黔东南州2016-2017-1九年级数学期末考试卷
- 格式:doc
- 大小:489.50 KB
- 文档页数:2
(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案的全部内容。
第1 页共6 页2016—-—2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A.y=2(x-1)2-3 B.y=2(x-1)2+3C.y=2(x+1)2-3 D.y=2(x+1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于 ( )A.55° B。
70° C。
125° D。
145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A。
4 5.一个半径为2cm的圆内接正六边形A.24cm2 B.63 cm2 C .6.如图,若AB是⊙O的直径,CD是A.35° B.45° C.55°7.函数mxxy+--=822的图象上有两点B。
人教版九年级2016--2017期末数学试卷一.选择题(共12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD的大小为()A.90°B.125°C.135°D.145°4.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.45.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.6.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大二.填空题(共24分)7.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.8.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.9.二次函数y=x2+4x﹣3的最小值是.10.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.11.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=度.12.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.13.关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=,b=.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三.解答题(共84分)15.解方程:x2+4x﹣1=0.16.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.17.已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.19.如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.22.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C (0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.23.把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为cm,高为cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.24.已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.25.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.26.已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.九年级2016--2017期末数学试卷一.选择题(共6小题)1.(2016秋•南京期中)方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.2.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.3.(2016•长春模拟)如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD 的大小为()A.90°B.125°C.135°D.145°【解答】解:∵∠BOD=90°,∴∠A=∠BOD=45°,∵四边形ABCD为⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=135°,故选:C.4.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.5.(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.6.(2016•三明)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.二.填空题(共8小题)7.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.8.(2016•本溪)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为1.【解答】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.9.(2016•兰州)二次函数y=x2+4x﹣3的最小值是﹣7.【解答】解:∵y=x2+4x﹣3=(x+2)2﹣7,∵a=1>0,∴x=﹣2时,y有最小值=﹣7.故答案为﹣7.10.(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为π.【解答】解:∵,∴S 阴影==πAB2=π.故答案为:π.11.(2016•牡丹江)如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=30度.【解答】解:连接AC,∵AB是直径,∴∠ACB=90°,∵AB=6,BC=3,∴sin∠CAB===,∴∠CAB=30°,∴∠BDC=30°,故答案为:30.12.(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.13.(2016春•延庆县期末)关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=1,b=2015.【解答】解:把x=1代入ax2+bx﹣2016=0得a+b﹣2016=0,当a=1时,b=2015.故答案为:1,2015.14.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,∵﹣<0,∴S△BCD有最大值,最大值为15,故答案为15.三.解答题(共12小题)15.(2016•淄博)解方程:x2+4x﹣1=0.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.16.(2015•香坊区三模)如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.【解答】解:(1)如图1所示:(2)如图2所示:四边形ACBE的面积为:2×4=8.17.(2016春•南开区期末)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0 (Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.【解答】(1)证明:∵△=(2k+3)2﹣4(k2+3k+2)=1,∴△>0,∴无论k取何值时,方程总有两个不相等的实数根;(2﹚解:∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0,解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6.∴△ABC的周长为14或16.18.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).19.(2015秋•玄武区期末)如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.【解答】解:(1)过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD=AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD==.即点O到AB的距离为.(2)如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.20.(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.(2014•黔南州)两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.【解答】证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.22.(2016春•荣成市校级月考)如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.【解答】解:(1)根据题意得,解得,所以二次函数解析式为y=﹣x2+4x+5;(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,则M点坐标为(2,9),设直线MC的解析式为y=mx+n,把M(2,9)和C(0,5)代入得,解得,所以直线CM的解析式为y=2x+5;(3)把y=0代入y=2x+5得2x+5=0,解得x=﹣,则E点坐标为(﹣,0),把y=0代入y=﹣x2+4x+5得﹣x2+4x+5=0,解得x1=﹣1,x2=5,所以S△MCB=S△MBE﹣S△CBE=××9﹣××5=15.23.(2016秋•孝感校级月考)把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为22cm,高为9cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.【解答】解:(1)如图所示,由已知得:BC=9cm,AB=40﹣2×9=22cm,故答案为:22,9;(2)设剪掉的正方形的边长为x cm,则(40﹣2x)2=484,即40﹣2x=±22,解得x1=31(不合题意,舍去),x2=9;答:剪掉的正方形边长为9cm;③折成的长方体盒子的侧面积有最大值,设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,则y与x的函数关系式为y=4(40﹣2x)x,即y=﹣8x2+160x,y=﹣8(x﹣10)2+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm2,此时剪掉的正方形的边长是10cm.24.(2016春•合肥校级月考)已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【解答】(1)证明:如图1,连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB是⊙O的直径;(2)证明:如图2,连接OD,∵AO=BO,BD=DC,∴DO是△BAC的中位线,∴DO∥AC,∴DO⊥DE,∴DE为⊙O的切线;(3)解:如图3,∵AO=3,∴AB=6,又∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AD=3,∵AC×DE=CD×AD,∴6×DE=3×3,解得:DE=.25.(2015•南丹县一模)如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.【解答】(1)证明:∵⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,∴∠C=∠CFO=∠CEO=90°,∴四边形CFOE是矩形,∵OF=OE,∴四边形OECF为正方形;(2)解:由题意可得:EO∥AC,∴△DEO∽△DCA,∴=,设⊙O的半径为x,则=,解得:x=1.5,故⊙O的半径为1.5;(3)解:∵⊙O的半径为1.5,AC=6,∴CF=1.5,AF=4.5∴AG=4.5,设BG=BE=y,∴在Rt△ACB中AC2+BC2=AB2,∴62+(y+1.5)2=(4.5+y)2,解得:y=3,∴AB=AG+BG=4.5+3=7.5.26.(2016•亭湖区一模)已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.【解答】解:(1)把A(0,1),代入y=x2+bx+c,解得c=1,将y=10代入y=﹣x+1,得x=﹣9,∴B点坐标为(﹣9,10),将B (﹣9,10),代入y=x2+bx+c得b=2;(2)△ABC是直角三角形,理由如下:∵y=x2+2x+1=(x+3)2﹣2,∴点C的坐标为(﹣3,﹣2),分别作BG垂直于y轴,CH垂直于y轴∵BG=AG=9,∴∠BAG=45°,同理∠CAH=45°,∴∠CAB=90°∴△ABC是直角三角形;(3)∵BG=AG=9,∴AB=9,∵CH=AH=3,∴AC=3,∵四边形ADEF为平行四边形,∴AD∥EF,又∵F为CD中点,∴CE=BE,即EF为△DBC的中位线,EF∴EF=AD=BD,∵AB=9,∴EF=AD=3在Rt△ACD中,AD=3,AC=3,∴CD=6,∴AF=3,∴平行四边形ADEF周长为6+6.第21页(共21页)。
贵州省黔东南苗族侗族自治州九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如果,则()A .B .C .D . 为一切实数2. (2分)下列计算错误的是()A .B .C .D .3. (2分)(2017·洛宁模拟) 若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k 的取值范围是()A . k>B . k≥C . k>且k≠1D . k≥ 且k≠14. (2分)如果△ABC∽△A′B′C′,BC=3,B′C′=1.8,则△A′B′C′与△ABC的相似比为()A . 5:3B . 3:2C . 2:3D . 3:55. (2分)用配方法解下列方程,配方正确的是()A . 3x2﹣6x=9可化为(x﹣1)2=4B . x2﹣4x=0可化为(x+2)2=4C . x2+8x+9=0可化为(x+4)2=25D . 2y2﹣4y﹣1=0可化为2(y+1)2=36. (2分)如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线(a<0)的图象上,则a的值为()A .B .C .D .7. (2分) (2016九上·北京期中) 抛物线y=x2﹣4x﹣4的对称轴是()A . x=﹣2B . x=2C . x=4D . x=﹣48. (2分) (2017七下·独山期末) 对于一次函数y=﹣2x+4,下列结论错误的是()A . 若两点A(x1 , y1),B(x2 , y2)在该函数图象上,且x1<x2 ,则y1>y2B . 函数的图象不经过第三象限C . 函数的图象向下平移4个单位长度得y=﹣2x的图象D . 函数的图象与x轴的交点坐标是(0,4)二、填空题 (共6题;共7分)9. (1分) (2018九上·南召期中) 计算: ________.10. (1分)当m=________时,两个最简二次根式和4 可以合并.11. (1分)如图,D是△ABC的边AC上的一点,若∠ABD=∠C,AB=6,AD=4,则线段CD的长为________.12. (1分) (2020九上·鼓楼期末) 已知是方程的根,则式子________;13. (1分) (2019九上·无锡月考) 将抛物线向下平移三个单位,则抛物线的解析式为________.14. (2分)(2017·温州) 小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为________cm.三、解答题 (共10题;共79分)15. (5分) (2019八下·潘集期中) 计算:(1);(2)16. (10分)(2017·乐山) 对于函数y=xn+xm ,我们定义y'=nxn﹣1+mxm﹣1(m、n为常数).例如y=x4+x2 ,则y'=4x3+2x.已知:y= x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为________;(2)若方程y′=m﹣有两个正数根,则m的取值范围为________.17. (10分) (2017八上·宁城期末) 如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用四种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.18. (10分)已知:抛物线y= (x-1)2-3 .(1)写出抛物线的开口方向、对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值;(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.19. (10分)截止到2000年12月31日,我国的上网计算机总数为900万台;截止到2002年12月31日,我国的上网计算机总数以达1800万台.(1)求2000年12月31日至2002年12月31日我国的上网计算机台数的年平均增长率(精确到0.1%)(2)上网计算机总数2001年12月31日至2003年12月31日的年平均增长率与2000年12月31日至2002年12月31日的年平均增长率相比,哪段时间年平均增长率较大?20. (5分)(2019·碑林模拟) 如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)21. (2分)某电视台在它的娱乐性节目中每期抽出两名场外幸运观众,有一期甲、乙两人被抽为场外幸运观众,他们获得了一次抽奖的机会,在如图所示的翻奖牌的正面4个数字中任选一个,选中后翻开,可以得到改数字反面的奖品,第一个人选中的数字第二个人不能再选择了.(1)如果甲先抽奖,那么甲获得“手机”的概率是多少?(2)小亮同学说:甲先抽奖,乙后抽奖,甲、乙两人获得“手机”的概率不同,且甲获得“手机”的概率更大些.你同意小亮同学的说法吗?为什么?请用列表或画树状图分析.22. (2分)(2017·丽水) 如图是某小区的一个健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)23. (15分) (2016九上·兴化期中) 小明跳起投篮,球出手时离地面 m,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?24. (10分)(2017·官渡模拟) 如图,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是x轴下方的抛物线上的一个动点,过点M作MN⊥x轴,交直线BC于点N,求四边形MBNA的最大面积,并求出点M的坐标;(3)在抛物线上是否存在一点P,使△BCP为直角三角形?若存在,求出P点坐标,如果不存在,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共79分)15-1、15-2、16-1、16-2、17-1、18-1、18-2、18-3、19-1、19-2、20-1、21-1、22-1、23-1、23-2、24-1、24-2、。
2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
贵州省黔南州2016届九年级数学上学期期末统考试题2015—2016学年度第一学期期末联考九年级数学参考答案及评分标准 一、选择题1.C2.D3.B4.C5.B6.C7.A8.A9.D 10.D 11.B 12.D13.A二、填空题 14. 1 15. 2732 16. 237()24x -+ 17. 60° 18. 1319.(7,3) 三、解答题20. 解:(x +3)(x -1)=0…………2分 解:原方程化为:x 2-4x=1所以x 1=-3,x 2=1………4分 配方,得x 2-4x+4=1+4整理,得(x -2)2=5 ………2分∴x-2=5±,即521+=x ,522-=x .………4分21.解:(1)画树状图得:………………………4分则共有12种等可能的结果; ………………………5分(2)∵恰好选派一男一女两位同学参赛的有8种情况,……………6分∴恰好选派一男一女两位同学参赛的概率为:=. ……………9分22.解: (1)画出三角形A 1B 1C 1得3分(2)直角坐标系建立正确得2分,A (-1,-1),B (-4,3)(写对一个得1分)(3)画出三角形A 2B 2C 2得3分23.(1)解:由题意得:(10-0.5x )(x +10)=10822120.558010160(2)(8)02,8x x x x x x x x -+-=-+=--===………………5分答:2月份和8月份单月利润都是108万元。
………………6分(2)设利润为w ,则22(100.5)(10)0.551000.5(5)112.55w x x x x x x =-+=-++=--+=所以当时,w 有最大值112.5.………………11分答:5月份的单月利润最大,最大利润为112.5万元………………12分24.解:(1)解:FG ⊥ED .理由如下 ……………1分∵△ABC 绕点B 顺时针旋转90°至△DBE 后,∴∠DEB=∠ACB , ……………2分∵把△ABC 沿射线平移至△FEG ,∴∠G FE=∠A , ……………3分∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°, ……………4分 ∴∠FHE=90°,∴FG ⊥ED ; ……………5分(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG ∥EB ,CB=BE ,……6分 ∵CG ∥EB ,∴∠BCG=∠CBE=90°, ……………………7分∴四边形BCGE 是矩形,……………………8分∵CB=BE , ……………………9分∴四边形CBEG 是正方形.……………………10分25.(1)证明:连接AD ,连接ODQ AB 是直径,∴BC AD ⊥,又ΘABC ∆是等腰三角形,∴D 是BC 的中点.…………3分OD AC ∴∥.DE AC ⊥,DE OD ⊥∴.DE ∴为⊙O 的切线.…………6分(2)在等腰ABC ∆中,60BAC ∠=o,知ABC △是等边三角形. Θ⊙O 的半径为5,10AB BC ∴==,152CD BC ==. …………9分 22603015225535()22C CD DE C D E E C ∠=︒∴∠=︒∴=∴=-==Q ………………12分 (用勾股定理结合方程求出照样给分)26. 解:(1)把A (-2,-1),B (0,7)两点的坐标代入c bx x y ++-=2,得 ⎩⎨⎧=-=+--7124c c b 解得⎩⎨⎧==72c b 所以,该抛物线的解析式为722++-=x x y ………………3分又因为8)1(7222+--=++-=x x x y ,所以,对称轴为直线1=x ………………5分(2)当函数值0=y 时,0722=++-x x 的解为221±=x , 结合图象,容易知道221221+<<-x 时,0>y ………………9分(3)当矩形CDEF 为正方形时,设C 点的坐标为(m ,n ), 则722++-=m m n ,即722++-=m m CF因为C ,D 两点的纵坐标相等,所以C ,D 两点关于对称轴1=x 对称,设点D 的横坐标为p ,则11-=-p m ,所以m p -=2,所以CD =m m m 22)2(-=-- 因为CD =CF ,所以72222++-=-m m m ,整理得0542=--m m , 解得1-=m 或5.……………………12分因为点C 在对称轴的左侧,所以m 只能取1-.当1-=m 时,722++-=m m n =7)1(2)1(2+-⨯+--=4 于是,得点C 的坐标为(1-,4)………………13分。
贵州省黔东南苗族侗族自治州九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七上·宝鸡期中) 已知a,b互为相反数,c,d互为倒数,m的绝对值为1,x是数轴上到原点的距离为1的点表示的数,则的值为()A . -3B . -2C . -1D . 02. (2分) (2016八下·万州期末) 如图,在平行四边形ABCD中,AC与BD相交于点O,AB⊥AC,∠DAC=45°,AC=2,则BD的长为()A . 6B . 2C .D . 33. (2分)下列各组线段中,能成比例的是().A . 1cm,3cm,4cm,6cmB . 30cm,12cm,0.8cm,0.2cmC . 0.1cm,0.2cm,0.3cm,0.4cmD . 12cm,16cm,45cm,60cm4. (2分) (2019九上·桂林期末) 若反比例函数y= 的图象经过点(2,-1),则该函数的图象位于()A . 第一、三象限B . 第三、四象限C . 第一、二象限D . 第二、四象限5. (2分) (2016九上·北京期中) 如图为二次函数y=ax2+bx+c的图象,下列各式中:①a>0,②b>0,③c=0,④c=1,⑤a+b+c=0.正确的只有()A . ①④B . ②③④C . ③④⑤D . ①③⑤6. (2分)如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=4,OA=3,则cos∠APO的值为()A .B .C .D .7. (2分)(2014·宁波) 如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA 的面积比为()A . 2:3B . 2:5C . 4:9D . :8. (2分) (2020八上·柯桥期中) 已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A . 12或15B . 15C . 12D . 以上答案均不对二、填空题 (共8题;共9分)9. (1分)(2017·鄞州模拟) 分解因式:ab2﹣4ab+4a=________.10. (2分) (2016九上·重庆期中) 抛物线y=﹣x2+15有最________点,其坐标是________.11. (1分)如图,线段AB是⊙O的直径,点C在圆上,∠AOC=80°,点P是线段AB延长线上的一动点,连接PC,则∠APC的度数是________度(写出一个即可).12. (1分) (2018九上·灌云月考) 如图,点在的边上,请你添加一个条件,使得∽ ,这个条件可以是________.13. (1分)如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是________.14. (1分) (2019八上·西林期中) 已知两点在一次函数y=-3x+4图象上,且,则 ________ (填“>”“<”或“=”)15. (1分)(2019·海曙模拟) 如图,已知EF是△ABC的中位线,DE⊥BC交AB于点D,CD与EF交于点G.若CD⊥AC,EF=9,EG=4,则AC的长为________.16. (1分)(2012·河池) 如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为(4,2),将矩形OEFG 绕点O逆时针旋转,使点F落在y轴上,得到矩形OMNP,OM与GF相交于点A.若经过点A的反比例函数的图象交EF于点B,则点B的坐标为________.三、解答题 (共12题;共105分)17. (5分)(1)解不等式:(2)计算:÷(a+2﹣)18. (10分)计算下列各题:(1)(2cos45°﹣sin60°)+ ;(2) 2﹣1﹣tan60°+(﹣1)0+| |.19. (10分) (2017八下·西城期中) 如图,已知和点.将绕点顺时针旋转得到.(1)在网格中画出.(2)若,直接写出平行四边形的顶点的坐标.20. (5分)(2020·江西模拟) 如图所示的益智玩具由一块主板AB和一个支撑架CD组成,其侧面示意图如图1所示,测得AB⊥BD,AB=40cm,CD=25cm,点C为AB的中点.现为了方便儿童操作,需调整玩具的摆放,将AB 绕点B顺时针旋转,CD绕点C旋转,同时点D做水平滑动(如图2),当点C1到BD的距离为10cm时停止运动,求点A经过的路径的长和点D滑动的距离.(结果保留整数,参考数据:≈1.732,≈4.583,π≈3.142)21. (13分) (2016九上·永泰期中) 已知二次函数y= x2+x﹣.(1)用配方法将y= x2+x﹣化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)根据图象填空:①当x________时,y随x的增大而增大;②当﹣2<x<2时,则y的取值范围是________;③关于x的方程 x2+x﹣ =m没有实数解,则m的取值范围是________.22. (5分) (2019八下·汕头月考) 如图,在△ABC中,AB=AC=13,点D在BC上,AD=12,BD=5,试问AD平分∠BAC吗?为什么?23. (5分)计算:sin60°﹣4cos230°+sin45°•tan60°.24. (5分)如图,DE∥CF,点B在DE上,连接BC,过点B作BA⊥BC交FC于点A.过点C作CG平分∠BCF 交AB于点G,若∠DBA=38°,求∠BGC的度数.25. (10分)(2019·赣县模拟) 在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥ 轴,垂足为点H,OH=3,tan∠AOH= ,点B的坐标为(,-2).(1)求该反比例函数和一次函数的解析式;(2)求△AHO的周长.26. (7分)(2020·淅川模拟) 如图,AB是半圆O的直径,AC是半圆内一条弦,点D是的中点,DB交AC于点G,过点A作半圆的切线与BD的延长线交于点M,连接AD.点E是AB上的一动点,DE与AC相交于点F.(1)求证:MD=GD;(2)填空:①当∠DEA=________时,AF=FG;②若∠ABD=30°,当∠DEA=________时,四边形DEBC是菱形.27. (15分) (2019八下·南昌期末) 已知两条线段长分别是一元二次方程x2﹣8x+12=0的两根.(1)解方程求两条线段的长;(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积;(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积.28. (15分)(2019·惠民模拟) 如图,抛物线y=x2+bx+c与x轴交于点4和点B(3,0),与y轴交于点C (0,3).(1) 求抛物线y=x2+bx+c 的解析式;(2) 点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标;(3) 点P 在x 轴下方的抛物线上,过点P 的直线y=x+m 与直线BC 交于点E ,与y 轴交于点F ,求PE+EF 的最大值.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共9分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共12题;共105分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:答案:27-1、答案:27-2、答案:27-3、考点:解析:答案:28-1、答案:28-2、答案:28-3、考点:解析:。
(第16题图)OPBA黔东南州2015—2016学年度第一学期期末文化水平测试九年级数学试卷(满分150分,考试时间120分钟)注意事项:1.答题时,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只需将答题卡交回,试题卷由考生自己留存。
一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符号题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.) 1.下列事件是必然发生的是A 、明天是星期一B 、购买一张彩票中奖C 、太阳从东方升起D 、上街遇上朋友2. 下列图形中,是中心对称图形的是A B C D3. 一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为A 、 13B 、 25C 、 12D 、 354.已知两圆的半径分别是 5 和 7,圆心距为 2,那么两圆的位置关系是A 、 外离B 、 外切C 、 相交D 、 内切5.若a 、b 是一元二次方程0120162=+-x x 的两根,则b a 11+的值为A 、2015B 、2016C 、20151D 、201616.关于x 的一元二次方程()220x mx m -+-=的根的情况是A 、有两个不相等的实数根B 、有两个相等的实数根C 、没有实数根D 、无法确定7. 如图,圆锥形的烟囱帽底面半径为15cm ,母线长为20cm ,制作这样一个烟囱帽所需要的铁皮面积至少是A 、 150πcm 2B 、 300πcm 2C 、 600πcm 2D 、 150πcm 2 8、一次函数y=ax+c 与二次函数y=ax 2+bx+c(a≠0),它们在同一坐标系中,大致图象是9.如图,将三角尺ABC (其中∠ABC=60° 时针转动一个角度到A 1BC 1的位置,使得点A 、B 、C 1在同一条直 线上,那么这个旋转的角度等于A 、 120°B 、 90°C 、 60°D 、 30°10.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b+2a=0;②abc <0; ③a -2b+4c <0;④8a+c <0;⑤a+b+c >0.其中正确的有 A 、 3个 B 、 2个 C 、 1个 D 、 0个二、填空题(本题共8小题,每小题4分,共32分.答题请用0.5毫米黑色墨水的签字笔或钢笔直接答在答题卡的相应位置上)11. 若关于x的方程(m -1)x 2+mx -1=0是一元二次方程,则m 的取值范围是 .12.如果圆中一条弦长与半径相等,那么此弦所对圆周角为 度. 13. 以 -2 和 3 为根的一元二次方程为 (写出一个即可) 14.将抛物线 y =2x 2 向下平移 2 个单位,再向左平移1个单位,所得的抛物线的解析式为 .15.△ABC 的周长为 10cm ,面积为 4cm 2,则△ABC 内切圆半径为 cm. 16. 如图,P A 、PB 是⊙O 的切线,切点分别为A 、B ,已知⊙O 的半径为2, ∠P =60°,则弦AB 的长为 .17. 如图,Rt △OAB 的直角边OA 在y 轴上,点B 在第一象限内,OA=2,AB=1,若将△OAB 绕点O 按顺时针方向旋转90°, 则点B 的对应点的坐标是___________.18. 如图,在平面直角坐标系中,点A 1是以原点O 为圆心,半径为2的圆与过点(0,1)且平行于x 轴的直线l 1的一个交点;点A 2是以原点O 为圆心,半径为3的圆与过点(0,2)且平行于x第17题y BxAy xxCy xDy y xAO BF EODBCA轴的直线l 2的一个交点;……按照这样的规律进行下去,点A n 的坐标为 . 三、解答题(本题共7小题,共78分.答题请用0.5毫米黑色墨水签字笔或钢笔书写在答题卡的相应位置上.解答是应写出必要的文字说明,证明过程或演算步骤.) 19.(10分)解下列方程(1)(x+3)(x -6)=-8 (2)3x 2-6x=420.(10分)如图,在Rt OAB △中,90OAB ∠=,且点B 的坐标为(4,2). (1)画出OAB △向下平移3个单位后的111O A B △;(2)画出OAB △绕点O 逆时针旋转90后的22OA B △,并求点B旋转到点B 2所经过的路线长(结果保留π).21. (10分)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张, 计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜. (1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况. (2)请判断该游戏对双方是否公平?并说明理由.22. (10分)如图所示,有一个抛物线形的拱形桥洞,桥洞离水面的最大高度AB 为 4m ,跨度OC为10m 。
2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。
)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。
)A。
y=-3(x-2)^2+1B。
y=-3(x+2)^2+1C。
y=-3x^2+2D。
y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。
)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。
)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。
)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。
)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。
)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。
)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。
)A。
2B。
1C。
√2D。
1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。
)12、正六边形的边长为10cm,那么它的边心距等于(。
2016—2017学年度第一学期期末学业质量检测九年级数学试题本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ一、选择题(本大题共16个小题,1~10题,每小题3分;11~16题,每小题2分;共42分.在每小题给出的四个选项中,只有一项是符合题目要求)1.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是【】A.B.C.D.2.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是【】A.(x-2)2 =3 B.(x+2)2 =3 C.(x-2)2 =1 D.(x-2)2 = -13.已知△ABC∽△DEF,AB∶DE=1∶2错误!未找到引用源。
,则△ABC与△DEF的周长比等于【】A. 1∶2B. 1∶4C. 2∶1D. 4∶14.如图,△ABC的顶点都是正方形网格中的格点,则tan∠ABC等于【】A. B. 23C. 12D. 25.如图,电线杆上的路灯距离地面8米,身高1.6米的小明(AB)站在距离电线杆的底部(点O)20米的A处,则小明的影子AM长为【】A. 4米B. 5米第1题图第4题图C. 6米D. 8米6.若5k +20<0 错误!未找到引用源。
,则关于x 的一元二次方程x 2+4x -k =0 错误!未找到引用源。
的根的情况是 【 】A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法判断 7.若578a b c==,且a b c -+=323 错误!未找到引用源。
,则a b c +-243的值是 【 】A. 14B. 42C. 7D.1438.在一个不透明的盒子里,装有4个黑球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中 10次摸到黑球,则估计盒子中大约有白球 【 】 A. 12个 B. 16个 C. 20个 D. 30个9.如图,将一个长为10cm ,宽为8cm 的矩形纸片从下向上,从左到右对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的四边形的面积为【 】第9题图A. 10cm 2B. 20cm 2C. 40cm 2D. 80cm 210.现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是【】A.6.3(12)8+=x+=B. 6.3(1)8xC.2x x++++=6.3 6.3(1) 6.3(1)86.3(1)8x+=D.211.二次函数y=ax2+bx+c,自变量x与函数y的对应值如下表:下列说法正确的是【】A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-5212.把抛物线y=x2+bx+c先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为2=--错误!未找到引用源。
黔东南苗族侗族自治州九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2016八下·万州期末) 若关于x的方程﹣ =0有增根,则m的值是()A . 3B . 4C . 1D . ﹣12. (1分) (2019九上·汕头期末) 下列所给图形既是中心对称图形又是轴对称图形的是()A .B .C .D .3. (1分)(2018·毕节) 将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A . y=(x+2)2﹣5B . y=(x+2)2+5C . y=(x﹣2)2﹣5D . y=(x﹣2)2+54. (1分) (2019九上·汕头期末) 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=125°,则∠BOD等于()A . 55°B . 110°C . 105°D . 125°5. (1分) (2019九上·汕头期末) 如图,正八边形ABCDEFGH中,∠EAG大小为()A . 30°B . 40°C . 45°D . 50°6. (1分) (2019九上·汕头期末) 用配方法解方程x2﹣ x﹣1=0时,应将其变形为()A . (x﹣)2=B . (x+ )2=C . (x﹣)2=0D . (x﹣)2=7. (1分)(2018·龙湾模拟) 已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A . 120°B . 60°C . 40°D . 20°8. (1分) (2019九上·汕头期末) 有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是()A . x(x﹣1)=21B . x(x﹣1)=42C . x(x+1)=21D . x(x+1)=429. (1分) (2019九上·汕头期末) 如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB'C'(点B的对应点是点B',点C的对应点是点C'),连接CC',若∠B=78°,则∠CC'B'的大小是()A . 23°B . 30°C . 33°D . 39°10. (1分) (2019九上·汕头期末) 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B 两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为4+c,其中正确的结论个数有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)(2017·奉贤模拟) 若关于x的方程x2﹣kx+4=0有两个相等的实数根,则k的值为________.12. (1分) (2019九上·汕头期末) 一个圆锥的母线长为3,底面圆的半径为4,它的侧面积是________.13. (1分) (2019九上·汕头期末) 李明有红、黑、白3件运动上衣和白、黑2条运动短裤,则穿着“衣裤同色”的概率是________.14. (1分) (2019九上·汕头期末) 如图,等边三角形ABC内接于⊙O,点D是弧ACB上的一个动点(不与点A、B重合).连接BD.过点A作AE⊥BD,垂足为E,连接CE.若⊙O的半径为2cm,则CE长的最小值为________cm.15. (1分) (2019九上·汕头期末) 二次函数y=x2﹣2x﹣1的图象的顶点坐标是________.16. (1分) (2019九上·汕头期末) 如图,将边长为2的正方形ABCD绕顶点A旋转,使点B落在AC上的点E处,得正方形AEFG,则两正方形重合部分(阴影部分)的面积是________.三、解答题 (共9题;共18分)17. (1分) (2011八下·新昌竞赛) 一元二次方程可以配方成 ________.18. (1分) (2016九上·遵义期中) 已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.19. (2分) (2019九上·汕头期末) 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣5,1),B(﹣2,2),C(﹣1,4),请按下列要求画图:(1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1 ,画出△A1B1C1;(2)画出与△ABC关于原点O成中心对称的△A2B2C2 ,并直接写出点A2的坐标.20. (2分)(2016·北京) 阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21. (2分) (2017九下·鄂州期中) 在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.22. (2分)(2012·杭州) 有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.23. (3分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?24. (2分) (2019九上·汕头期末) 如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25. (3分) (2019九上·汕头期末) 如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为________;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一、选择题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共18分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
2016-2017学年贵州省黔东南州凯里一中九年级(上)入学数学试卷一、选择题(每小题4分,共48分):每个题只有一个正确答案.1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.下列计算正确的是()A.=±2 B.C.2﹣=2 D.3.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2 B.C.D.4.为参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表,则这10双运动鞋5.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定6.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.367.匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A.B. C.D.8.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.939.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.10.已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点()A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)11.已知=3,则的值为()A.B.C.D.﹣12.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8)C.(0,8)D.(0,16)二、填空题(本大题6个小题,每小题4分,共24分):在每小题中,请将正确答案直接填在题后的横线上.13.计算﹣=.14.已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为.15.写出同时具备下列两个条件的一次函数(正比例函数除外)表达式(写出一个即可)(1)y随着x的增大而减小;(2)图象经过点(﹣1,2).16.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.17.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=,菱形ABCD的面积S=.18.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.三、解答题(本题共7大题题,共78分)19.计算:(1)+(π﹣1)0﹣4+(﹣1)(2)+﹣(﹣)(3)|2﹣3|﹣(﹣)﹣2+.20.解不等式组,并将它的解集在数轴上表示出来.21.一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,x的值是多少?22.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.23.某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)将图补充完整;(2)本次共抽取员工人,每人所创年利润的众数是,平均数是;(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?24.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.25.如图,在平面直角坐标系中,直线分别与x轴、y轴交于点B、C,且与直线交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2016-2017学年贵州省黔东南州凯里一中九年级(上)入学数学试卷参考答案与试题解析一、选择题(每小题4分,共48分):每个题只有一个正确答案.1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选C.2.下列计算正确的是()A.=±2 B.C.2﹣=2 D.【考点】二次根式的混合运算.【分析】根据算术平方根的定义对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、与不能合并,所以D选项错误.故选B.3.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2 B.C.D.【考点】勾股定理;实数与数轴.【分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.【解答】解:AC===,则AM=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:C.4.为参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表,则这10双运动鞋【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中26是出现次数最多的,故众数是26;处于这组数据中间位置的数是26、26,那么由中位数的定义可知,这组数据的中位数是(26+26)÷2=26;故选D.5.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定【考点】一次函数图象上点的坐标特征.【分析】分别把各点代入一次函数y=﹣1.5x+3,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵点(﹣3,y1)、(﹣1,y2)、(2,y3)在一次函数y=﹣1.5x+3的图象上,∴y1=﹣1.5×(﹣3)+3=7.5;y2=﹣1.5×(﹣1)+3=1.5;y3=﹣1.5×2+3=0,∵7.5>1.5>0,∴y1>y2>y3.故选A.6.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.36【考点】菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4cm×9cm=18cm2,故选:B.7.匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A. B. C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较最粗,第二个容器较粗,那么每个阶段的函数图象水面高度h随时间t的增大而增长缓陡,用时较短,故选C.8.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【考点】勾股定理;点到直线的距离;三角形的面积.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C 到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,=AC•BC=AB•CD,又S△ABC∴CD===,则点C到AB的距离是.故选A10.已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点()A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)【考点】一次函数图象上点的坐标特征.【分析】根据“两点法”确定一次函数解析式,再检验直线解析式是否满足各点的横纵坐标.【解答】解:设经过两点(0,3)和(﹣2,0)的直线解析式为y=kx+b,则,解得,∴y=x+3;A、当x=4时,y=×4+3=9≠6,点不在直线上;B、当x=﹣4时,y=×(﹣4)+3=﹣3,点在直线上;C、当x=6时,y=×6+3=12≠9,点不在直线上;D、当x=﹣6时,y=×(﹣6)+3=﹣6≠6,点不在直线上;故选B.11.已知=3,则的值为()A.B.C.D.﹣【考点】分式的基本性质.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.12.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8)C.(0,8)D.(0,16)【考点】规律型:点的坐标.【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,所以可求出从A到A3的后变化的坐标,再求出A1、A2、A3、A4、A5,得出A8即可.【解答】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,∵从A到A3经过了3次变化,∵45°×3=135°,1×()3=2.∴点A3所在的正方形的边长为2,点A3位置在第四象限.∴点A3的坐标是(2,﹣2);可得出:A1点坐标为(1,1),A2点坐标为(2,0),A3点坐标为(2,﹣2),A4点坐标为(0,﹣4),A5点坐标为(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),A8(0,16),故选:D.二、填空题(本大题6个小题,每小题4分,共24分):在每小题中,请将正确答案直接填在题后的横线上.13.计算﹣=.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣=.故答案为:.14.已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为等腰直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:算术平方根;等腰直角三角形.【分析】已知等式左边为两个非负数之和,根据两非负数之和为0,两非负数同时为0,可得出c2=a2+b2,且a=b,利用勾股定理的逆定理可得出∠C为直角,进而确定出三角形ABC为等腰直角三角形.【解答】解:∵+|a﹣b|=0,∴c2﹣a2﹣b2=0,且a﹣b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.故答案为:等腰直角三角形15.写出同时具备下列两个条件的一次函数(正比例函数除外)表达式y=﹣x+1(写出一个即可)(1)y随着x的增大而减小;(2)图象经过点(﹣1,2).【考点】一次函数的性质.【分析】由题可知,需求的一次函数只要满足k<0且经过点(﹣1,2)即可.【解答】解:设函数关系式是y=kx+b∵y随着x的增大而减小∴k<0∴可设k=﹣1,将(﹣1,2)代入函数关系式,得b=1∴一次函数表达式为y=﹣x+1.(此题答案不唯一)16.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是小林.【考点】方差;折线统计图.【分析】观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.【解答】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.17.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=1:2,菱形ABCD的面积S=16.【考点】菱形的性质.【分析】由菱形的性质可知:对角线互相平分且垂直又因为AC:BD=1:2,所以AO:BO=1:2,再根据菱形的面积为两对角线乘积的一半计算即可.【解答】解:∵四边形ABCD是菱形,∴AO=CO,BO=DO,∴AC=2AO,BD=2BO,∴AO:BO=1:2;∵菱形ABCD的周长为8,∴AB=2,∵AO:BO=1:2,∴AO=2,BO=4,∴菱形ABCD的面积S==16,故答案为:1:2,16.18.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.【考点】待定系数法求一次函数解析式;一次函数的应用.【分析】先运用待定系数法求出y与x之间的函数关系式,然后把x=240时代入解析式就可以求出y的值,从而得出剩余的油量.【解答】解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣x+35.当x=240时,y=﹣×240+3.5=2(升).故答案为:2.三、解答题(本题共7大题题,共78分)19.计算:(1)+(π﹣1)0﹣4+(﹣1)(2)+﹣(﹣)(3)|2﹣3|﹣(﹣)﹣2+.【考点】二次根式的加减法;零指数幂;负整数指数幂.【分析】(1)先根据零指数幂的意义计算,再把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)先利用绝对值和负整数指数的意义计算,再把化简,然后合并即可.【解答】解:(1)原式=3+1﹣2+﹣=+;(2)原式=2+2﹣+3=+5;(3)原式=3﹣2﹣4+3=﹣1.20.解不等式组,并将它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x<4;由②得,x≥﹣1.故不等式组的解集为:﹣1≤x<4.在数轴上表示为:.21.一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,x的值是多少?【考点】待定系数法求一次函数解析式.【分析】(1)观察函数的图象,得出一次函数经过点(2,0)(0,﹣2),代入函数解析式即得出一次函数的表达式.(2)(3)再分别令x=10和y=12,即可得出对应的y,x的值.【解答】解:(1)观察图象可得一次函数的图象经过点(2,0),(0,﹣2)代入函数的解析式y=kx+b中,得,解得∴一次函数的表达式为y=x﹣2.(2)令x=10,得y=10﹣2=8(3)令y=12,得x=12+2=14.22.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.【考点】菱形的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据等边三角形的性质求出△DAB=60°,然后根据两直线平行,同旁内角互补求解即可;(2)根据菱形的对角线互相平分求出AO,再根据等边三角形的性质可得DE=AO.【解答】解:(1)∵E为AB的中点,DE⊥AB,∴AD=DB,∵四边形ABCD是菱形,∴AB=AD,∴AD=DB=AB,∴△ABD为等边三角形.∴∠DAB=60°.∵菱形ABCD的边AD∥BC,∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,即∠ABC=120°;(2)∵四边形ABCD是菱形,∴BD⊥AC于O,AO=AC=×4=2,由(1)可知DE和AO都是等边△ABD的高,∴DE=AO=2.23.某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)将图补充完整;(2)本次共抽取员工50人,每人所创年利润的众数是8万元,平均数是8.12万元;(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)求出3万元的员工的百分比,5万元的员工人数及8万元的员工人数,再据数据制图.(2)利用3万元的员工除以它的百分比就是抽取员工总数,利用定义求出众数及平均数.(3)优秀员工=公司员工×10万元及(含10万元)以上优秀员工的百分比.【解答】解:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,抽取员工总数为:4÷8%=50(人)5万元的员工人数为:50×24%=12(人)8万元的员工人数为:50×36%=18(人)(2)抽取员工总数为:4÷8%=50(人)每人所创年利润的众数是8万元,平均数是:(3×4+5×12+8×18+10×10+15×6)=8.12万元故答案为:50,8万元,8.12万元.(3)1200×=384(人)答:在公司1200员工中有384人可以评为优秀员工.24.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS 即可证得△EAB≌△GAD,(2)由(1)则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.【解答】(1)证明:∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS);(2)∵△EAB≌△GAD,∴EB=GD,∵四边形ABCD是正方形,AB=3,∴BD⊥AC,AC=BD=AB=6,∴∠DOG=90°,OA=OD=BD=3,∵AG=3,∴OG=OA+AG=6,∴GD==3,∴EB=3.25.如图,在平面直角坐标系中,直线分别与x轴、y轴交于点B、C,且与直线交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】一次函数综合题;解二元一次方程组;一次函数图象上点的坐标特征;待定系数法求一次函数解析式;三角形的面积;菱形的性质.【分析】(1)把x=0,y=0分别代入直线L1,即可求出y和x的值,即得到B、C的坐标,解由直线BC和直线OA的方程组即可求出A的坐标;(2)设D(x,x),代入面积公式即可求出x,即得到D的坐标,设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入即可求出直线CD的函数表达式;(3)存在点Q,使以O、C、P、Q为顶点的四边形是菱形,根据菱形的性质能写出Q的坐标.【解答】解:(1)直线,当x=0时,y=6,当y=0时,x=12,∴B(12,0),C(0,6),解方程组:得:,∴A(6,3),答:A(6,3),B(12,0),C(0,6).(2)解:设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∴y=﹣x+6,答:直线CD的函数表达式是y=﹣x+6.(3)答:存在点Q,使以O、C、P、Q为顶点的四边形是菱形,点Q的坐标是(6,6)或(﹣3,3)或.2016年10月28日。
第1页,共4页 第2页,共4页
学校 班级 姓名 考号
密 封 线 内 不 得 答 题
黔东南州2016~2017学年度第一学期期末考试
九年级数学试卷(满分:150分)
一、选择题(共10个小题,每小题4分,共40分)
1.下列图形交通标志中,既是轴对称图形又是中心对称图形的是
A B C D
2.下列事件为必然事件的是
A .任意抛掷一枚均匀的硬币,正面朝上
B .一个星期有七天
C .篮球运动员投篮,投进篮筐
D .打开电视机,正在播放新闻 3.在抛物线)0(2<=a ax y 的图像上有)1()2(c B b A ,、,-两点,则 A .c b = B .c b > C .c b < D .c b ≥ 4.如图,在O ⊙中,︒=∠100BOC ,则C B ∠+∠等于
A .80°
B .70°
C .60°
D .50° 5.如图,将AOB ∆绕点O 按逆时针方向旋转︒45后得到B O A ''∆,若︒=∠15AOB ,则B AO '∠ 的度数是
A .25°
B .
30°
C .35°
D .40° 6.如果关于x 的一元二次方程01)12(22=++-x k x k 有两个不相等的实数根, 那么k 的取值范围是
A .041≠-≥k k 且
B .41-<k
C .041≠->k k 且
D .4
1
->k
7.在同一直角坐标系中,一次函数c ax y +=和二次函数2)(c x a y -=的图象大致是
A B C D
8.如图所示,PA 切O ⊙于点A ,PB 切O ⊙于点B ,OB 交O ⊙于点C ,连接OA 、OB 、AB ,则下列说法:①PA=PB ;②BPO APO ∠=∠;OP AB ⊥;OP 平分劣弧AB 。
其中正确的有
A .1个
B .2个
C .3个
D .4个
9.如图所示,某小区规划在一个厂16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中的两条与AB 平行,其余的部分种草。
如果使草坪部分的总面积为1122m ,设小路的宽为x m ,那么x 满足的方程是
A .0162522=+-x x
B .032252=+-x x
C .016172=+-x x
D .016172=--x x
10.抛物线c bx ax y ++=2的部分图象如图所示,则下列说法:
①0<abc ;②02=+b a ;③当01>->y x 时,;④339-=+b a 。
其中正确的是
A .①②
B .②③
C .①②④
D .①②③④
二、填空题(共8个小题,每小题4分,共32分)
11.在平面直角坐标系中,点B 的坐标为)13(,-,则点B 关于原点 对称的点的坐标为 12.已知二次函数322-+-=x x y ,用配方法化为k h x a y +-=2)(的 形式为
13.如果一个扇形的圆心角为︒120,半径为3,那么该扇形所围成的 圆锥的底面圆的半径是
14.如图,一枚飞镖游戏盘由大小相等的小正方形格子构成,向游戏 盘随机投一枚飞镖,击中黑色区域的概率是
15.若一元二次方程0220162=+-x x 的两个实数根分别为b a 、,则 =--b a a 20172
16.如图,︒=∠90ABC ,O 为射线BC 上的一点,以O 为圆心,
2
1
BO 长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转 度时与⊙O 相切。
17.李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份的盈利达到3456元,且从2月到4月,每月盈利的平均增长率都相同,则每月的平均增长率是
18.如图,一段抛物线:)20)(2(≤≤-=x x x y ,记为1y , 它与x 轴交于1A O 、两点;将1y 绕点1A 旋转︒180的2y , 交x 轴于点2A ;将2y 绕点2A 旋转︒180的3y ,交x 轴于 点3A ;……,如此进行下去,直至得5y ,若)9(m P , 在第5段抛物线上,则=m
三、解答题(共7个小题,共78分)
19.(8分)计算
(1)0122=+-x x (2))1(3)1(-=-x x x
A B C
O
题图
第4O
A
B
A '
B '题图
第5O
P
A B C
题图
第8D
C
B
A
题图
第91
=x y x
1-1
-123
123
A
B
C
O
O 1A 2
A 3A 1
y 2
y 3
y y x
第3页,共4页 第4页,共4页
密 封 线 内 不 得 答 题
10分)⊙O 的半径为6,OA 于弦AB 的夹角是︒30,求弦AB 的长度。
21.(12分)在下列的网格图中,每个小正方形的边长均为1个单位,其中,︒=∠90B 。
(1)请在图中作出ABC Rt ∆以A 为旋转中心,沿顺时针方向旋转︒90后的图形C B A ''∆; (2)请求出在(1)的旋转过程线段AC 所扫过的部分的面积(结果保留π)。
22.(12分)一枚棋子放在边长为1个单位长度的正六边形ABCDEF 的顶点A 处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几,棋子就沿边按顺时针方向走几个单位长度。
棋子走到哪一点的可能性最大?求出棋子走到该点的概率。
(用列表或画树状图的方法求解)
23.(12分)如图,过⊙O 的直径BC 作AC ⊥BC ,连接AB 交⊙O 于点D ,连接CD 。
(1)求证:∠A=∠DCB
(2)若点E 是AC 的中点,连接DE ,试说明直线DE 与⊙O 的位置关系。
24.(12分)为迎接新年的到来,某商场大量准备年货,购进一种每件价格为10元的玩具,试销时发现:销售单价)/(件元x 与每天销售量)(件y 之间满足如图所示的关系。
(1)求出y 与x 得函数关系式;
(2)写出每天的利润W 与销售单价x 之间的函数关系式;若你是商场负责人,会将售价定位多少,来保证每天获得的利润最大,最大利润是多少?
25.(12分)如图,抛物线c bx x y ++-
=2
3
2与x 轴交于A(1-,0)、B 两点,与y 轴交于点C(0,2),抛物线的对称轴交x 轴于点D 。
(1)求抛物线的解析式
(2)在抛物线的对称轴上是否存在点P ,使△PCD 是等腰三角形?如果存在,直接写出P 点的坐标,如果不存在,请说明理由;
(3)点E 是在直线BC 上方抛物线上的一个动点,当点E 运动到什么位置时,△BCE 的面积最大?求出△BCE 的最大面积及此时E 点的坐标。
A B C A B D O )件A
O
D
B
C
y x。