立体化学手性拆分
- 格式:pdf
- 大小:700.74 KB
- 文档页数:8
手性药物的结晶拆分方法--直接结晶法---逆向结晶法在优先结晶法中,通过加入不溶的添加物即晶种形成晶核,加快或促进与之晶型或立体构型相同的对映异构体结晶的生长。
而逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。
例如在外消旋的酒石酸钠铵盐的水溶液中溶入少量的(S)—(—)—苹果酸钠铵或(S)—(—)—天冬酰胺时,可从溶液中结晶得到(R,R)—(十)—酒石酸钠铵。
逆向结晶中的添加物必须和溶液中的化合物在结构和构型上有相关之处。
这样所添加的物质才能嵌入生长晶体的晶格中,取代其正常的晶格组分并能阻止该晶体的生长。
逆向结晶是一种晶体生长的动力学现象,添加物的加入造成了结晶速度上的差别。
由于逆向结晶是晶体生长的动力学的现象,因此当结晶时间无限制的延长下之,最终得到的仍是外消旋的晶体。
从化合物的性质上来看,逆向结晶只能用于能形成聚集体的化合物。
在结晶法的拆分过程中,若能将优先结晶法中“加入某种单—对映异构体晶体可诱导相同构型结晶生长”的原理和逆向结晶中“加入另一个对映异构体溶液可抑制相同构型的对映异构体生长”的原理相结合,可使结晶拆分的效率大大提高手性药物的结晶拆分方法--直接结晶法---优先结晶法优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。
优先结晶方法是在巴士德的研究基础上发现的。
文献最早报道的优先结晶方法是用于肾上腺素的拆分。
1934年Duschinsky第一次用该方法分离得到盐酸组氨酸,使人们认识到该方法的实用性。
手性药物的结晶拆分方法--直接结晶法---逆向结晶法在优先结晶法中,通过加入不溶的添加物即晶种形成晶核,加快或促进与之晶型或立体构型相同的对映异构体结晶的生长。
而逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。
例如在外消旋的酒石酸钠铵盐的水溶液中溶入少量的(S)—(—)—苹果酸钠铵或(S)—(—)—天冬酰胺时,可从溶液中结晶得到(R,R)—(十)—酒石酸钠铵。
逆向结晶中的添加物必须和溶液中的化合物在结构和构型上有相关之处。
这样所添加的物质才能嵌入生长晶体的晶格中,取代其正常的晶格组分并能阻止该晶体的生长。
逆向结晶是一种晶体生长的动力学现象,添加物的加入造成了结晶速度上的差别。
由于逆向结晶是晶体生长的动力学的现象,因此当结晶时间无限制的延长下之,最终得到的仍是外消旋的晶体。
从化合物的性质上来看,逆向结晶只能用于能形成聚集体的化合物。
在结晶法的拆分过程中,若能将优先结晶法中“加入某种单—对映异构体晶体可诱导相同构型结晶生长”的原理和逆向结晶中“加入另一个对映异构体溶液可抑制相同构型的对映异构体生长”的原理相结合,可使结晶拆分的效率大大提高手性药物的结晶拆分方法--直接结晶法---优先结晶法优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。
优先结晶方法是在巴士德的研究基础上发现的。
文献最早报道的优先结晶方法是用于肾上腺素的拆分。
1934年Duschinsky第一次用该方法分离得到盐酸组氨酸,使人们认识到该方法的实用性。
有机化学基础知识点手性化合物的分离与合成有机化学基础知识点:手性化合物的分离与合成手性化合物在有机化学领域中扮演着重要的角色,它们具有两种非对称的镜像异构体,即左旋和右旋。
手性化合物的分离与合成是有机化学中的一项重要技术和研究内容。
本文将探讨手性化合物的分离与合成的基础知识点。
一、手性化合物的分离方法1. 基于手性配体的手性柱层析法手性柱层析法是一种基于手性配体与目标分子之间的亲和性进行分离的方法。
通过选择适当的手性配体,可以实现对手性化合物的分离纯化。
例如,利用氨基酸衍生物作为手性配体,可以成功地分离出手性氨基酸和手性药物等。
2. 经典拆分结晶法经典拆分结晶法是一种通过晶体生长的方式分离手性化合物的方法。
通过合适的溶剂和配体选择,可以在晶体生长过程中实现手性化合物的拆分和纯化。
这种方法适用于一些具有较高拆分度的手性化合物。
3. 手性萃取法手性萃取法是一种利用手性选择性较大的手性萃取剂对手性化合物进行分离的方法。
通常通过控制温度、pH值和萃取剂浓度等条件,实现对手性化合物的选择性萃取。
手性萃取法在手性酮、手性醇以及手性药物等的分离中得到了广泛应用。
二、手性化合物的合成方法1. 左旋-右旋互换法左旋-右旋互换法是一种将一种手性化合物转化为其对映异构体的方法。
通常可通过二氧化硫气体的作用,将左旋手性化合物转化为右旋手性化合物,或者通过酸碱反应进行互换。
这种方法在手性药物和手性农药的合成中得到了广泛应用。
2. 手性催化剂的应用手性催化剂是一种能够选择性地促使手性化合物发生反应的催化剂。
通过催化剂的选择,可以实现手性化合物的不对称合成。
例如,手性金属配合物催化剂在不对称氢化和不对称还原反应中起到了关键作用。
3. 有机合成中的修饰法有机合成中的修饰法是一种通过对已有手性分子进行化学修饰,合成新的手性分子的方法。
通过对已有手性分子的保留或改变官能团,可以得到一系列具有不同手性的化合物。
这种方法在新药开发和杂环合成中得到了广泛应用。
立体化学(一)前言1、手性手性是自然界的普遍特征。
构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。
在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。
因此,分子手性在自然界生命活动中起着极为重要的作用。
人类的生命本身就依赖于手性识别。
如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。
CHOOH CH2OHOHCHOOHOHCH2OHOHCHOHHHOOHHOHH2OHOCH2OHHHOOHHOHH2OH2D-(+)-甘油醛 D-(-)-核糖 D-(+)-葡萄糖 D-(+)- 果糖 L-氨基酸人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。
当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。
1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。
1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。
即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。
20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。
结果在欧洲导致1.2万例胎儿致残,即海豹婴。
于是1961年该药从市场上撤消。
后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。
研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。
N O ONONHOO(S)-Thalidomide(R)-Thalidomide1984年荷兰药理学家Ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。