四川大学数学分析、高等代数-2004答案
- 格式:pdf
- 大小:379.20 KB
- 文档页数:7
四川大学期末考试试卷(A )(2004—2005学年第一学期)科目:《大学数学》(线性代数)适用专业年级:四川大学2004级各专业本科生题号一二三四五总分得分一、填空题(每小题3分,共15分)1.设行列式ij A D ,234713011−−=表示D 中元素j i a 的代数余子式,则=++3332317A A .2.设*,543022001A A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=是A 的伴随矩阵,则=−1*)(A _______.3.设)2,0,1,0(,2101=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−=βα,矩阵αβ=A ,则秩)(A =_______.4.设三阶方阵A 的特征值为,2,1,1−.且235A A B −=,则B 的特征值为.5.设A,B 都是n 阶方阵,且A 与B 合同,若秩(A )=r,则秩(B )=二、选择题(每小题3分,共15分)1.已知A 为n 阶方阵,若,21E A AA T =−(其中E 为单位矩阵),则=−1A AA T ().(A)2;(B)2;(C)n 2;(D)22n.2.设有向量T )1,1,2(1=α,T )7,2,1(2−=α,T t ),2,1(=β,若β可以由21,αα线性表出,则=t ().(A)-5;(B)-2;(C)2;(D)5.3.设4321,,,αααα是齐次线性方程组0=AX 的基础解系,则下列向量组中()也是AX =0的基础解系.(A)43211,,ααααα++(B)14433221,,,αααααααα−++−(C)443321,,,2αααααα−+(D)332211,,,αααααα++4.设A 是n 阶矩阵,如果A E 3+不可逆(E 为单位矩阵),则有().(A)3是A 的特征值;(B)-3是A 的特征值;(C)31是A 的特征值;(D)-31是A 的特征值.5.下列矩阵中,()是正定矩阵..(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200132011(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡212143234(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−124213436(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡511142121三、解答下列各题(每小题9分,共27分)1.求向量组)4,2,1,1(1−=α,)2,1,3,0(2=α,)14,7,0,3(3=α,)0,2,1,1(4−=α,)6,5,1,2(5=α的一个极大线性无关组,并将其余向量用该极大无关组线性表示.2.a 取何值时,线性方程组⎪⎩⎪⎨⎧=−+=+++=++023)2(3212321321321x ax x x a x x x x x 无解?有解?并在有解时求出其.3.已知A 为三阶矩阵,且有03=−A E ,02=+E A ,02=−E A ,其中E 是三阶单位矩阵,求A 的行列式A .四、计算题(每小题10分,共30分)1.设有矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=111131111A ,试问A 能否相似于对角阵?若能,则求出可逆矩阵P ,使得AP P 1−为对角阵.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101020101A ,且X A E AX +=+2,其中E 是三阶单位矩阵.求矩阵X .设二次型322322213212334),,(x x x x x x x x f +++=试用正交变换将二次型),,(321x x x f 化为标准形(即平方和),并写出所用的正交变换.五、证明题(第1小题6分,第2小题7分,共13分)1.设A 是)1(−×n n 矩阵,证明:方程组β=AX 有解时,该方程组的增广矩阵)(βA 的行列式0=βA .试问,反之是否成立?2.设A 、B 为两个n 阶矩阵,且A 的n 各特征值两两互异.若A 的特征向量恒为B 的特征向量,证明:BA AB =.2004级线性代数期末考试试卷A 参考答案一:1、02、100101105534110102A A⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠3、()1r A =4、(6,4,12)−−−5、()r B r=二:1、C 2、D 3、C4、D5、A…三:1、123451031213011()21725421406ααααα⎛⎞⎜⎟−−⎜⎟′′′′′=⎜⎟⎜⎟⎝⎠1031201101000000042⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟−−⎝⎠31030201101000001012⎛⎞⎜⎟⎜⎟⎜⎟→⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠124134,,(,,;?))αααααα⋯或为一个极大无关组。
2004年考硕数学(二)真题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y==的特解为_______. (6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 20tan x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα [](8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[](9)22lim (1)n n→∞+(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln(1)x dx +⎰ [](10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >. [](11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++ [](12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A )11()dx f xy dy -⎰⎰.(B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[](13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[](14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim()t S t F t →+∞.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. (20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时. (21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z z x y x y∂∂∂∂∂∂∂. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.2004年考硕数学(二)真题评注一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n→∞→∞--====++, 所以 ()f x 0,01,0x x x=⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d y dx < 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++, 222223214113(1)3(1)d y d dy dt tdt dx dx dxt t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令220d ydx < ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞.(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.)【评注】本题属新题型.已考过的题型有求参数方程所确定的函数的二阶导数, 如1989、1991、1994、2003数二考题,也考过函数的凹凸性.(3)1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解1】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰⎰.【详解2】1120111)arcsin 2dt t t π+∞-===⎰⎰⎰.【评注】本题为混合广义积分的基本计算题,主要考查广义积分(或定积分)的换元积分法. (4)设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z z x y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解1】在 232x z z e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数.23(23)x z z z e x x-∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx zz e x e --∂=∂+,23213x z z y e-∂=∂+ 所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解2】令 23(,,)20x zF x y z e y z -=+-=则232x z F e x -∂=⋅∂, 2Fy∂=∂, 23(3)1x z F e z -∂=--∂2323232322(13)13x z x zx z x z Fz e e x F x e ez----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂, 从而 232323313221313x z x zx z z z e x y ee ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解3】利用全微分公式,得23(23)2x z dz e dx dz dy -=-+2323223x z x z e dx dy e dz --=+- 2323(13)22x z x z e dz e dx dy --+=+232323221313x z x z x ze dz dx dy e e ---∴=+++ 即 2323213x z x z z e x e --∂=∂+, 23213x z z y e-∂=∂+ 从而 32z zx y∂∂+=∂∂ 【评注】此题属于典型的隐函数求偏导. (5)微分方程3()20y x dx xdy +-=满足165x y==的特解为315y x =+.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解1】原方程变形为 21122dy y x dx x -=, 先求齐次方程102dy y dx x-= 的通解:12dy dx y x= 积分得 1ln ln ln 2y x c =+y ⇒=设(y c x =,代入方程得211(((22c x c x c x x x '-= 从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为53211()55y x C x =+=1615x yC ==⇒=,故所求通解为 315y x =.【详解2】原方程变形为21122dy y x dx x -=, 由一阶线性方程通解公式得1122212dx dx x x y e x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰11ln ln 22212x x ex edx C -⎡⎤=+⎢⎥⎣⎦⎰35221125x dx C x C ⎤⎤=+=+⎥⎢⎥⎦⎦⎰6(1)15y C =⇒=,从而所求的解为 315y x =.【评注】此题为求解一阶线性方程的常规题.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值. 【详解1】 2ABA BA E **=+ 2A B A B A E**⇔-=, (2)A E BA E *⇔-=,21A E B A E *∴-==,221111010(1)(1)392100001B A E AA*====-⋅---. 【详解2】由1A A A *-=,得 11122ABA BA E AB A A B A A AA **---=+⇒=+2A AB A B A ⇒=+ (2)A A E B A ⇒-= 32AA EB A ⇒-=21192B A A E∴==- 【评注】此题是由矩阵方程及矩阵的运算法则求行列式值的一般题型,考点是伴随矩阵的性质和矩阵乘积的行列式.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 2tan x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα[]B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】302000lim limcos x x x t dtt dtγα++→→=⎰3lim x +→=320lim lim 02x x x++→→===, 即 o ()γα=.又2000lim lim x x x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(B ). 【评注】此题为比较由变限积分定义的无穷小阶的常规题. (8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[]C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点.又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点.所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选(C ).【评注】此题是判定分段函数的极值点与拐点的常规题目 (9)22lim (1)n n→∞+(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰ []B【分析】将原极限变型,使其对应一函数在一区间上的积分和式.作变换后,从四个选项中选出正确的. 【详解】 22lim (1)n n→∞+212lim ln (1)(1)(1)nn n nnn →∞⎡⎤=+++⎢⎥⎣⎦212limln(1)ln(1)(1)n n n n n n →∞⎡⎤=++++++⎢⎥⎣⎦11lim 2ln(1)nn i i n n →∞==+∑ 102ln(1)x dx =+⎰2112ln x t tdt +=⎰212ln xdx =⎰故选(B ).【评注】此题是将无穷和式的极限化为定积分的题型,值得注意的是化为定积分后还必须作一变换,才能化为四选项之一.(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >.[]C【分析】可借助于导数的定义及极限的性质讨论函数()f x 在0x =附近的局部性质. 【详解】由导数的定义知 0()(0)(0)lim00x f x f f x →-'=>-,由极限的性质, 0δ∃>, 使x δ<时, 有()(0)0f x f x->即0x δ>>时, ()(0)f x f >,0x δ-<<时, ()(0)f x f <, 故选(C ).【评注】此题是利用导数的定义和极限的性质讨论抽象函数在某一点附近的性质. (11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++ []A【分析】利用待定系数法确定二阶常系数线性非齐次方程特解的形式. 【详解】对应齐次方程 0y y ''+= 的特征方程为 210λ+=, 特征根为 i λ=±,对 2021(1)y y x e x ''+=+=+ 而言, 因0不是特征根, 从而其特解形式可设为21y ax bx c *=++对 sin ()ix m y y x I e ''+==, 因i 为特征根, 从而其特解形式可设为 2(sin cos )y x A x B x *=+ 从而 21sin y y x x ''+=++ 的特解形式可设为xy2(sin cos )y ax bx c x A x B x *=++++【评注】这是一道求二阶常系数线性非齐次方程特解的典型题,此题的考点是二阶常系数线性方程解的结构及非齐次方程特解的形式.(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A)11()dx f xy dy -⎰⎰. (B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[]D【分析】将二重积分化为累次积分的方法是:先画出积分区域的示意图,再选择直角坐标系和极坐标系,并在两种坐标系下化为累次积分.【详解】积分区域见图. 在直角坐标系下,20()()Df xy dxdy dy f xy dx =⎰⎰⎰⎰1111()dx f xy dy -=⎰⎰故应排除(A )、(B ). 在极坐标系下, cos sin x r y r θθ=⎧⎨=⎩ ,2sin 20()(sin cos )Df xy dxdy d f r rdr πθθθθ=⎰⎰⎰⎰,故应选(D ).【评注】此题是将二重积分化为累次积分的常规题,关键在于确定累次积分的积分限.(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[]D【分析】根据矩阵的初等变换与初等矩阵之间的关系,对题中给出的行(列)变换通过左(右)乘一相应的初等矩阵来实现.【详解】由题意 010100001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100011001C B ⎛⎫⎪= ⎪ ⎪⎝⎭,010100100011001001C A ⎛⎫⎛⎫ ⎪⎪∴= ⎪⎪ ⎪⎪⎝⎭⎝⎭011100001A AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭,从而 011100001Q ⎛⎫⎪= ⎪ ⎪⎝⎭,故选(D ).【评注】此题的考点是初等变换与初等矩阵的关系,抽象矩阵的行列初等变换可通过左、右乘相应的初等矩阵来实现.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]A【分析】将A 写成行矩阵, 可讨论A 列向量组的线性相关性.将B 写成列矩阵, 可讨论B 行向量组的线性相关性.【详解】设 (),i j l m A a ⨯=()i j m n B b ⨯=, 记 ()12m A A A A =0AB = ⇒()11121212221212n n m m m mn b b b b b b A A A bb b ⎛⎫ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪⎝⎭()1111110m m n mn m b A b A b A b A =++++= (1)由于0B ≠, 所以至少有一 0i j b ≠(1,1i m j n ≤≤≤≤), 从而由(1)知, 112210j j ij i m m b A b A b A b A +++++=,于是 12,,,m A A A 线性相关.又记 12m B B B B ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则0AB = ⇒11121121222212m m l l l m m a a a B a a a B a a a B ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1111221211222211220m m m m l l l m m a B a B a B a B a B a B a B a B a B +++⎛⎫ ⎪+++ ⎪== ⎪ ⎪ ⎪+++⎝⎭ 由于0A ≠,则至少存在一 0i j a ≠(1,1i l j m ≤≤≤≤),使 11220i i i j j im m a B a B a B a B ++++=,从而 12,,,m B B B 线性相关,故应选(A ).【评注】此题的考点是分块矩阵和向量组的线性相关性,此题也可以利用齐次线性方程组的理论求解. 三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【分析】此极限属于型未定式.可利用罗必塔法则,并结合无穷小代换求解. 【详解1】 原式2cos ln 331limx x x ex +⎛⎫ ⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20ln 2cos ln 3lim x x x →+-=()01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim22cos 6x x x x →=-⋅=-+ 【详解2】 原式2cos ln 331limx x x ex+⎛⎫⎪⎝⎭→-=202cos ln 3limx x x →+⎛⎫ ⎪⎝⎭=20cos 1ln 3lim x x x→-+=(1) 20cos 11lim 36x x x →-==-【评注】此题为求未定式极限的常见题型.在求极限时,要注意将罗必塔法则和无穷小代换结合,以简化运算.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.【分析】分段函数在分段点的可导性只能用导数定义讨论. 【详解】(Ⅰ)当20x -≤<,即022x ≤+<时,()(2)f x k f x =+2(2)[(2)4](2)(4)k x x kx x x =++-=++. (Ⅱ)由题设知 (0)0f =.200()(0)(4)(0)lim lim 40x x f x f x x f x x +++→→--'===--0()(0)(2)(4)(0)lim lim 80x x f x f kx x x f k x x---→→-++'===-. 令(0)(0)f f -+''=, 得12k =-. 即当12k =-时, ()f x 在0x =处可导. 【评注】此题的考点是用定义讨论分段函数的可导性. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数; (Ⅱ)求()f x 的值域.【分析】利用变量代换讨论变限积分定义的函数的周期性,利用求函数最值的方法讨论函数的值域. 【详解】 (Ⅰ) 32()sin x x f x t dt πππ+++=⎰,设t u π=+, 则有22()sin()sin ()x x xxf x u du u du f x ππππ+++=+==⎰⎰,故()f x 是以π为周期的周期函数.(Ⅱ)因为sin x 在(,)-∞+∞上连续且周期为π, 故只需在[0,]π上讨论其值域. 因为 ()sin()sin cos sin 2f x x x x x π'=+-=-,令()0f x '=, 得14x π=, 234x π=, 且344()s i n 24f t d t πππ==⎰554433443()sin sin sin 24f t dt t dt t dt πππππππ==-=-⎰⎰⎰又 20(0)sin 1f t dt π==⎰, 32()(sin )1f t dt πππ=-=⎰,∴()f x的最小值是2故()f x的值域是[2.【评注】此题的讨论分两部分:(1)证明定积分等式,常用的方法是变量代换.(2)求变上限积分的最值, 其方法与一般函数的最值相同.(18)(本题满分12分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim()t S t F t →+∞.【分析】用定积分表示旋转体的体积和侧面积,二者及截面积都是t 的函数,然后计算它们之间的关系. 【详解】 (Ⅰ)0()2tS t π=⎰022x x te e π-⎛+= ⎝⎰ 2022x x te e dx π-⎛⎫+= ⎪⎝⎭⎰, 2200()2x x tte e V t y dx dx ππ-⎛⎫+== ⎪⎝⎭⎰⎰, ()2()S t V t ∴=. (Ⅱ)22()2t t x te e F t yππ-=⎛⎫+== ⎪⎝⎭,20222()lim lim()2x x tt t t t e e dx S t F t e e ππ-→+∞→+∞-⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭⎰222lim 222t t t t t t t e e e e e e---→+∞⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ lim 1t tttt e e e e --→+∞+==- 【评注】在 t 固定时,此题属于利用定积分表示旋转体的体积和侧面积的题型,考点是定积分几何应用的公式和罗必塔求与变限积分有关的极限问题.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e ->-. 【分析】文字不等式可以借助于函数不等式的证明方法来证明,常用函数不等式的证明方法主要有单调性、极值和最值法等.【详证1】设224()ln x x x e ϕ=-, 则 2ln 4()2x x x e ϕ'=-21l n ()2xx xϕ-''=,所以当x e >时, ()0x ϕ''<, 故()x ϕ'单调减小, 从而当2e x e <<时, 22244()()0x e e e ϕϕ''>=-=, 即当2e x e <<时, ()x ϕ单调增加.因此, 当2e a b e <<<时, ()()b a ϕϕ>, 即 222244ln ln b b a a e e ->- 故 2224ln ln ()b a b a e ->-.【详证2】设2224()ln ln ()x x a x a eϕ=---, 则2ln 4()2x x x e ϕ'=-21l n ()2xx xϕ-''=,∴x e >时, ()0x ϕ''<()x ϕ'⇒, 从而当2e x e <<时,22244()()0x e e e ϕϕ''>=-=, 2e x e ⇒<<时, ()x ϕ单调增加.2e a b e ⇒<<<时, ()()0x a ϕϕ>=.令x b =有()0b ϕ>即 2224ln ln ()b a b a e ->-.【详证3】证 对函数2ln x 在[,]a b 上应用拉格朗日定理, 得 222ln ln ln ()b a b a ξξ->-, a b ξ<<.设ln ()t t t ϕ=, 则21ln ()t t tϕ-'=, 当t e >时, ()0t ϕ'<, 所以()t ϕ单调减小, 从而2()()e ϕξϕ>, 即222ln ln 2e e eξξ>=,故 2224ln ln ()b a b a e->- 【评注】此题是文字不等式的证明题型.由于不能直接利用中值定理证明,所以常用的方法是将文字不等式化为函数不等式,然后借助函数不等式的证明方法加以证明.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.【分析】本题属物理应用.已知加速度或力求运动方程是质点运动学中一类重要的计算,可利用牛顿第二定律,建立微分方程,再求解.【详解1】由题设,飞机的质量9000m kg =,着陆时的水平速度0700/v km h =.从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为()x t ,速度为()v t .根据牛顿第二定律,得dvm kv dt=-. 又dv dv dx dv v dt dx dt dx=⋅=, mdx dv k ∴=-,积分得 ()mx t v C k=-+,由于0(0)v v =,(0)0x =, 故得0mC v k=, 从而0()(())mx t v v t k=-.当()0v t →时, 069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【详解2】根据牛顿第二定律,得dvm kv dt =-. 所以 dv kdt v m=-, 两边积分得 kt mv Ce -=,代入初始条件 00t vv ==, 得0C v =,0()k t mv t v e -∴=,故飞机滑行的最长距离为 0() 1.05()k t mmv mv x v t dt e km kk+∞-+∞==-==⎰.【详解3】根据牛顿第二定律,得22d x dxm k dt dt=-,220d x k dx dt m dt+=,其特征方程为 20kr r m+=, 解得10r =, 2k r m=-, 故 12k t mx C C e-=+,由(0)0x =, 200(0)k t mt t kC dxv ev dtm-====-=,得012mv C C k=-=, 0()(1)k t mmv x t e k-∴=-.当t →+∞时,069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【评注】此题的考点是由物理问题建立微分方程,并进一步求解. (21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. 【分析】利用复合函数求偏导和混合偏导的方法直接计算. 【详解】122xy zx f ye f x∂''=+∂,122xy zy f xe f y∂''=-+∂, 21112222[(2)]x yx yx y z x f y f x e e f x y e f x y∂''''''=⋅-+⋅++∂∂2122[(2)]x y x yy e f y f x e''''+⋅-+⋅ 222111222242()(1)xy xy xy xyf x y e f xye f e xy f '''''''=-+-++++. 【评注】此题属求抽象复合函数高阶偏导数的常规题型. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩试问a 取何值时, 该方程组有非零解, 并求出其通解.【分析】此题为求含参数齐次线性方程组的解.由系数行列式为0确定参数的取值,进而求方程组的非零解.【详解1】对方程组的系数矩阵A 作初等行变换, 有11111111222220033333004444400a a a a a B a a a a a a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪→= ⎪ ⎪+- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭当0a =时, ()14r A =<, 故方程组有非零解, 其同解方程组为 12340x x x x +++=. 由此得基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)T η=-, 于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数. 当0a ≠时,111110000210021003010301040014001aa B ++⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭当10a =-时, ()34r A =<, 故方程组也有非零解, 其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为(1,2,3,4)Tη=, 所以所求方程组的通解为x k η=, 其中k 为任意常数.【详解2】方程组的系数行列式311112222(10)33334444aa A a a a a +⎛⎫ ⎪+ ⎪==+ ⎪+ ⎪ ⎪+⎝⎭. 当0A =, 即0a =或10a =-时, 方程组有非零解. 当0a =时, 对系数矩阵A 作初等行变换, 有11111111222200003333000044440000A ⎛⎫⎛⎫ ⎪ ⎪⎪⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解方程组为12340x x x x +++=. 其基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)T η=-, 于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数. 当10a =-时, 对A 作初等行变换, 有91119111282220100033733001004446400010A --⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 91110000210021003010301040014001-⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭故方程组的同解方程组为2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为(1,2,3,4)Tη=,所以所求方程组的通解为x k η=, 其中k 为任意常数【评注】解此题的方法是先根据齐次方程有非零解的条件确定方程组中的参数,再对求得的参数对应的方程组求解.(23)(本题满分9分)设矩阵12314315a -⎛⎫⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.【分析】由矩阵特征根的定义确定a 的值,由线性无关特征向量的个数与E A λ-秩之间的关系确定A 是否可对角化.【详解】A 的特征多项式为1232201431431515aaλλλλλλλ-----=-------111(2)143(2)13315115aa λλλλλλ-=--=--------- 2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根, 则有22161830a -++=, 解得2a =-.当2a =-时, A 的特征值为2, 2, 6, 矩阵1232123123E A -⎛⎫ ⎪-=- ⎪ ⎪--⎝⎭的秩为1,故2λ=对应的线性无关的特征向量有两个, 从而A 可相似对角化.若2λ=不是特征方程的二重根, 则28183a λλ-++为完全平方,从而18316a +=, 解得23a =-. 当23a =-时, A 的特征值为2, 4, 4, 矩阵32321032113E A ⎛⎫ ⎪- ⎪-= ⎪ ⎪-- ⎪⎝⎭的秩为2, 故4λ=对应的线性无关的特征向量只有一个, 从而A 不可相似对角化.【评注】此题的考点是由特征根及重数的定义确定a 的值, 对a 的取值讨论对应矩阵的特征根及对应E A λ-的秩, 进而由E A λ-的秩与线性无关特征向量的个数关系确定A 是否可相似对角化.。
2004年数学(四)试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim 0=--→b x a e x x ,则a =_______,b =________.(2) 设1ln arctan 22+-=x xxe e e y ,则==1x dx dy.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 设⎪⎪⎪⎭⎫ ⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则 =-220042A B ___________.(5) 设()33⨯=ij a A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是 ___________. (6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _________二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2). (D) (2 , 3). [ ] (8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ](9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点.(B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点.(C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ](10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则(A) F (x )在x = 0点不连续.(B) F (x )在(-∞ , +∞)内连续,但在x = 0点不可导.(C) F (x )在(-∞ , +∞)内可导,且满足)()(x f x F ='. (D) F (x )在(-∞ , +∞)内可导,但不一定满足)()(x f x F ='. [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是(A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ).(B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ).(C) 至少存在一点),(0b a x ∈,使得0)(0='x f . (D) 至少存在一点),(0b a x ∈,使得)(0x f = 0. [ ](12) 设n 阶矩阵A 与B 等价, 则必须(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ](13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{, 若αx X P =<}|{|, 则x 等于(A) 2αu . (B) 21αu - . (C) 21αu-. (D) αu -1. [ ](14) 设随机变量n X X X ,,,21 )1(>n 独立同分布,且方差02>σ.令随机变量∑==ni i X n Y 11, 则 (A) 212)(σn n Y X D +=+. (B) 212)(σnn Y X D +=-. (C) nσY X Cov 21),(=. (D) 21),(σY X Cov =. [ ] 三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(15) (本题满分8分)求)cos sin 1(lim 2220x xx x -→.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的 平面区域(如图).(17) (本题满分8分)设f (u , v )具有连续偏导数,且满足uv v u f v u f v u='+'),(),(. 求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解.(18) (本题满分9分)设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0); (II) 推导)1(d E Q dPdR -=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加.(19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线y = F (x )之间的面积. 对任何t > 0, )(1t S 表示矩形-t ≤ x ≤ t ,0 ≤ y ≤ F (t )的面积. 求(I) S (t ) = S -)(1t S 的表达式;(II) S (t )的最小值.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T )1,1,1,1(--是该方程组的一个解,试求(Ⅰ) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(Ⅱ) 该方程组满足32x x =的全部解.(21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若T α)0,1,1(1=, T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(Ⅰ) 求A 的另一特征值和对应的特征向量;(Ⅱ) 求矩阵A .(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布;(Ⅱ) X 与Y 的相关系数 XY ρ;(Ⅲ) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 在区间)1,0(上服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(Ⅰ) 随机变量X 和Y 的联合概率密度;(Ⅱ) Y 的概率密度;(Ⅲ) 概率}1{>+Y X P .。
2024年全国硕士研究生招生考试业务课试题一、计算题(1-6每题10分,7-8每题15分,共90分).220231lim .(1)x x x x e e x e →---- 2.20232023202320241lim(12).n n n→∞+++3.3x .4.设,a b为常数且20 1.xx a →>=求a 和b . 5.求函数(,,)22f x y z x y z =-+在约束条件2221x y z ++=下的最值。
6.判断2222(2)d (2)d x xy y x x xy y y +-+--的原函数是否存在,说明理由。
若存在,求出它的一个原函数。
7.作适当变换,计算d d y x yDex y +⎰⎰,这里{(,)1,0,0}D x y x y x y =+≤≥≥∣. 8.计算2d (1)SSx y ++⎰⎰,其中S 为平面1x y z ++=在第一卦限部分。
二、证明题(9-11每题10分,12-13每题15分,共60分)9.设数列{}n a满足111,1).n a a n +==≥证明数列{}n a 收敛,并求lim .n n a →∞10.利用函数的凹凸性证明不等式ln ln ()ln(0,0).2x yx x y y x y x y ++≥+>> 11.求证:当0y >时,21sin d 1xy e x x y +∞-=+⎰. 12.设函数()f x 定义在区间I 上。
试证()f x 在I 上一致连续的充要条件为:对任何数列{}{},,n n x y I ⊂若lim()0,n n n x y →∞-=则[]lim ()()0.n n n f x f y →∞-= 13.设211(),[1,1]ln(1)n n f x x x n n ∞==∈-+∑.求证: 1)()f x 在[1,1]-上连续; 2)()f x 在1x =-处可导。
2024年全国硕士研究生招生考试业务课试题-高代 一、填空题(每题6分,共30分)1.设3阶实矩阵22332,,3A B αβγγγγ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭其中23,,,αβγγ均为3维行向量,且||18,||2A B ==,则||A B -=2.设λ是A 的特征值,则1P AP -的特征值是。
四川大学2009数学分析考研真题与解析1·求下列极限。
(a )∑=∞→nk k nn Cn2.ln 1lim解: 原极限=()221111121ln ln limln 1limnn C C Cn n k nk kn k n n k nnk n ++-=∑∑∑+==+∞→=∞→=∑=∞→-++nk n k n nn 11ln 121lim =∑=∞→∞→--⋅+n k n n nk n n n 1111ln 1lim 12lim =⎰=--1021)1ln(21dx x(b)().sin lim 22n n n +∞→π解: 原极限=nn n nn n n n n ++=-+∞→∞→22sinlim )sin(lim πππ=12sin 111limsin ==⎪⎪⎭⎫ ⎝⎛++∞→ππn n (c )().sin sin lim2302dtt t t tdtx x x ⎰⎰-→解: 原极限=()().1262limsin sin 2lim 53302230=⎥⎦⎤⎢⎣⎡+--=-⋅→→x x x x x x x x x x x x ο (d )xx xe x x cos 11lim 0----+→ 解: 原极限=()()()⎥⎦⎤⎢⎣⎡++--⎥⎦⎤⎢⎣⎡+--++→222222024218212lim x x x x x x x x x οοο =.32418121-=--2·计算下列积分。
(a ),222dxdy y x yx D⎰⎰--+其中{()}1;R ,222≤+∈=y x y x D 解: 原积分=rdr r r r d ⎰⎰-+12202sin cos θθθπ=dr r r d 220104sin ⎰⎰-⎪⎭⎫⎝⎛+ππθθ=()()θθθπθθd dr r r dr r r ⎰⎰⎰⎥⎦⎤⎢⎣⎡-+-201sin 23sin 032sin sin=θθθπd ⎰⎪⎪⎭⎫ ⎝⎛+-204413sin 6sin =85π(b) ⎰l yzds ,其中l 是球面⎪⎪⎭⎫ ⎝⎛>=++332222a a z y x 与平面1=++z y x 的交线.解: 原积分=()ds z z ds zx yz l l ⎰⎰-=+121)(21 =()()ds z y x ds z y x l l ⎰⎰++-++2226161 =⎰-l ds a 612 =().3131312612222--=-⋅-a a a a ππ(c )设()x f 在()+∞∞-,内有连续导函数,求积分()()[]dy xy f y y x dx y xy f y L11222-++⎰,其中L 是从点⎪⎭⎫⎝⎛32,3A 到()2,1B 的直线段。
2006川大高等代数及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2006川大高等代数及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2006川大高等代数及答案的全部内容。
四川大学2006年攻读硕士学位研究生入学考试题六、(本题满分10分)设,。
对于任意正整数,求,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321u ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=012v n n T uv E )(+其中为三阶单位矩阵,表示的转置.E T v v 解: 令,有,T uv E A +=T T T T uv uv uv E uv E A ++=+=2)(22由,有0=u v T Tuv E A 22+=由归纳法,设时,有1-=k n Tk uv k E A )1(1-+=-时,有k n =TT T k k kuv E uv k E uv E AA A +=-++==-])1()[(1则有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+=+=+=136012401203602402)(n n n n n n n n n n n n E nuv E uv E A T n T n 七、(本题满分10分)证明:数域上的阶方阵是一个数量矩阵当且仅F n A 当与所有阶初等矩阵可交换,(数量矩阵是形如的矩阵,其中,n E λF ∈λE 是单位矩阵).证明:必要性:令是阶初等矩阵,由、,得B n B EB AB λλ==B E B BA λλ==)(BA AB =故与所有阶初等矩阵可交换A n 充分性:令nnnn n n E k E k E k E k E k B ++++++= 21211112121111由,得()BA AB =A E AE ij ij =n j i ,,2,1, =有⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000000000000000000000002121jn j j ij ni i i ij a a a A E a a a AE 得()且,则,故0=ij a j i ≠jj ii a a =nn a a a a ==== 332211EA λ=八、(本题满分10分) 设线性方程组有解,其中是数域β=AX n m ij a A ⨯=)(上的矩阵,,。
线性代数第三,第四章答案可逆矩阵,求逆矩阵 一.填空题:1.102105⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭- 2.11A CB --,1100B A --⎛⎫⎪ ⎪⎝⎭3.222k b l a a bc +≠ 4.1111D B C A ---- 5.100010001⎛⎫⎪⎪ ⎪⎝⎭22112123122--⎛⎫ ⎪ ⎪ ⎪⎝⎭1二.选择题1.BD 2.C 3.D 三.1.证明:*||A E AA =**||||||||||n AA A A A E ∴== 而||0A ≠*1||||n A A -∴=2.***11112)|||||5|2(22nn n n AA A ----===四.求下列矩阵的逆矩阵 1.*d b ca A -⎛⎫=⎪-⎝⎭,||A ad bc =-,所以:()11db A ad bc c a ---⎛⎫=-⎪-⎝⎭2 .⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛001011100730210003001010100730520003100010001003520730 ⎪⎪⎪⎭⎫ ⎝⎛--=⇒⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→-032075000320750010001000103201110010021000331131A 3. ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10001001001100001000010001100010001000011000010********0001000010000110001001001e d ce c be b ae d c b ae d c b a⎪⎪⎪⎪⎪⎭⎫⎝⎛---+---=⇒⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+----10001001011000100101100100001000011e d ce c ad ace be b ac a A e d ce c ad ace be b ac a五.解矩阵方程组解:()702303107141223063211713,A E X A E B --=---=-==-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 六.证明:32()()E E A E A E A A =-=-++故,E A -可逆,且()12E A E A A --=++七.证明:()()111,TT TA A A A A ---===, 故,1A -也是对称阵。
2004级试题-期末考试标准答案及评分标准B四川大学期末考试试题(B)标准答案及评分标准(2005 ——2006 学年第下学期)课程号:30014530 课序号:0-3 课程名称:材料科学与工程基础适用专业年级:高分子材料与工程2004级学生人数:326 印题份数:340一、判断下列说法是否正确,如果你认为是正确的,请在括号内填(T),反之,则填(F)。
(15分)计分方法每题1分1. 电介质材料在低频下的介电常数低于在高频下的介电常数。
(F)2. 碳钢中含碳量越大,则其屈服强度越高。
( F )3. 材料的刚性越大,材料就越脆。
( F )4. 疲劳破坏是由于裂纹扩展引起的。
( T )5. 在同样的加热条件下,材料的热容量越大,材料的温度上升得越慢。
( T )6. PTFE的摩擦系数很小,所以磨耗也小。
( F )7. 聚氯乙烯可以用作高频绝缘材料。
(F )8. 玻璃化转变温度是橡胶使用的上限温度(F)9. 一般情况下,非晶态材料比晶态材料的强度低、硬度小、导电性差。
(T)10. 键能越高硬度越大,高分子是由共价键连接的,所以高分子材料硬度大。
(F)11. 金属的导电性随着金属中的杂质的增加而下降。
(T)12. 随着离子电荷量增加离子性固体的电导率增加。
(F)13. 软磁材料被外磁场磁化后,去掉外磁场仍然保持较强剩磁。
(F)14. For pure metals, heat is only transported by free electrons. (F)15.n型半导体指在Si、Ge等四价元素中掺入少量五价元素P、Sb、Bi、As (T)二、多选题(15分)计分方法每题1分1.金属材料的弹性模量随温度的升高而(B)。
A. 上升;B. 降低;C. 不变。
2、在面心立方晶体中,塑性形变的滑移面为(B)A、(110)晶面B、(111)晶面C、(010)晶面3、格列菲斯公式a c =2Eγ s / (π.σc 2 ) 中,a c 是( B )A 裂纹失稳状态的临界应力;B 临界半裂纹长度;C 裂纹失稳状态的临界半应力4、决定材料硬度的三个主要影响因素是(B)A、键能、温度、测试方法、B、键能、密度、温度、C、电子结构、密度、温度、5、以下关于腐蚀的哪种说法是错误的。