酶法拆分手性化合物 -
- 格式:ppt
- 大小:700.50 KB
- 文档页数:19
氨基酰化酶法拆分制备手性氨基酸浙江大学硕士学位论文氨基酰化酶法拆分制备手性氨基酸姓名:钟琦申请学位级别:硕士专业:生物化学工程指导教师:关怡新20040201摘要氨基酸是构成蛋白质的基础,同时也是一种十分重要的营养物质,它在生命活动中起着举足轻重的作用。
在传统的20种天然氨基酸中,除没有手性中心的甘氨酸外,其他19种氨基酸均为L构型。
随着研究的不断深入,越来越多非天然构型一D型氨基酸的作用被发现,它们的需求也随之产生。
对于L型和D型都有利用价值的氨基酸,化学合成结合手性拆分的方法,具有低成本、适于大规模生产等优点。
而高效、绿色、安全的氨基酰化酶法拆分,是拆分氨基酸的最佳方法之一。
蛋氨酸和苯丙氨酸,都是人体必需的氨基酸。
喹}氨酸是一种重要的饲料添加剂。
L.苯丙氨酸是合成抗病毒和抗癌药物及人工甜昧剂的原料,D.苯丙氨酸能增强人体的免疫功能,具有出色的镇痛作用。
首先,选取了氨基酰化酶含量较为丰富且方便易得的米曲霉3042作为酶源。
通过硫酸铵分级沉淀、SephadexG50凝胶层析和DEAE-Sepharose阴离子交换层析从米曲霉3042中提取到了米曲氨基酰化酶,该酶的纯化倍数为54.29,比活为647.66U/mg,总收率为49.53%。
以N.乙酰.DL-蛋氨酸为底物的酶促反应最适pH为7.5.8.0,最适反应温度随催化反应时间的延长而降低,缓冲体系中的离子对酶活有抑制作用,而低浓度的c02+对酶活有激活作用。
将游离酶用于拆分Met和Phe。
最佳拆分条件和拆分结果分别为:Met:反应温度为37℃;pH7.5;C02+浓度为5×104mol/L;初始底物浓度为0.3mol/L。
产品:L-Mct,%O.P=96.2%,收率70.5%;D.Met,%O.P=-95.3%,收率50.5%。
Phe:反应温度为37℃;pH7.0;c02+浓度为5×10"4mol/L;初始底物浓度为0.2mol/L。
手性分离方法及其在制药业中的应用手性分离是指将一个化合物中的手性异构体分离开的过程。
手性异构体是指分子的空间构型不同,但与化学性质相同的物质。
它们常常在药物合成、生物活性和代谢等方面表现出截然不同的性质。
因此,在制药业中,对手性异构体进行分离和纯化对于提高药物的效力和降低副作用具有重要的意义。
本文将介绍手性分离方法及其在制药业中的应用。
手性分离的方法手性分离的方法包括物理分离法和化学分离法两种。
物理分离法主要有晶体分离法、手性柱层析法、手性薄层层析法、手性毛细管电泳法等。
化学分离法主要有手性试剂法、拆分法和酶法等。
晶体分离法是指利用晶体的对映异构体间形成的晶体格构成分离,这种方法只适用于具有成分相对简单、结构相对规则、易于结晶的化合物。
手性柱层析法是指利用手性相对异构化合物与手性固定相之间的相互作用分离手性异构体。
手性薄层层析法是指将手性固定相包覆于薄层层析板上进行手性分离。
手性毛细管电泳法是一种基于手性分子在毛细管中运动速度的不同进行分离的方法。
手性试剂法是指使用手性试剂合成手性化合物。
拆分法是指利用天然物质中富集的手性化合物进行分离。
酶法是指利用手性酶对手性化合物进行分离。
这些手性分离方法各有优劣,不同的化合物和需要不同的效果时需要选择不同的方法进行分离。
手性分离在制药业中的应用手性异构体在制药业中有着重要的应用价值。
由于手性异构体的生物活性和代谢性质存在巨大差异,对其进行手性分离可以提高药物效力,降低毒副作用。
因此,手性分离技术得到了广泛应用。
手性分离技术在制药业中主要应用于以下方面:1、对于已经发现的手性药物,需要进行其手性异构体的分离和纯化,以提高药物的效力和降低副作用。
2、对于尚未发现的手性药物,在药物的设计和合成过程中,应该保持手性信息的完整性,并进行手性维度上的控制,以使药物具有更好的效果。
3、手性分离技术可以用于鉴别药品的真伪和质量。
在中国,由于其传统文化中强调的“天人合一”等理念,有许多假药威胁到民众健康。
手性化合物的拆分方法
手性化合物的拆分方法主要有对映体分离法和酶催化法两种。
对映体分离法是指通过物理或化学方法将手性化合物中的对映体分离开来。
常用的物理方法有晶体分离法和对映体选择性结晶法。
晶体分离法是指利用手性化合物结晶时的差异,通过适当的选择溶剂和结晶条件,使其中一个对映体结晶出来,而另一个对映体仍保持在溶液中。
对映体选择性结晶法则是利用对映体结晶时晶体生长速度的差异,通过选择合适的溶液浓度和温度,使其中一个对映体的晶体生长速度比另一个对映体快,从而实现对映体的分离。
酶催化法是利用手性化合物和酶之间的反应性差异进行对映体分离的方法。
酶催化法主要通过酶的手性选择性来实现对映体的分离,其中最常用的是立体选择性催化酶。
这种酶具有对手性底物具有高选择性催化作用的特点,通过调节反应条件和酶底物比例,可以将手性化合物中的对映体分离开来。
除了以上的方法,还有一些其他的手性化合物拆分方法,如手性色谱法、手性电泳法、手性转换法等。
这些方法则是通过物理、化学或生物学手段对手性化合物进行选择性的分离和转化,以实现对映体的分离。
手性药物拆分技术及分析手性药物(chiral drugs)是指分子内部有一个或多个不对称碳原子的药物,即具有手性结构的药物。
手性药物由于具有左右旋异构体,使得其药理学效应、药效学性质、药代动力学以及安全性能等方面出现差异。
因此,手性药物的拆分技术及分析对于药物的研发、生产和应用具有重要意义。
手性药物的拆分技术主要有下述几种方法:晶体化学方法、酶法、化学拆分、色谱法和光学活性检测。
首先是晶体化学方法,该方法是利用手性药物晶体的对称性差异完成拆分。
通过晶体中的尖、刃、拱等特征差异,将手性药物分离为晶体异构体。
其次是酶法,手性药物的拆分可以通过酶的催化作用实现。
酶是具有高选择性、高催化效率和高效底物转化率的催化剂。
通过选择合适的酶,可以将手性药物转化为对应的手性异构体或原生态精细化靶化合物。
化学拆分是指通过特定的化学反应将手性药物分解为不对称碳原子具有相反手性的产物。
该方法较为常用,但对于存储稳定性较差的手性药物较不适宜。
色谱法是利用不同手性列进行手性分离,如手性HPLC(高效液相色谱)和手性毛细管电泳等。
这些方法主要是利用手性固定相对手性药物进行分离,可达到手性药物的拆分效果。
光学活性检测是通过光学活性的手性试剂或手性染料,以手性化合物的吸光性能差异检测手性药物的拆分效果。
根据手性分析原理,通过手性分析仪器对手性药物进行检测和分析。
手性药物的分析对于药物研发、生产和应用非常重要。
分析手性药物的关键是确保其纯度和药效学性质,并且有助于合理掌握手性药物在体内的吸收、分布、代谢和排泄的信息。
以下是手性药物分析的一些常用方法。
首先是纳米液相色谱法,该方法是将分离的手性药物样品通过微量泵输送到纳米柱中,在极小的流速和流体容量下进行分离。
该方法对于手性药物样品的需求量很小,因此可以减少手性药物样品的消耗。
其次是循环偏振负压电流法,该方法通过测量手性药物样品对光的旋光性质,直接反应其手性结构。
该方法准确、快速,适用于灵敏度高的手性药物分析。
手性化合物拆分方法
手性化合物的拆分方法通常有以下几种:
1. 光学拆分:利用手性催化剂或其他手性物质对手性化合物进行拆分。
光学活性的手性化合物经过光学反应与手性催化剂反应可以得到单一手性的产物。
2. 液体相转移拆分:将手性化合物溶解在不对其进行反应的溶剂中,然后加入具有手性结构的离子对或分子对,形成包合物。
通过改变反应条件或进行萃取操作,可以将手性化合物从包合物中分离出来。
3. 对映体选择性结晶:通过控制结晶条件和添加适当的对映配体或样品处理剂,使手性化合物在结晶过程中选择性地形成单一手性晶体。
4. 气相拆分:利用对映体的蒸汽压差异,通过适当的气-液平衡条件和温度条件,将手性化合物分离出来。
5. 手性液相色谱:利用手性稳定相或手性固定相,在手性固定相或手性稳定相的控制下对手性化合物进行分离和拆分。
6. 酶催化拆分:利用手性酶的选择性催化作用,将手性化合物转化为单一手性的产物。
以上方法中的选择取决于手性化合物的特性、拆分要求和可用的拆分试剂或设备。