数y=log 12(x2-1)的定义域是()A.[-2,-1)∪(1,2]B.[-2,-1)∪(1,2)C.[-2,-1)∪(1,2]D.(-2,-1)∪(1,2)9.已知集合A={x|3x-2-x2<0},B={x|x-a<0}且B A,则a的取值范围是()A.a≤1 B.1<a≤2 C.a>2 D.a≤2 10.已知集合A={x|x2-2x>0},B={x|log2(x+1)<1},则A∩B等于() A.(-∞,0) B.(2,+∞) C.(0,1) D.(-1,0)11、不等式x2+x-2<0的解集为________.12、不等式x2-4x+5<0的解集为________.13、不等式0≤x2-2x-3<5的解集为________【随堂练习二】1、若0<t<1,则不等式x2-(t+1t)x+1<0的解集是()A .{x |1t <x <t }B .{x |x >1t 或x <t }C .{x |x <1t 或x >t }D .{x |t <x <1t } 2.已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( ) A .{-1,0} B .{0,1} C .{-1,0,1} D .{0,1,2} 3.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解是( )A .x >5a 或x <-aB .x >-a 或x <5aC .5a <x <-aD .-a <x <5a4.不等式(x -2)2(x -3)x +1<0的解集为( )A .{x |-1<x <2或2<x <3}B .{x |1<x <3}C .{x |2<x <3}D .{x |-1<x <3}5.若{x |2<x <3}为x 2+ax +b <0的解集,则bx 2+ax +1>0的解集为( ) A .{x |x <2或x >3} B .{x |2<x <3} C .{x |13<x <12} D .{x |x <13或x >12}6.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4 D .a <-4或a >47.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2 D .1<m <38.已知关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则有( ) A .m ≤-3 B .m ≥-3 C .-3≤m <0 D .m ≥-4 9.函数y =-x 2-3x +4x 的定义域为( )A .[-4,1]B .[-4,0)C .(0,1]D .[-4,0)∪(0,1]10.如果不等式2x 2+2mx +m4x 2+6x +3<1对一切实数x 均成立,则实数m 的取值范围是( )A .(1,3)B .(-∞,3)C.(-∞,1)∪(2,+∞) D.(-∞,+∞)11、解不等式:(1)2x-13x+1>0;(2)axx+1<0.12.当a为何值时,不等式(a2-1)x2+(a-1)x-1<0的解集是R?13、解关于x的不等式:x2+2x-3-x2+x+6<0。
高三一轮复习 6.2 一元二次不等式及其解法【教学目标】1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。
【重点难点】1。
教学重点:会解一元二次不等式并了解一元二次不等式与相应的二次函数、一元二次方程的联系;2。
教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】环节二:意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是________.解析[由题可得f(x)<0对于x∈[m,m+1]恒成立,即错误!解得-错误!〈m〈0.答案错误!知识梳理:知识点1 三个“二次”的关系ΔacΔ〉0Δ=0Δ数+a〉象次有两相异实根有两相等实根没有ax2+bx+c=0(a>0)的根x1,x2(x1<x2)x1=x2=-错误!ax2+bx+c〉0 (a>0)的解集{x|x〈x1或x〉x2}{x|x≠x1}Rax2+bx+c<0 (a〉0)的解集{x|x1〈x<x2}∅∅知识点2 用程序框图表示ax2+bx+c>0(a>0)的求解过程1.必会结论;(1)(x-a)(x-b)〉0或(x-a)(x-b)〈0型不等式解法教师引导学生及时总结,以帮助学生形成完整的认知结构。
由常见问题的解决和总结,使学。
高考数学一轮总复习考点突破:一元二次不等式恒成立问题[解析] (1)要使mx 2-mx -1<0恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧ m <0,Δ=m 2+4m <0⇒-4<m <0.所以m 的取值范围为(-4,0].(2)要使f (x )<-m +5在[1,3]上恒成立,只需mx 2-mx +m <6恒成立(x ∈[1,3]), 又因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0, 所以m <6x 2-x +1. 令y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34. 因为t =⎝ ⎛⎭⎪⎫x -122+34在[1,3]上是增函数,所以y =6x 2-x +1在[1,3]上是减函数.因此函数的最小值y min =67.所以m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.(3)将不等式f (x )<0整理成关于m 的不等式为(x 2-x )m -1<0.令g (m )=(x 2-x )m -1,m ∈[-1,1].则⎩⎪⎨⎪⎧ g-1<0,g 1<0,即⎩⎪⎨⎪⎧ -x 2+x -1<0,x 2-x -1<0, 解得1-52<x <1+52,即x 的取值范围为⎝ ⎛⎭⎪⎫1-52,1+52.名师点拨:一元二次不等式恒成立问题1.在R 上恒成立(1)一元二次不等式ax 2+bx +c >0(或≥0)对于一切x ∈R 恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0或≤0. (2)一元二次不等式ax 2+bx +c <0(或≤0)对于一切x ∈R 恒成立的条件是⎩⎪⎨⎪⎧ a <0,Δ=b 2-4ac <0或≤0.2.在给定某区间上恒成立(1)当x ∈[m ,n ],f (x )=ax 2+bx +c ≥0恒成立,结合图象,只需f (x )min ≥0即可.(2)当x ∈[m ,n ],f (x )=ax 2+bx +c ≤0恒成立,只需f (x )max ≤0即可.3.解决恒成立问题一定要搞清谁是自变量,谁是参数.一般地,知道谁的范围,谁就是自变量,求谁的范围,谁就是参数.4.“不等式f (x )≥0有解(或解集不空)的参数m 的取值集合”是“f (x )<0恒成立的参数m 取值集合”的补集;“f (x )>0的解集为∅”即“f (x )≤0恒成立.”注意:ax 2+bx +c >0恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0或⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0; ax 2+bx +c <0恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac <0. 【变式训练】1.若不等式(a -3)x 2+2(a -3)x -4<0对一切x ∈R 恒成立,则实数a 取值的集合为( D )A .(-∞,3)B .(-1,3)C .[-1,3]D .(-1,3] [解析] 当a =3时,-4<0恒成立;当a ≠3时,⎩⎪⎨⎪⎧ a <3,Δ=4a -32+16a -3<0,解得-1<a <3.所以-1<a ≤3.故选D.2.(2024·山西忻州第一中学模拟)已知关于x 的不等式x 2-4x ≥m 对任意的x ∈(0,1]恒成立,则有( A )A .m ≤-3B .m ≥-3C .-3≤m <0D .m ≥-4 [解析] 令f (x )=x 2-4x ,x ∈(0,1],∵f (x )图象的对称轴为直线x =2,∴f (x )在(0,1]上单调递减,∴当x =1时,f (x )取得最小值-3,∴m ≤-3,故选A.3.已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( B )A .{x |1<x <3}B .{x |x <1或x >3}C .{x |1<x <2}D .{x |x <1或x >2} [解析] 记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只需⎩⎪⎨⎪⎧ g 1>0,g -1>0⇒⎩⎪⎨⎪⎧ x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.。
课时作业38 一元二次不等式及其解法一、选择题1.已知集合A ={x |x ≥0},B ={x |(x +1)(x -5)<0},则A ∩B 等于( B ) A .[-1,4) B .[0,5)C .[1,4]D .[-4,-1)∪[4,5)解析:由题意得B ={x |-1<x <5},故A ∩B ={x |x ≥0}∩{x |-1<x <5}=[0,5).故选B. 2.不等式1-x2+x ≥1的解集为( B )A.⎣⎡⎦⎤-2,-12 B.⎝⎛⎦⎤-2,-12 C .(-∞,-2)∪⎝⎛⎭⎫-12,+∞ D .(-∞,-2]∪⎝⎛⎭⎫-12,+∞ 解析:1-x 2+x≥1⇔1-x 2+x-1≥0⇔1-x -2-x 2+x≥0⇔-2x -12+x≥0⇔2x +1x +2≤0⇔⎩⎪⎨⎪⎧(2x +1)(x +2)≤0,x +2≠0⇔-2<x ≤-12.故选B.3.使不等式2x 2-5x -3≥0成立的一个充分不必要条件是( C ) A .x ≥0 B .x <0或x >2 C .x ∈{-1,3,5}D .x ≤-12或x ≥3解析:不等式2x 2-5x -3≥0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥3或x ≤-12,由题意,选项中x 的X 围应该是上述解集的真子集,只有C 满足.故选C.4.关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( C )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析:关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0,∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3,∴所求不等式的解集是(-1,3).5.若不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a >0的解集为( A )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1或x >12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <12 C .{x |-2<x <1} D .{x |x <-2或x >1}解析:∵不等式ax 2+bx +2>0的解集为{x |-1<x <2},∴ax 2+bx +2=0的两根为-1,2,且a <0,即-1+2=-b a ,(-1)×2=2a ,解得a =-1,b =1,则所求不等式可化为2x 2+x -1>0,解得x <-1或x >12,故选A.6.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值X 围为( A )A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0]解析:由题意可得⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0.7.若存在实数x ∈[2,4],使x 2-2x +5-m <0成立,则m 的取值X 围为( B ) A .(13,+∞) B .(5,+∞) C .(4,+∞)D .(-∞,13)解析:m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4],当x =2时,f (x )min =5,∃x ∈[2,4]使x 2-2x +5-m <0成立,即m >f (x )min ,∴m >5.故选B.8.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含1个整数,则a 的取值X 围是( C )A .(-3,5)B .(-2,4)C .[-1,3]D .[-2,4]解析:因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a }, 当a <1时,不等式的解集为{x |a <x <1}, 当a =1时,不等式的解集为∅.要使得解集中至多包含1个整数,则a =1或1<a ≤3或1>a ≥-1,所以实数a 的取值X 围是a ∈[-1,3],故选C.二、填空题9.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值X 围是(-1,1).解析:由题意知k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1.10.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a . 解析:原不等式为(x -a )⎝⎛⎭⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a. 11.若不等式x 2+ax +4≥0对一切x ∈(0,1]恒成立,则a 的取值X 围为[-5,+∞). 解析:由题意,分离参数后得,a ≥-⎝⎛⎭⎫x +4x . 设f (x )=-⎝⎛⎭⎫x +4x ,x ∈(0,1], 则只要a ≥[f (x )]max 即可.由于函数f (x )在区间(0,1]上单调递增, 所以[f (x )]max =f (1)=-5,故a ≥-5.12.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值X 围是(1,5].解析:设f (x )=x 2-2(a -2)x +a , 当Δ=4(a -2)2-4a <0时,即1<a <4时,f (x )>0对x ∈R 恒成立; 当a =1时,f (-1)=0,不合题意; 当a =4时,f (2)=0,符合题意;当Δ>0时,由⎩⎪⎨⎪⎧ Δ>0,1<a -2<5,f (1)≥0,f (5)≥0,即⎩⎪⎨⎪⎧a <1或a >4,3<a <7,a ≤5,a ≤5,即4<a ≤5.综上所述,实数a 的取值X 围是(1,5]. 三、解答题13.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),某某数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0, 即a 2-6a -3<0,解得3-23<a <3+2 3. ∴原不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.14.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)求f (x )的解析式;(2)若对于任意的x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的取值X 围.解:(1)∵f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5),∴0和5是方程2x 2+bx +c =0的两个根,由根与系数的关系知,-b 2=5,c2=0,∴b =-10,c =0,f (x )=2x 2-10x .(2)对任意的x ∈[-1,1],f (x )+t ≤2恒成立等价于对任意的x ∈[-1,1],2x 2-10x +t -2≤0恒成立,∴2x 2-10x +t -2的最大值小于或等于0. 设g (x )=2x 2-10x +t -2,则由二次函数的图象可知g (x )=2x 2-10x +t -2在区间[-1,1]上为减函数, ∴g (x )max =g (-1)=10+t ,∴10+t ≤0,即t ≤-10. ∴t 的取值X 围为(-∞,-10].15.已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为9.解析:由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24. 因为f (x )的值域为[0,+∞),所以b -a 24=0,即b =a 24.所以f (x )=⎝⎛⎭⎫x +a 22.又f (x )<c ,所以⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .所以⎩⎨⎧-a2-c =m ①,-a2+c =m +6 ②.②-①,得2c =6,所以c =9.16.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值X 围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)∵函数f (x )=ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立.当a ≠0时,需满足题意,则需⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0,解得0<a ≤1,综上可知,a 的取值X 围是[0,1]. (2)f (x )=ax 2+2ax +1=a (x +1)2+1-a ,由题意及(1)可知0<a ≤1, ∴当x =-1时,f (x )min =1-a ,由题意得,1-a =22,∴a =12, ∴不等式x 2-x -a 2-a <0可化为x 2-x -34<0.解得-12<x <32,∴不等式的解集为⎝⎛⎭⎫-12,32.。