汽车疲劳耐久道路试验
- 格式:pdf
- 大小:2.41 MB
- 文档页数:61
ICE-flow汽车疲劳耐久性工程解决方案近年来,随着CAD/CAE 技术突飞猛进,靠实验室台架试验或试车场路试来评价或改进汽车耐久性的方法成本高、周期长,已经逐步被虚拟耐久性设计理念取代。
随着汽车行业内的竞争不断加剧,汽车制造商无不面临着如下情况:满足用户日益提高的安全性及可靠性要求的同时做到节省成本。
其中,汽车的疲劳耐久性设计就是必须面对的重要课题之一。
疲劳耐久性工程长期以来,汽车的耐久性主要靠实验室台架试验或试车场路试来评价或改进,这种设计思路成本高、周期长。
近一二十年来,CAD/CAE 技术突飞猛进,虚拟耐久性设计理念已经在一些著名的汽车公司得到了广泛应用。
一个完整的疲劳耐久性解决方案通常包括如下步骤(如图1):根据用户用途建立寿命设计目标;采集用户使用环境和试车场载荷数据;验证分析处理实测数据;创建零构件几何模型;求取零构件间所传递的载荷;获取材料的疲劳寿命性能;预估零构件的疲劳寿命;台架模拟试验;试车场耐久性试验。
图1 疲劳耐久性解决方案流程ICE-flow 的功能作为著名的疲劳耐久性技术服务公司之一的英国恩科(nCode)国际有限公司开发了一整套用于汽车耐久性设计、分析、试验及管理的硬件和软件工具——ICE-flow 系列产品。
包括:数据采集器Somat eDAQ、数据分析处理及实验疲劳软件GlyphWorks、CAE 疲劳分析软件DesignLife 和耐久性数据管理软件系统Library。
ICE-flow 集工程数据采集分析处理、疲劳寿命分析模拟、实验室台架加速和远程数据传递及管理于一身,是进行一体化抗疲劳设计必备的一个分析工具,也是进行异地协同设计的有效工具。
ICE-flow 系列产品如图2 所示,以下对各功能分别进行介绍。
图2 ICE- flow 系列产品。
汽车件耐久性测试方案汽车件的耐久性测试是为了确定汽车件在长期使用中能否保持良好的性能,并能够承受各种恶劣环境和使用条件的考验。
以下是一个汽车件耐久性测试方案的大致框架,供参考:一、测试目标和要求1. 目标:评估汽车件在预定使用寿命内的可靠性和耐久性表现。
2. 要求:确保汽车件在各种条件下能够达到设计要求,并保持长期的性能稳定。
二、测试内容和方法1. 环境适应性测试:测试汽车件在不同的温度、湿度、震动等环境条件下的性能表现。
2. 功能性能测试:测试汽车件在各种使用条件下的性能是否符合设计要求。
3. 耐久性测试:模拟汽车件在长期使用过程中的疲劳和老化情况。
4. 试验方法:根据相关国家和行业标准,选择适当的试验方法和设备进行测试。
三、测试方案和流程1. 确定测试项目和参数:根据汽车件的设计要求和实际使用情况,确定测试项目和相关参数。
2. 设计测试装置和设备:根据测试项目的要求,设计和制作适当的测试装置和设备。
3. 定义测试标准和指标:制定明确的测试标准和指标,用于评估汽车件的性能和耐久性。
4. 进行测试样品的准备:选择一定数量的测试样品,进行相关的预处理和标记。
5. 进行测试:按照预定的测试方案和流程,对测试样品进行相应的测试。
6. 数据分析和评估:收集测试数据,进行数据分析和评估,判断汽车件的耐久性表现。
7. 编写测试报告:总结测试结果,编写测试报告,并提出改进建议和意见。
四、测试安全和注意事项1. 确保测试设备和仪器的安全运行和使用。
2. 严格按照测试流程和操作规范进行测试,避免人为操作失误。
3. 在测试过程中,及时处理可能出现的问题和异常情况。
4. 对测试样品进行适当的防护和保养,保证其在测试过程中的完整性和准确性。
以上是一个汽车件耐久性测试方案的大致框架,具体的测试方案需要根据具体的汽车件种类和使用条件进行细化和完善。
中华人民共和国国家标准汽车耐久性行驶试验方法GB/T 12679—90代替GB 1334—77Motor vehicles—Durability running—Test method1 主题内容与适用范围本标准规定了汽车耐久性行驶试验方法。
本标准适用于大批量生产的汽车(矿用自卸汽车参照执行)。
2 引用标准GB/T 12534汽车道路试验方法通则GB/T 12545汽车燃料消耗量试验方法GB/T 12548汽车速度表、里程表检验校正方法GB/T 12678汽车可靠性行驶试验方法JB 3743汽车发动机性能试验方法3 术语3.1 汽车耐久性指汽车在规定的使用和维修条件下,达到某种技术或经济指标极限时,完成功能的能力。
3.2 汽车耐久度指汽车在规定的使用和维修条件下,能够达到预定的初次大修里程而又不发生耐久性损坏的概率。
3.3 汽车耐久性损坏指汽车构件的疲劳损坏已变得异常频繁;磨损超过限值;材料锈蚀老化;汽车主要技术性能下降,超过规定限值;维修费用不断增长,已达到继续使用时经济上不合理或安全不能保证的程度。
其结果是更换主要总成或大修汽车。
4 试验条件按GB/T 12678的规定。
5 试验车辆5.1 用于汽车耐久性行驶试验的汽车数量按表2确定。
5.2 本试验可用汽车使用试验、常规可靠性试验的同一组汽车。
5.3 整车、各总成及零部件的制造装配调整质量应符合该车技术条件的规定。
6 试验项目及方法6.1 试验程序试验程序按表1进行。
6.2 验收试验汽车6.2.1 应按GB/T 12534中第4章之规定,调整内容须纳入故障统计。
6.3 磨合行驶6.3.1 汽车磨合行驶里程及规范应按该车使用说明书的规定。
出现故障须纳入故障统计。
6.3.2 在汽车磨合行驶最后1000 km时测量机油消耗量。
6.4 发动机性能初试按JB 3743中8.4之规定仅测量总功率。
注:在汽车耐久性行驶试验中,如果发动机大修,则在发动机大修前、后,均要按上述的规定各测量一次总功率。
汽车零部件疲劳耐久试验背景介绍汽车零部件的疲劳耐久性能对于汽车的安全和可靠性至关重要。
在汽车运行过程中,各种零部件都会受到复杂的力学和热力学载荷的作用,长期以来,疲劳失效一直是汽车设计与制造中的一个严重问题。
因此,对汽车零部件的疲劳耐久性能进行准确可靠的试验和评价显得非常重要。
本文将介绍汽车零部件疲劳耐久试验的重要性、试验方法以及试验过程中涉及到的一些关键技术。
试验的重要性汽车零部件在长期使用过程中会受到频繁的振动、冲击和变形等力学载荷的作用,这些载荷可能会导致零部件产生疲劳裂纹并最终失效。
因此,对汽车零部件的疲劳耐久性能进行试验是确保汽车安全可靠的关键环节。
通过疲劳耐久试验,可以评估零部件在真实工况下的寿命和可靠性。
通过分析试验结果,能够为零部件的设计和制造提供重要的参考依据,指导工程师们进行设计和材料选择。
同时,试验结果也可以为汽车制造商和维修人员提供有关零部件维修和更换周期的参考。
试验方法1. 材料准备在进行疲劳耐久试验之前,首先需要准备合适的试验样品和材料。
样品通常由汽车零部件的重要结构部分制作而成,例如悬挂系统、转向系统、发动机部件等。
材料的选择应根据零部件的具体工作环境和力学要求来确定。
2. 试验装置进行疲劳耐久试验需要合适的试验装置。
一般来说,试验装置由试验台、驱动系统、载荷传感器等组成。
试验台应具备稳定的结构和可调节的试验参数,以满足不同试验要求。
驱动系统用于施加加载力,而载荷传感器用于采集试验过程中零部件受到的载荷信息。
3. 试验过程疲劳耐久试验一般分为两个阶段:载荷谱制定与应力历程修正阶段和试验加载阶段。
在载荷谱制定与应力历程修正阶段,根据实际使用条件和统计数据,制定合适的载荷谱。
载荷谱是描述零部件受到的力学载荷的时间历程曲线。
然后,根据材料的应力应变性能,对实际工况下的载荷谱进行修正,以得到逼近实际使用条件下的应力历程。
在试验加载阶段,根据修正后的应力历程对试验样品进行加载。
车轮疲劳试验简介车轮疲劳试验是一种通过模拟车辆长时间运行状态下的负载情况,评估车轮在使用过程中的耐久性能和寿命的试验方法。
通过该试验可以确定车轮的安全性和可靠性,为车辆设计和制造提供重要参考依据。
试验目的车轮是汽车重要的组成部分之一,其承受着来自路面、悬挂系统等多方面的力量。
长时间运行后,车轮可能出现疲劳裂纹、变形等问题,严重影响行驶安全。
因此,进行车轮疲劳试验旨在评估和验证车轮在长时间使用中的耐久性能和寿命。
试验流程1.准备工作:确定试验样品、选择适当的试验设备和仪器。
2.载荷设定:根据实际使用情况、道路条件等因素,确定合适的载荷大小和类型。
3.车速设定:根据实际使用情况、道路条件等因素,确定合适的车速范围。
4.试验开始:将样品安装到试验设备上,并设置载荷和车速参数。
5.试验监测:使用传感器和监测设备对试验过程中的载荷、变形、温度等进行实时监测和记录。
6.试验终止:根据实际需求,确定试验的终止条件,如达到一定的试验时间或者出现破坏等情况。
7.结果分析:对试验结果进行数据处理和分析,评估车轮的耐久性能和寿命。
试验参数1.载荷:根据实际使用情况和设计要求,确定合适的载荷大小。
常用的载荷类型包括静态载荷、动态载荷和复合载荷等。
2.车速:根据实际使用情况和设计要求,确定合适的车速范围。
常用的车速范围为0-120公里/小时。
3.试验时间:根据实际需求确定试验时间,通常为数小时至数十小时不等。
试验设备1.车轮疲劳试验机:用于模拟车辆在长时间运行状态下对车轮施加各种负载,并记录相关数据。
常见的设备有旋转式疲劳试验机、振动式疲劳试验机等。
2.数据采集系统:用于实时监测和记录试验过程中的载荷、变形、温度等数据。
常见的设备有传感器、数据采集卡等。
试验结果分析1.车轮疲劳寿命:根据试验结果,通过统计分析和可靠性评估等方法,确定车轮的疲劳寿命。
2.车轮变形:通过试验结果中的变形数据,评估车轮在长时间使用中可能出现的变形情况。
NEW ENERGY AUTOMOBILE | 新能源汽车近年来,我国新能源汽车产业发展迅速,根据工信部2022年的相关数据显示,我国新能源产销量已达705.8、688.7万辆,连续8年占全球新能源汽车产销首位[1]。
随着产销量的急剧上升及市场需求增大,新能源汽车的耐久性、可靠性备受瞩目。
相较于传统燃油汽车,新能源汽车的优势是变革动力系统,有更加环保、加速能力更好等优点,当前国内外对新能源汽车的研究也主要集中在三电性能上,获得了一定的研究成果[2]。
但对新能源汽车的研究仅限于此?答案是否定的。
对汽车使用者而言,汽车耐久性、可靠性关系到出车、使用频率和用户使用满意度。
为了提高汽车的可靠性,需对整车及零部件进行疲劳耐久试验,以确保汽车行驶安全。
1 疲劳耐久问题分析1.1 耐久性耐久性是指在合理维修保养条件下对汽车使用寿命的度量,即汽车保持质量及功能使用的持久时间[3]。
可靠性对汽车故障间隔时间的评估,即汽车寿命与故障次数的比值。
早期的新能源汽车有明显的缺陷,因其是在传统燃油车底盘基础上应用了与燃油车差别巨大的电池组,此更换难免会引起重量分配、共振点、受力点的不同,导致新能源汽车整体性能不高。
随着科技进步及市场需求的增大,许多新能源汽车主机厂商为满足用户需求及提高企业竞争力,通过多种方法提高整车的耐久性指标,这就需要对汽车架构、系统及重要零部件进行不断的试验验证及设计陈亮亮泛亚汽车技术中心有限公司 上海市 201208摘 要:随着新能源汽车产业及汽车技术的发展,人们对车辆操作的安全性、稳定性、可靠性、灵敏性有了更高的要求。
面对激烈的汽车行业竞争,汽车产销商要满足用户要求的同时节省成本,以提升市场竞争力。
汽车疲劳耐久试验是汽车制造研发设计的重要组成部分,对汽车的安全性能有显著作用。
故需加强对汽车研发体系的相应试验,以准确客观地评价新能源汽车的疲劳耐久及安全可靠性,提升新能源汽车的整体性能,确保行业健康可持续发展。