基于CAE方法车身疲劳耐久性研究
- 格式:pdf
- 大小:1.10 MB
- 文档页数:3
车身结构疲劳寿命预测分析研究一、概述车身结构疲劳寿命预测分析研究是汽车工程领域的重要研究方向之一,其目的是通过建立精确的预测模型,预测车身结构在长期使用过程中的疲劳寿命,为车身结构设计和制造提供科学依据,进一步提高汽车的安全性、可靠性和耐用性。
二、车身结构疲劳寿命车身结构疲劳寿命是指车身结构在长期使用过程中,因受到加载和应力反复循环而发生的疲劳损伤或破坏前所经历的循环数或时间。
在汽车工程领域,疲劳寿命一直是汽车结构设计和制造的重要指标之一,影响着汽车的可靠性和使用寿命。
三、车身结构疲劳寿命预测方法车身结构疲劳寿命预测方法主要分为试验和计算两种方法。
1.试验法试验法是通过在模拟实际使用条件下进行大量的疲劳试验,以实测数据为基础,通过统计分析和曲线拟合等手段建立疲劳寿命预测模型。
试验法的优点是能够直接获取实际数据,预测结果准确可靠;缺点是试验成本高、时间长,并且只能针对某一特定结构进行试验,不具有通用性。
2.计算法计算法是通过在数值仿真软件中建立车身结构有限元模型,在给定的荷载作用下进行疲劳仿真分析,以数值模拟的结果为基础,通过计算建立疲劳寿命预测模型。
计算法的优点是成本低、时间短,并且具有通用性;缺点是需要建立精确的有限元模型,且模型的精度和建模方法会极大地影响疲劳寿命的预测结果。
四、影响车身结构疲劳寿命的因素车身结构疲劳寿命受到多种因素的影响,主要包括材料的强度和韧性、结构的几何形状、工艺质量、荷载等因素。
1.材料的强度和韧性材料的强度和韧性是影响车身结构疲劳寿命的最直接因素。
材料的强度决定了结构能够承受的最大应力值,而材料的韧性决定了结构在受到较大应力时的断裂形态,对疲劳寿命的影响也非常显著。
2.结构的几何形状车身结构的几何形状对疲劳寿命的影响主要体现在应力分布和应力集中的程度上。
一些细微的结构形状设计上的失误或缺陷可能会导致应力集中,从而对车身结构的疲劳寿命产生负面影响。
3.工艺质量工艺质量是影响车身结构疲劳寿命的重要因素之一。
收稿日期:2019-12-02作者简介:张泽俊(1989 ),男,工程师,研究方向为车辆结构耐久性CAE分析㊂E⁃mail:csuftzhang@126 com㊂DOI:10 19466/j cnki 1674-1986 2020 04 004基于实测道路谱的车身疲劳耐久性能改进张泽俊,刘宗成,颜伏伍,王雪峰,冯广冬(东风小康汽车有限公司汽车技术中心,重庆402247)摘要:基于实测试验场道路载荷谱,结合多体虚拟迭代技术与CAE疲劳损伤分析技术再现某车型车身钣金和焊点疲劳失效㊂对车身结构进行改进,改进后的样车在后续可靠性试验中未出现车身疲劳失效问题㊂工程实践表明,该方法可用于车身开发过程中疲劳失效实际问题的改进,减少物理样车试验次数,节约开发成本㊂关键词:道路谱;白车身;虚拟迭代;损伤预测中图分类号:U463DurabilityImprovementofBIWBasedonMeasuredRoadSpectrumZHANGZejun,LIUZongcheng,YANFuwu,WANGXuefeng,FENGGuangdong(AutomotiveTechnicalCenter,DongfengSokonAutomobileCo.,Ltd.,Chongqing402247,China)Abstract:ThesheetmetalandweldingspotfatiguefailureinBIWwasreproducedbasedonthemeasuredroadloadspectrumandthecombinationmethodofvirtualiterationandCAEfatiguedamageanalysis.Thebodystructurewasimprovedbasedontheanalysisresults.AndthefatiguefailureinBIWnevershowedupinthesubsequentroadtests.Theengineeringpracticeindicatesthisapproachcanbeusedtoimprovethepracticalproblemsoffatiguefailure.Thetimesofexperimentcanbegreatlyreducedandalsothedevelopmentcostscanbesavedsignificantlyinthisway.Keywords:Roadspectrum;Whitebody;Virtualiteration;Fatiguedamageprediction0㊀引言面对日趋激烈的汽车市场,各大整车制造商不断延长整车质保里程或年限来提高产品竞争力,这样整车的疲劳耐久性能开发越来越受到重视㊂车身作为整车关键子系统之一,其耐久性能成为整车性能开发中的焦点之一[1]㊂车身是一切车身部件和底盘部件的安装基础,其结构和实际承受载荷的复杂多样性,给解决车身疲劳失效问题带来了极大的困难㊂一般是通过对样车进行可靠性道路试验和道路模拟试验来确保车辆达到耐久性能[2],但该手段存在开发周期长㊁资金投入大等问题㊂某新开发SUV车型,在整车道路模拟试验中,左右车身后门框处均出现钣金和焊点失效问题㊂通过试验场道路谱采集㊁建立多体动力学模型进行虚拟迭代并结合CAE疲劳分析技术,从仿真角度复现了车身疲劳失效问题,解决了车身开发过程中出现的疲劳失效问题,减少了开发成本及试验的盲目性,缩短了研发周期㊂1㊀车身失效情况简介及技术研究路线某SUV车型第一轮试制样车在整车四通道可靠性道路模拟试验完成63%时,发现左右后门框位置出现钣金开裂㊁焊点失效问题,如图1所示㊂检查发现裂纹断面存在磨损痕迹,说明车身左右侧后门框在试验小于63%时就出现了疲劳失效问题㊂意味着该SUV车身前期设计不能满足疲劳耐久性能要求,存在一定的安全隐患,需要对车身门框开裂位置进行优化设计,以达到指定的疲劳耐久性能㊂图1㊀车身门框失效通过实车在试验场采集载荷谱,并对采集的数据有效性进行检查,结合多体虚拟迭代技术和CAE分析技术再现物理试验疲劳失效点,并依据分析结果对车身结构进行改进㊂其技术路线如图2所示㊂图2㊀车身失效改进技术路线2 路谱采集及虚拟迭代2 1㊀采集工况简介采集车辆使用第一轮试制样车,在4个车轮上安装WFT六分力传感器,如图3(a)所示,采集车轮六分力信号;在车轮转向节轮心处安装加速度传感器,如图3(b)所示,采集轮心加速度信号;在前后车轮Topmount处安装加速度传感器,采集车身减震器塔顶处加速度信号;在前后减震器弹簧上布置应变计,测量前后弹簧应变信号;并安装GPS和陀螺仪,分别记录车辆行驶轨迹㊁车速和车身姿态㊂图3㊀车轮六分力传感器和轮心加速度传感器将样车配重至满载质量状态,依据路谱采集规范在某汽车试验场测量耐久试验路面(搓板路㊁卵石路㊁车身扭曲路等),GPS记录的车辆行驶轨迹如图4所示㊂图4㊀采集车辆行驶轨迹2 2㊀路谱采集结果及数据检查采集车辆布置传感器共计75个通道,各通道信号数据通过数据采集器记录和存储,每个样本采集3次㊂如图5所示,采集到的左后轮轮心的力和力矩㊂图5㊀采集到的左后轮轮心力和力矩在制动工况下,根据Fx和My的相互关系,可以判断采集到的六分力数据的正确性㊂如图6所示,左前轮在制动工况下Fx和My呈线性相关,且斜率在0 35左右,与轮胎的滚动半径一致㊂图6㊀制动力矩My和制动力Fx关系㊀㊀将采集到的4个车轮轮心Z向加速度做频谱分析,如图7所示,信号频率段主要集中在50Hz以下,与路面的激励频率一致,说明采集到的数据具备一定的有效性㊂图7㊀4个车轮轮心Z向加速度频谱2 3㊀多体虚拟迭代载荷分解采用多体虚拟迭代的方法获取车身各接附点的载荷,作为后续车身疲劳CAE分析的输入㊂将试验场采集到的载荷谱经过等效处理后,作为多体虚拟迭代的目标信号,搭建与采集样车状态一致的整车多体动力学模型,作为虚拟迭代的基础模型,如图8所示㊂图8㊀整车多体动力学模型虚拟迭代原理如图9所示,用白噪声驱动多体模型得到初始传递函数并求出反传递函数F-1,再根据试验采集的信号和反传递函数求得第一次迭代的驱动信号D1,该驱动信号再次驱动多体模型,可得到第一次的响应X1,对比X1与目标信号Xtarget,并修正公式(1)中的w,再迭代,直到满足收敛条件(Xn与Xtarget相对损伤值介于0 5 2之间[3])终止迭代㊂Dn+1=Dn+w㊃F-1㊃(Xtarget-Xn)(1)图9㊀虚拟迭代原理㊀㊀建立的多体动力学模型经过5次迭代后,迭代信号与目标信号的各通道相对损伤值范围在0 5 2之间,满足虚拟迭代精度要求㊂各次迭代收敛情况如图10所示㊂图10㊀各次迭代收敛情况通过最后一次迭代后,获取车身各接附点的力和力矩㊂图11所示为车身与后副车架连接左前接附点的力和力矩,获取的各接附点的载荷谱作为车身疲劳耐久CAE分析的输入㊂图11㊀车身与后副车架左前接附点力和力矩载荷谱3 车身疲劳CAE分析及疲劳失效再现3 1㊀车身疲劳CAE分析模型搭建搭建车身TB有限元模型,五门一罩㊁油箱㊁备胎㊁天窗等采用集中质量模拟,车身附件采用非结构质量NSM配重至钣金件上㊂车身焊点采用刚性梁Bar单元模拟[4],直径为6mm,梁单元与车身钣金件采用共节点方式连接㊂在车身18个接附点处加载六向单位载荷,共计108个通道,采用惯性释放法计算得到疲劳计算所需要的白车身结构应力场和焊点单元力场㊂3 2㊀车身疲劳损伤预测车身焊点刚性梁单元传递的力和力矩用来计算结构应力[5],基于计算的焊点结构应力对车身焊点进行疲劳损伤预测㊂焊点的材料采用Spot_Nugget_Generic和Spot_Sheel_Generic[6]㊂采用FKM法修正平均应力㊂将车身结构应力场导入疲劳分析软件,基于名义应力SN的方法,对车身进行疲劳损伤评估,其中平均应力修正采用Goodman法㊂由于车身几何形状复杂且受到多轴疲劳载荷作用,故采用临界平面法㊂临界平面法计算原理为过某点取n个等夹角的平面,对每个平面上的正应力和剪应力进行等效组合,对每个平面的等效应力计算损伤,然后取n个平面中最大损伤值为该点的损伤㊂根据车身中不同材料牌号建立不同材料的SN曲线㊂SN曲线可以通过试验获得,在缺少试验SN曲线时,可以根据材料的特性参数进行拟合得到SN曲线㊂对于母材,可以通过输入材料的抗拉极限UTS拟合得到材料应力寿命SN曲线[7],其拟合曲线如图12所示㊂图中参数SRI1㊁b1和b2通过公式(2) (5)计算得到㊂图12㊀基于UTS拟合的SN曲线SRI1=2ˑS2/(Nc1)b(2)b1=[log(S2)-log(S1)]log(Nc1)-3(3)b2=b1(2+b1)(4)S1=0 9ˑUTS;S2=0 357ˑUTS(5)式中:UTS为材料抗拉强度;S1为1000次循环下的应力幅值;S2为Nc1循环次数下的应力幅值;SRI1为循环1次即失效时的应力幅;b1和b2分别为SN曲线第一阶段和第二阶段的斜率;Nc1为SN曲线第一个拐点的循环次数,对于普通钢材材料Nc1一般取1ˑ106㊂设置好疲劳分析参数后,在疲劳分析软件中对车身焊点和钣金进行疲劳损伤计算,计算得到损伤结果如图13所示㊂可以看出:门框拐角处焊点的损伤均大于目标值1,最大损伤达到5 2(经验表明车身焊点损伤值高于1即存在失效风险);门框钣金的最大损伤为0 246(经验表明钣金处损伤值高于0 2即存在开裂风险)㊂分析结果表明:门框焊点㊁钣金失效位置与道路模拟试验失效位置一致㊂图13㊀车身焊点和钣金损伤计算结果3 3㊀车身结构改进依据上述分析结果,延长门槛梁加强板结构,并增加焊点,增加门框局部刚度,车身结构改进示意如图14所示㊂图14㊀车身结构改进示意对改进后的车身结构重新计算疲劳损伤,如图15所示㊂改进后的车身疲劳失效点的损伤远低于目标值,疲劳耐久性能得到显著提高㊂在后续的可靠性试验中,未发现门框处的焊点和钣金失效问题㊂图15㊀车身结构改进后损伤计算结果4㊀结束语以某白车身为研究对象,以实测试验场载荷谱作为多体虚拟迭代的输入,获取车身各硬点载荷谱,并结合CAE疲劳损伤预测方法,复现了可靠耐久试验中车身疲劳失效问题㊂针对车身失效位置提出了改进方案,改进后的车身失效位置的疲劳损伤值显著降低,并在后续的可靠耐久试验中未出现疲劳失效问题㊂实践表明,通过该方法预测的疲劳风险点与物理样车试验风险点比较吻合㊂该方法可用于车身开发过程中实际疲劳失效问题的改进,也可用于产品开发阶段车身的疲劳损伤预测,以此减少试验验证的盲目性,节约开发成本㊂参考文献:[1]黄金陵.汽车车身设计[M].北京:机械工业出版社,2007.[2]林育正,毛庆平.建立整车疲劳寿命分析技术的程序方法[J].车辆研测资讯,2005(3):20-27.[3]RYUS.Astudyonobtainingexcitationloadofvirtualtestlabusingvirtualiterationmethod[R].SAEPaper,2010-01-0011,2010.[4]龙海强,胡玉梅,刘波,等.基于随机载荷的白车身焊点疲劳寿命预测[J].汽车工程,2016,38(8):1006-1010.LONGHQ,HUYM,LIUB,etal.Fatiguelifepredictionforthespotweldsofbody⁃in⁃whitebasedonrandomloadings[J].AutomotiveEngineering,2016,38(8):1006-1010.[5]杜中哲,朱平,何俊,等.基于有限元法的轿车车身结构及焊点疲劳寿命分析[J].汽车工程,2006(10):944-947.DUZZ,ZHUP,HEJ,etal.FatiguelifeanalysisofcarbodystructureandspotweldbasedonFEM[J].AutomotiveEngineering,2006(10):944-947.[6]郜慧超.某重型载货汽车车架的疲劳分析及优化[D].北京:北京理工大学,2016.[7]毛显红,肖攀,陈建华,等.基于道路谱的汽车车身疲劳分析[J].计算机辅助工程,2011,20(2):75-78.MAOXH,XIAOP,CHENJH,etal.Automotivebodyfatigueanalysisbasedonroadspectrum[J].ComputerAidedEngineering,2011,20(2):75-78.L3级自动驾驶难落地?针对场景开发,发挥OTA价值是正解当前,L2级自动驾驶技术已经实现大规模的商业化运用,进一步向上突破,实现L3及以上自动驾驶汽车落地,成为了行业共同努力的方向㊂但同时也有一些车企宣称直接跃过L3级别,投入L4级自动驾驶的研发和量产㊂在自动驾驶领域,以腾讯为代表的软件和云服务提供方,对于量产落地的实现路径,有怎么样的投入和布局?日前,腾讯自动驾驶产品负责人王明明,分享了腾讯对自动驾驶落地应用的破局思路㊂从需求出发让用户早日体验到自动驾驶的便利性以用户的需求为出发点,提供场景化的自动驾驶服务,解决用户痛点,分场景㊁分需求逐步实现自动驾驶落地㊂解决高速场景中的自动驾驶,就可以在很大程度上满足用户解放双手的需求㊂另外,高速和封闭的城市快速路,道路地面标识相对清晰,路况相对简单,可以成为自动驾驶落地应用的第一步㊂除了高速和快速路,泊车也是在目前道路条件下可以比较快速实现的辅助驾驶场景㊂从2019年开始,腾讯自动驾驶团队针对高速及泊车场景进行了产品化开发,并预计在今年下半年推出针对这两种场景的自动驾驶量产解决方案,以分场景㊁分需求的方式逐步推动自动驾驶功能的量产落地㊂充分发挥腾讯的算法和云服务的优势,通过OTA让用户体验持续升级腾讯认为,实现数据闭环是自动驾驶系统不断优化的关键㊂在车辆硬件条件满足㊁算力保证的基础之上,腾讯可以结合自身的软件能力和云服务的优势,通过数据回传,尤其是cornercase的累积,实现算法的不断优化㊂经过OTA升级的方式更新软件,不断向用户开放更多自动驾驶能力,形成良性循环,为用户及车企合作伙伴带来持续的价值㊂软件定义汽车,差异化创造价值在数字化浪潮下,软件定义汽车的说法一再被提及,汽车电子软件爆炸式增长,随之而来的就是电子电气构架的变革㊂集中式架构取代传统的分布式架构,已经成为汽车电子电气架构公认的未来㊂集中式架构是方向,但是真正实现用一个或几个 大脑 来操控全车,面临着不少的挑战㊂硬件架构日趋相同,功能/体验的差异化更多通过软件的差异化实现㊂AI㊁大数据㊁云计算的发展,带来千人千面的定制化体验的潜力,使产品在硬件之外的增值变为可能㊂在这个过程中,腾讯希望聚焦自动驾驶软件,充分发挥自身的算法优势,提供模块化软件解决方案,做好数字化的工具箱,为合作伙伴提供助力㊂新基建推动产业互联网发展腾讯自动驾驶驶入快车道智慧出行领域,特别是自动驾驶产业链庞大且复杂,量产落地需要技术+政策+产业链共同驱动㊂腾讯一直在跟踪自动驾驶相关法规的进展,并力求在法规允许的范围内,为用户提供更好的产品体验㊂与此同时,腾讯也在积极推进法规建设㊂目前,腾讯正在与国家智能网联汽车(长沙)测试区㊁北京智能车联创新中心等行业机构密切合作,提升自动驾驶汽车的测试效率,共同探索测试评价的配套升级㊂自动驾驶和智能网联汽车领域将成为这一轮新基础建设加速的重点落地场景之一,腾讯自拥抱产业互联网以来,也早已布局了包含5G网络应用㊁车联网㊁自动驾驶等领域的智慧出行业务版图,连接丰富的出行服务生态,与政府部门㊁车企乃至整个汽车行业展开深入的合作,发挥自身的用户服务和生态连接能力,为智慧出行产业发展提供助力㊂(来源:互联网)。
车身结构优化设计及其疲劳寿命分析一、引言在车辆设计中,车身结构的优化设计及其疲劳寿命分析也是不可或缺的一部分。
做好这方面的工作,不仅可以提高车辆的安全性能和舒适性能,还可以延长车辆的使用寿命,从而更好地保障人们的出行安全和生活质量。
二、车身结构优化设计1.1 意义和目的车身结构的优化设计是指在保证车身强度、刚度和稳定性等性能的基础上,通过调整结构、采用新材料和加工工艺等手段来使车身的重量更轻,噪音更小,乘坐舒适性更好,并提高车辆的综合性能。
1.2 优化设计流程(1)确定系统性能需求:包括车身强度、刚度、稳定性、舒适性、安全性能等。
(2)分析和优化车身结构:采用CAE分析和优化软件对车身结构进行分析,调整结构、减少零部件的数量等以达到重量减轻的目的。
(3)选择合适材料:采用轻量化材料,如高强度钢、铝合金、塑料等材料,以达到减轻重量的目的。
(4)提高加工工艺:采用先进的加工工艺,如冲压成型、喷涂、涂装等,以达到提高制造效率和降低成本的目的。
1.3 实例分析比如,本田公司最近发布了一款新车,其中采用了大量的高强度钢材料,并采用模块化设计,去除了很多零部件,从而在车身稳定性和舒适性上都有所提升,同时重量也有所减轻。
三、疲劳寿命分析2.1 意义和目的车身结构的疲劳寿命分析是指在保证车身结构强度和稳定性的基础上,通过对车身各零部件的疲劳寿命进行分析和评估,预测车身的使用寿命,避免出现裂纹、断裂、变形等现象,保证车辆的安全性能和可靠性能。
2.2 疲劳寿命分析方法(1)有限元法:采用有限元法对车身结构进行疲劳寿命分析,通过对板、梁、节点等部件的应力应变、应变历程和损伤程度等进行分析和评估。
(2)试验法:采用试验方法对车身结构进行疲劳寿命分析,通过对多样化试验来检测车身结构各零部件的疲劳损伤、裂纹、变形等情况,并分析其疲劳寿命。
2.3 实例分析比如,通用汽车公司采用了先进的试验方法和有限元分析方法来研究车身结构的疲劳寿命,通过对车身各零部件的应力分布和疲劳损伤等进行综合评估,提高了车身的疲劳寿命,同时也提高了车辆的安全性和可靠性。
汽车整车耐久性的试验分析摘要:伴随汽车市场竞争不断激励,为降低汽车开发成本,积极响应汽车市场需求,应该强化汽车整车耐久性,可以在保证汽车质量的同时,做好整车耐久性试验,具有实际应用价值。
以下本文就基于具体实例,进行汽车整车耐久性试验分析。
关键词:汽车耐久性;汽车;耐久性试验引言汽车耐久性试验,在汽车生产企业中对其产品质量至关重要,是提高汽车开发质量的重点。
以下本文对此做具体介绍。
1.汽车耐久性试验的意义汽车耐久性试验是指在汽车规定的使用以及维修条件下,为确保汽车整车可以达到某种技术以及经济指标极限时,对其完成的规定功能能力进行试验。
汽车整车耐久性试验,可以为汽车产品的研究、设计等多个部分提供有效可靠的数据资料,也可以有效分析失效样品,并找出失效原因与汽车整车开发中的薄弱环节,并对此能够采取相应的对策,有效避免汽车行驶中因道路强化问题而引起的故障失真。
汽车产品开发中,科学的耐久性试验,可以保证汽车耐久性质量,提高汽车产品可靠性。
2.浅析汽车整车耐久性试验方法汽车整车耐久性试验,可以根据其试验方式的不同分为道路耐久性、虚拟耐久性、台架道路模拟三种方法,主要内容如下:2.1道路耐久性试验在汽车整车耐久性试验中,对车轮上力以及扭矩、车辆关键零部件的应力与在道路上的应变。
其中,试车场道路耐久性中,根据样车在试车场内的耐久损伤,对于其在不同道路模拟试验台架上,可以根据特定试验规范驾驶汽车,对车轮疲劳损伤进行分析【1】;在试车场的耐久性试验中,其应用的主要道路保留高速路、石路、摇摆路、破损路、搓板路等,根据这些道路模拟车辆在使用中的最恶劣工况环境,采集实际使用数据,调整路面车速和循环数量,考核汽车整车的耐久性能。
对于公共道路的耐久性试验中,可以让车辆在公共道路上根据人们的开车习惯,针对以山路、乡村公里、国道、高速路、城市道路、以及省道等典型道路的耐久性测验,根据驾驶员驾驶习惯,让其在周围道路中选择合适的里程分配比例,进行耐久性试验。
机电技术 2012年2月104作者简介:宋名洋(1981-),男,工程师,研究方向:虚拟仿真系统在整车研发中的应用和二次开发。
基于CAE 方法车身疲劳耐久性研究宋名洋(东南(福建)汽车工业有限公司研发中心,福建 福州 350119)摘 要:基于试验场实车测量的某乘用车在标准工况下的载荷谱数据,结合多体动力学计算、有限元的非线性强度分析和MSC. Fatigue 疲劳分析等多种CAE 分析手段,对该乘用车白车身在实测载荷谱作用下的疲劳寿命进行计算分析。
同时,总结出了一套符合真实工况的试验和虚拟分析相结合的白车身一体化疲劳分析流程。
关键词:白车身;道路载荷谱;疲劳耐久性中图分类号:U463.82 U461.7+1 文献标识码:A 文章编号:1672-4801(2012)01-104-03当前,随着汽车工业的发展,消费者对产品的安全性和可靠性的要求越来越高。
如何将汽车这样复杂的机器在尽量短的时间周期内保质保量的研发出来,并且能得到消费者的认可是摆在所有汽车研发机构面前的难题。
依传统的设计观念,在研发过程中,需通过反复的样件试制和工程样车试制,对部件、白车身进行大量的台架试验和整车疲劳耐久性试验,从而验证所设计产品万无一失。
但,这样的方法在导致整车的开发成本居高不下的同时,整个开发周期也很长,同时往往无法抓住“病根”,一旦批量化后会出现再次反复修改的现象。
为能有效的节省汽车研发成本、有效缩短汽车研发时间。
全球汽车业已在全面推行汽车有限元疲劳耐久性分析方法,通过有限元疲劳分析在产品设计初期对整车的强度耐久性进行预测,找到结构的薄弱环节,提出合理的改进方案。
在汽车工业相对发达的国家已经建立了适当的分析方法和流程,在产品的研发过程中发挥了越来越重要的作用。
目前,我国汽车行业有限元疲劳耐久性分析领域起步较晚、水平较低,严重滞后于我国汽车工业的发展速度。
因此,加快汽车领域有限元耐久性分析的研究和应用迫在眉睫。
本文以某车型前半车身疲劳耐久性为例,阐述了如何利用MSC.ADAMS 、LS-DYNA 以及MSC.Fatigue 软件E-N 法和Miner 累积损伤理论对汽车基于全仿真过程的疲劳耐久性分析,预测过程中的塑性应变分布及其疲劳寿命进行评估,以期为车辆的前期开发设计提供理论依据。
NEW ENERGY AUTOMOBILE | 新能源汽车近年来,我国新能源汽车产业发展迅速,根据工信部2022年的相关数据显示,我国新能源产销量已达705.8、688.7万辆,连续8年占全球新能源汽车产销首位[1]。
随着产销量的急剧上升及市场需求增大,新能源汽车的耐久性、可靠性备受瞩目。
相较于传统燃油汽车,新能源汽车的优势是变革动力系统,有更加环保、加速能力更好等优点,当前国内外对新能源汽车的研究也主要集中在三电性能上,获得了一定的研究成果[2]。
但对新能源汽车的研究仅限于此?答案是否定的。
对汽车使用者而言,汽车耐久性、可靠性关系到出车、使用频率和用户使用满意度。
为了提高汽车的可靠性,需对整车及零部件进行疲劳耐久试验,以确保汽车行驶安全。
1 疲劳耐久问题分析1.1 耐久性耐久性是指在合理维修保养条件下对汽车使用寿命的度量,即汽车保持质量及功能使用的持久时间[3]。
可靠性对汽车故障间隔时间的评估,即汽车寿命与故障次数的比值。
早期的新能源汽车有明显的缺陷,因其是在传统燃油车底盘基础上应用了与燃油车差别巨大的电池组,此更换难免会引起重量分配、共振点、受力点的不同,导致新能源汽车整体性能不高。
随着科技进步及市场需求的增大,许多新能源汽车主机厂商为满足用户需求及提高企业竞争力,通过多种方法提高整车的耐久性指标,这就需要对汽车架构、系统及重要零部件进行不断的试验验证及设计陈亮亮泛亚汽车技术中心有限公司 上海市 201208摘 要:随着新能源汽车产业及汽车技术的发展,人们对车辆操作的安全性、稳定性、可靠性、灵敏性有了更高的要求。
面对激烈的汽车行业竞争,汽车产销商要满足用户要求的同时节省成本,以提升市场竞争力。
汽车疲劳耐久试验是汽车制造研发设计的重要组成部分,对汽车的安全性能有显著作用。
故需加强对汽车研发体系的相应试验,以准确客观地评价新能源汽车的疲劳耐久及安全可靠性,提升新能源汽车的整体性能,确保行业健康可持续发展。
车辆疲劳耐久性分析、试验与优化关键技术研究车辆疲劳耐久性分析、试验与优化关键技术研究摘要:随着汽车产业的快速发展,车辆疲劳耐久性成为车辆工程设计和制造过程中的关键问题之一。
本文旨在探讨车辆疲劳耐久性分析、试验与优化关键技术,以提高车辆的使用寿命和安全性。
1. 引言随着交通工具的快速发展和普及,人们对车辆的要求也越来越高。
车辆的使用寿命和安全性成为车辆工程设计和制造过程中的关键问题。
疲劳耐久性是描述材料和结构在长期加载作用下抵抗疲劳破坏的能力,意味着车辆在使用寿命内能够承受各种复杂的工况和载荷,而不会出现疲劳破坏。
因此,疲劳耐久性分析、试验与优化关键技术的研究对车辆的可靠性和安全性具有重要意义。
2. 车辆疲劳耐久性分析技术车辆疲劳耐久性分析技术是在车辆设计初期对车辆结构、材料和关键部件进行疲劳分析,确定结构的疲劳寿命和强度。
该技术主要包括疲劳寿命预测、疲劳载荷分析和疲劳损伤评估。
疲劳寿命预测是根据材料的应力应变关系和疲劳损伤模型,通过有限元分析、多轴疲劳试验和试验数据的统计处理等方法,预测车辆结构的疲劳寿命。
疲劳载荷分析是通过动力学仿真,在预定的工况下计算结构和材料的疲劳载荷,为优化设计提供依据。
疲劳损伤评估是通过断裂力学理论和试验验证,对车辆结构的疲劳寿命进行评估。
3. 车辆疲劳耐久性试验技术车辆疲劳耐久性试验技术是通过对车辆的相关部件和整车进行疲劳试验,测试车辆在实际工况下的疲劳性能。
该技术主要包括载荷谱试验、整车寿命试验和关键部件寿命试验。
载荷谱试验是基于实际工况和使用环境对车辆进行载荷采集和谱分析,并根据疲劳寿命预测结果设计相应的试验工况。
整车寿命试验是在实际运行工况下对整车进行较长时间的循环加载,模拟车辆的寿命使用情况。
关键部件寿命试验是对车辆的关键部件进行疲劳试验,验证其在设计寿命范围内的可靠性。
4. 车辆疲劳耐久性优化技术车辆疲劳耐久性优化技术是通过分析、试验和模拟计算等方法,对车辆的结构、材料和工艺进行优化,提高车辆的疲劳寿命和可靠性。
应用CAE方法构建虚拟疲劳耐久性试验台漆鹏廷王革郭一泛亚汽车技术中心有限公司应用CAE方法构建虚拟疲劳耐久性试验台Durability Test on Visual Test RigUsing CAE Method漆鹏廷王革郭一(泛亚汽车技术中心有限公司)摘要:后桥在道路试验中,发生局部开裂现象. 由于道路试验和台架试验花费的时间都比较长,不利于多种方案的比较. 为此如果应用CAE方法构建一个虚拟台架试验台, 在虚拟台架上再现真实台架上裂纹开裂过程,将有利于快速高效地解决问题. 这也可以为以后在做台架试验前, 应用CAE分析的方法, 考核哪一种试验方法能再现道路上的裂纹. 同时, 这也可在设计阶段对车架进行耐久性考核提供手段. 本次分析应用FE-Fatigue软件成功构建一个虚拟台架试验台, 进行改进方案的虚拟验证, 最终帮助解决开裂问题.Abstract: Rear axle cracked in proving ground. Proving ground and real rig test are disadvantage on every improvement case validation because much time will be spent onit. If using CAE method, this problem could be solved. In this analysis, an imitation of a real test rig is built using CAE tools. On visual rig, test is performed, and key areas that easily fail ed can be founded.关键词: 后桥, 道路试验, 台架试验, 疲劳耐久性, 裂纹Key words: Rear Axle, Proving Ground, Rig Test, Durability, Crack1 概述某款车型的后桥在道路试验过程中裂纹发生开裂. 由于道路试验和台架试验花费的时间都比较长,不利于多种方案的比较. 而且目前有多种常用的台架试验,哪一种更能反映在道路试验的破坏过程,这需要很强的经验知识才能作出一定的判断,而且容易产生错误. 但如果用CAE方法构建一个虚拟台架, 在这个虚拟台架上进行疲劳耐久性试验, 这不仅可以快速高效地进行方案比较, 而且可以帮助选择一个正确的台架试验方式. 它还能在设计阶段, 在没有物理样件的情况下, 进行台架试验,找到结构设计的薄弱环节, 为结构设计提供帮助.2 物理试验本次试验是在实际解决问题的基础上, 选择做了一个标准的台架试验. 在试验的过程中, 提取相关的数据, 用于校核虚拟试验台.2.1 试验简介试验中,固定所有与车身相连接的点,主要有:横拉杆与车身连接点,左右摇臂与车身连接的点, 左右减振弹簧与车身连接的点,左右阻尼弹簧与车身连接的点. 在左轮心施加1g 的向上静止载荷, 在右轮心施加2g的向上循环载荷. 同时输出左右减振弹簧和左右阻尼弹簧的反力, 用于校核后面的分析结果.2.2 试验结果通过上面的试验主要得到三方面的结果: 试验开裂次数, 裂纹开裂位置(见图1). 左右减振弹簧和左右阻尼弹簧载荷曲线(见图2).图1 开裂位置图2 约束反力输出结果3 CAE 虚拟试验根据以上的物理台架试验,在其他CAE 软件和FE-Fatigue 软件平台上构建如图4所示的CAE 虚拟台架. 约束所有的与车身相连接的点. 在左轮心施加1g 的向上静止载荷, 在右轮心施加2g 的向上瞬态循环载荷. 同时输出左右减振弹簧和左右阻尼弹簧的反力.3.1加载步骤Step1.约束车身固定点Step2.在左轮心施加1g 的向上静止载荷 Step3.在右轮心施加2g 的向上瞬态载荷LoadLoadLeft Spring Back Right Spring Left Damper Right Damper3.2 输出瞬态动力学分析结果关键区域的应力,位移和时间关系.左右减振弹簧和左右阻尼弹簧的反力与时间关系3.3 分析结果验证通过与测试结果的比较,校核分析结果的可信度,见图3.通过比较可以看出CAE 输出的载荷曲线与实测的载荷曲线比较一致.图3 输出的载荷曲线与实测的载荷曲线4 疲劳耐久性分析MSC.Software 公司的FE-Fatigue 软件提供了强大的疲劳耐久性分析的工具包,里面还包含众多的材料数据库, 这些都是能够获得可信的工程分析结果, 所要求的必须的前提条件. 同时, 输出的后处理结果丰富多样, 而且直观可视,有助于及时准确地发现问题,解决问题.这些都是作者选择应用FE-Fatigue 软件来完成本次分析任务的原因.4.1 材料的选择在FE-Fatigue 中施加循环载荷,选择疲劳材料特性:SAE1008_91_HR, E:2.07E5, YieldStrength:253Mpa.4.2 分析类型选择E-N 分析类型Right Spring Back Left Spring BackForce(N) Time(s)Force(N)Time(s)4.3 分析结果运行FE-Fatigue,得到如图4所示的关键危险点.得到最小寿命循环次数。
机电技术 2012年2月
104
作者简介:宋名洋(1981-),男,工程师,研究方向:虚拟仿真系统在整车研发中的应用和二次开发。
基于CAE 方法车身疲劳耐久性研究
宋名洋
(东南(福建)汽车工业有限公司研发中心,福建 福州 350119)
摘 要:基于试验场实车测量的某乘用车在标准工况下的载荷谱数据,结合多体动力学计算、有限元的非线性强度分析和MSC. Fatigue 疲劳分析等多种CAE 分析手段,对该乘用车白车身在实测载荷谱作用下的疲劳寿命进行计算分析。
同时,总结出了一套符合真实工况的试验和虚拟分析相结合的白车身一体化疲劳分析流程。
关键词:白车身;道路载荷谱;疲劳耐久性
中图分类号:U463.82 U461.7+1 文献标识码:A 文章编号:1672-4801(2012)01-104-03
当前,随着汽车工业的发展,消费者对产品的安全性和可靠性的要求越来越高。
如何将汽车这样复杂的机器在尽量短的时间周期内保质保量的研发出来,并且能得到消费者的认可是摆在所有汽车研发机构面前的难题。
依传统的设计观念,在研发过程中,需通过反复的样件试制和工程样车试制,对部件、白车身进行大量的台架试验和整车疲劳耐久性试验,从而验证所设计产品万无一失。
但,这样的方法在导致整车的开发成本居高不下的同时,整个开发周期也很长,同时往往无法抓住“病根”,一旦批量化后会出现再次反复修改的现象。
为能有效的节省汽车研发成本、有效缩短汽车研发时间。
全球汽车业已在全面推行汽车有限元疲劳耐久性分析方法,通过有限元疲劳分析在产品设计初期对整车的强度耐久性进行预测,找到结构的薄弱环节,提出合理的改进方案。
在汽车工业相对发达的国家已经建立了适当的分析方法和流程,在产品的研发过程中发挥了越来越重要的作用。
目前,我国汽车行业有限元疲劳耐久性分析领域起步较晚、水平较低,严重滞后于我国汽车工业的发展速度。
因此,加快汽车领域有限元耐久性分析的研究和应用迫在眉睫。
本文以某车型前半车身疲劳耐久性为例,阐述了如何利用MSC.ADAMS 、LS-DYNA 以及MSC.Fatigue 软件E-N 法和Miner 累积损伤理论对汽车基于全仿真过程的疲劳耐久性分析,预测过程中的塑性应变分布及其疲劳寿命进行评估,以期为车辆的前期开发设计提供理论依据。
1 车身疲劳分析方法的基本概念
1.1 局部应变寿命法(E—N 方法)
局部应变寿命法(E-N 法)是继名义应力寿命法(S-N 法),也称为裂纹萌生法。
许多汽车零件设计为在使用时处于塑性应变,但S-N 基本上忽略塑性,因此用E-N 方法更为合适,能更为准确的模拟应力集中等现象所产生的局部循环塑性变形效应,使寿命估算结果更接近实际情况。
它适用于高应变低周疲劳问题,广泛用于汽车结构件疲劳寿命计算。
该循环应力-应变表达式为:
1
'n K E ⎦
⎤⎢⎣⎡+=σσ
ε (1)
式中,ε为应力幅值,'K 为循环强度系数, 'n 为循环应变硬化指数。
同时,Basquin 指出在高周疲劳时,疲劳寿命与弹性应变存在很强的规律,Coffin 和Manson 研究表明低周疲劳与塑性应变也一样,故将二者加在一起就得到高低周疲劳的全应变疲劳寿命。
因此总应变-寿命曲线在数学表达上可用Coffin-Manson-Basquin 估算式来表达:
()()c i i f b i f
a N N E
22'εσε+=
(2)
式中,'f σ为疲劳强度系数,'f ε为疲劳延性系数,
b 为疲劳强度指数,
c 为疲劳延性指数,i N 为各应变水平下的疲劳寿命。
1.2 线性累积损伤理论
当前,工程中广泛应用的疲劳分析理论为Miner 累积损伤理论。
Miner 从能量的角度出发,做了如下假设:试样所吸收的能量达到极限值时产生疲劳破坏,且吸收的能量与其循环数间存在
第1期 宋名洋:基于CAE 方法车身疲劳耐久性研究 105
着正比关系,即
N
n W W l
l = 这样,若试样的加载由1σ,2σ,…,i σ这样的一个不同的应力水平构成,各应力水平下的疲劳寿命依次为1N ,2N ,…,i N ,各应力水平下的循环次数依次为1n ,2n ,…,i n ,则当总疲劳损伤时,试样吸收的能量达到极限值W ,试样发生疲劳破坏。
上式即为Miner 累积损伤理论的数学表达式。
∑
===
l
i i
i
N n D 1
1 (3) 基于式(3)并结合循环应力-应变曲线和材料N −ε曲线即可计算在规定载荷下的车身疲劳寿命。
2 车身载荷提取
在车型研发初期,无工程样车的条件下,无法获得准确的路面载荷谱,而且标杆车的诸多参数和特性会与所开发车型存在较大差异,故其参考意义亦较为有限。
在这种条件下,目前全球主要汽车研发机构通过式(3)虚拟道路试验场(VPG)或者式(2)基于整车多体动力学(MDB)分析来获得较为可靠的载荷。
本文采用式(2),以实测方式获得四个车轮在耐久性试验中所承受的反力作为输入,驱动整车多体动力学模型在规定时间内进行仿真,提取白车身与底盘各连接点相应的力和力矩的时间历程。
图1为某车型后悬架的多体动力学模型,通过地面的载荷激励,获得与车身连接点位置的载荷时间历程。
图1 前悬架车身连接点载荷提取
3 前半车身有限元强度分析
由于整车车身有限元模型网格单元数较多,为缩短计算时间且不影响计算精度,通常做法将车身分割为前半部和后半部,分开进行强度耐久性分析。
为确保结果真实可靠,通过对整个白车身和分割的白车身进行仿真分析,其结果显示该简化方法不会影响计算精度。
模型选取图2所示的完整前半车身,并在车身截面处约束所有自由度,整个模型单元数为421096个。
图2 完整的前半车身有限元模型
并保证所有部件的有限元模型与真实车身具有相同的质量及分布,载荷的施加也要保证与真实车身所承受的来自于底盘的载荷具有相同的位置及方向(如图3所示)。
图3 前半车身的载荷和边界约束示意
在极限工况下,材料一般超过屈服,所以必须引用材料各拉伸速率下真实应力应变曲线,图4所示为典型的应力应变曲线。
图4 典型的应力应变曲线
至此,有限元模型的载荷条件、约束条件以及材料特性、焊点布置均已输入,通过LS-DYNA 的隐式算法进行强度的计算,获取如图5所示的
机电技术 2012年2月106
前半车身的应力应变云图。
图5 有塑性应变云图
图6 累积疲劳损伤云图
从图5的对计算结果分析,前半车身最大的有效塑性应变为0.019,塑性应变很小,发生塑性应变的概率低。
4 前半车身有限元疲劳耐久性分析
通过将LS-DYNA计算所获得的最大的应力应变结果作为疲劳分析的输入条件,基于疲劳分析理论和MSC.Fatigue计算求解,可以获得最大累积疲劳损伤结果(如图6所示)。
从图6的对计算结果分析,前半车身最大累积疲劳损伤结果为0.127,远小于1,未达到疲劳破坏,满足疲劳寿命设计要求。
5 结束语
本文以某车型的白车身为研究对象,在车型研发阶段,通过实测并获取标准工况下作用在车轮上的载荷谱,在通过多体动力学计算分解到白车身与悬吊系统的连接点上,结合有限元的非线性强度分析和MSC. Fatigue疲劳分析,完成对基于实测载荷下的疲劳寿命的计算和预测。
通过上述虚拟仿真方法的有效运用,模拟分析实际实车工况下的车身强度和疲劳耐久性,可在工程样车试制前及时发现潜在的疲劳寿命问题,并加以改进,大大降低实车道路试验的反复次数和试验周期,有效的降低了车型研发成本和开发周期。
随着行业竞争加剧和消费者对产品的安全性、可靠性要求日益增强,企业需要加快研发速度、降低成本、提高可靠性等手段来提升产品竞争力,而通过CAE的方法对车身强度和疲劳耐久性分析是达到上述目的的一个重要的途径,并在产品研发中得到了越来越多的应用。
参考文献:
[1] 周传月郑红霞罗慧强
、、. MSC. Fatigue 疲劳分析应用与实例[M].北京:科学出版社,2005.
[3] 姚卫星. 结构疲劳寿命分析(第一版)[M].北京: 国防工业出版社,2003.。