第十一章 神经网络模型
- 格式:pdf
- 大小:472.66 KB
- 文档页数:10
强化学习中的神经网络模型构建与训练第一章强化学习中的基本概念1.1 强化学习简介强化学习是机器学习领域的一个重要分支,旨在让智能体通过与环境的交互来学习最优行为策略。
强化学习的核心思想是智能体通过与环境的交互来获得反馈信号,根据这些反馈来调整自己的行为。
1.2 强化学习的基本元素在强化学习中,主要涉及的三个基本元素为:智能体、环境和奖励信号。
智能体是进行学习的主体,它根据当前的状态选择动作,并与环境进行交互。
环境代表了智能体所处的实际场景,它会根据智能体的动作返回下一个状态和奖励信号。
奖励信号是环境根据智能体的动作返回的一个评估指标,用来反映该动作的好坏程度。
1.3 基于模型和无模型的强化学习在强化学习中,智能体可以基于模型或者无模型进行学习。
基于模型的强化学习是指智能体通过学习环境的模型来预测下一个状态和奖励信号,并根据这些预测来选择动作。
而无模型的强化学习则是直接通过与环境的交互来学习最优策略,无需对环境的模型进行预测。
第二章强化学习中的神经网络模型2.1 神经网络模型的基本原理神经网络是一种模拟生物神经网络的计算模型,它由多个神经元互相连接而成。
每个神经元接收到来自其他神经元的输入,并通过激活函数来产生输出。
神经网络通过训练来调整神经元之间的连接权重,从而实现对输入数据的非线性建模。
2.2 强化学习中的神经网络模型在强化学习中,神经网络模型可以用于近似值函数或策略函数。
值函数用于评估一个状态或状态-动作对的好坏程度,而策略函数用于选择最优动作。
神经网络模型可以通过学习环境的反馈信号来调整神经元之间的连接权重,从而实现对值函数或策略函数的逼近。
2.3 神经网络模型的训练方法神经网络模型的训练通常采用反向传播算法和梯度下降法。
反向传播算法通过将误差从输出层向输入层传递,并根据误差对连接权重进行调整。
梯度下降法则是一种通过寻找最小化损失函数的方法来调整连接权重的优化算法。
第三章强化学习中的神经网络模型构建与训练3.1 强化学习问题的建模在使用神经网络模型解决强化学习问题时,首先需要将问题进行建模。
神经网络的结构与工作原理神经网络是一种模仿人类神经系统的人工智能模型。
它可以通过统计数据进行训练,实现很多人类能够完成的任务。
本文将为你介绍神经网络的结构与工作原理。
一、神经元神经网络的基本单位是神经元。
一个神经元通常包含输入节点、权重和一个激活函数。
输入节点接收来自其他神经元的信号,并在与权重相乘后经过激活函数转换为输出信号。
一个神经元可以连接到很多其他神经元,形成神经网络。
二、网络结构神经网络的结构包括输入层、隐藏层和输出层。
输入层接收外部输入信号,例如照片、语音等。
隐藏层是神经元的多层结构,负责处理输入层传递过来的信号。
输出层根据隐藏层的处理结果,输出对应的分类或数值预测。
在神经网络中,一般会采用前馈神经网络或循环神经网络。
前馈神经网络数据传输是单向的,从输入层到输出层;循环神经网络是一种有记忆功能的网络,它能够处理时序数据,输出结果还可以影响下一个时间步的输入。
三、反向传播在神经网络中,通常会用到反向传播算法。
它的基本思想是通过计算误差来更新神经网络的权重。
比如,当神经网络输出的结果与实际结果不一致时,我们可以计算出误差值,并反向传播到网络中,通过调整权重,提高神经网络的准确性。
反向传播的过程可以用链式法则理解。
在链式法则中,每一个神经元的误差会向前传递,更新对应的神经元权重。
四、激活函数激活函数是神经元中一个非常重要的组成部分。
它可以调整信号的强度,并在这个基础上产生输出。
当激活函数传递到另一个神经元时,它将被视为这一神经元的输入值。
常见的激活函数包括ReLU、Sigmoid、Tanh等等。
五、神经网络的应用神经网络已经被广泛应用于很多领域,例如计算机视觉、语音识别、自然语言处理、机器人等。
在计算机视觉方面,神经网络被用于处理图像和视频中的目标检测、识别等任务;在自然语言处理方面,神经网络被用于词向量表示、机器翻译等任务。
六、总结神经网络是一种重要的人工智能模型,它的优点包括可解释性强、适应各种数据类型等。
第十一讲神经网络与应用1 引言人工神经网络(Artificial neural network,ANN)也简称为神经网络,它是人脑或动物神经网络若干基本特性的抽象和模拟。
早在1943年,McCulloch和Pitts就提出一种叫做“似脑机器”(mindlike machine)的思想,这种机器可由基于生物神经元特性的互连模型来制造,这就是神经网络的最初概念。
在1985年,Parker和Rumelhart等完善了反向传播算法,即B—P算法(Back Propagation Algorithms),神经网络模型重新活跃起来。
神经网络具有非常强的非线性映射能力,它不需要任何先验公式就可以通过学习(或训练)自动总结出数据间的函数关系,因而是一种有效的建模手段。
在建立起函数关系之后,常还需要求解由该函数作为目标函数的最优化问题,即寻找合适的网络输入,以使网络输出值达到最大(或最小)。
由于用人工神经网络模型确立的函数关系是通过神经元间的连接权值与阈值来实现的,难以用简单的函数形式表达,所以用传统的优化方法不易解决这类问题。
因而,神经网络具有记忆和学习功能,可以用来训练使它具有识别和预测的能力。
下面使神经网络的一些特点:(1)并行分布处理: 神经网络具有高度的并行结构和并行实现能力,因而能够有较好的耐故障能力和较快的总体处理能力。
这特别适于实时控制和动态控制。
(2)非线性映射: 神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。
这一特性给非线性控制问题带来新的希望。
(3)通过训练进行学习: 神经网络是通过所研究系统过去的数据记录进行训练的。
一个经过适当训练的神经网络具有归纳全部数据的能力。
因此,神经网络能够解决那些由数学模型或描述规则难以处理的控制过程问题。
(4)适应与集成:神经网络能够适应在线运行,并能同时进行定量和定性操作。
神经网络的强适应和信息熔合能力使得网络过程可以同时输入大量不同的控制信号,解决输入信息间的互补和冗余问题,并实现信息集成和熔合处理。
金融时间序列分析教材金融时间序列分析是金融学中的一个重要领域,它旨在研究金融市场中的时间序列数据,并利用统计模型和方法来预测未来的金融市场走势。
本教材将介绍金融时间序列分析的基本概念、理论框架和常用方法,帮助读者掌握这一领域的基本知识和技能。
第一章介绍了金融时间序列的基本概念和特点。
金融时间序列是指金融市场中某一资产价格(如股票价格、外汇汇率等)或指标随时间变化的一组数据。
它具有时间相关性、波动性和非正态性等特点,需要特殊的方法进行分析和预测。
第二章介绍了金融时间序列的统计特征和描述统计方法。
通过观察和分析时间序列的均值、方差、自相关性和偏度等统计特征,可以揭示时间序列数据中存在的规律和趋势,为后续的分析提供基础。
第三章介绍了平稳时间序列的概念和检验方法。
平稳时间序列是指具有固定的均值和方差,并且其自相关性不随时间变化的时间序列。
通过检验时间序列的平稳性,可以为后续的建模和分析提供准确的结果。
第四章介绍了时间序列数据的建模方法。
包括传统的经典时间序列模型(如AR、MA、ARMA模型)和现代时间序列模型(如ARCH、GARCH、VAR模型)等。
这些模型可以根据时间序列的特点和要求来选择和应用,通过建立合适的模型,对金融时间序列进行预测和分析。
第五章介绍了金融时间序列中的异常值和波动性模型。
在金融市场中,时间序列中常常存在异常波动和极端事件,需要采用特殊的模型(如HAR模型、SV模型)来对其进行建模和分析,以更准确地预测金融市场的波动和风险。
第六章介绍了金融时间序列的预测方法和模型评估。
通过利用已有的时间序列数据,可以采用传统的统计方法(如滚动窗口法、指数平滑法)和机器学习方法(如回归模型、神经网络模型)来进行预测,然后通过模型评估来评估预测的准确性和可靠性。
第七章介绍了金融时间序列的因果关系和协整模型。
通过检验时间序列之间的因果关系和建立协整模型,可以揭示金融市场中不同资产之间的相互影响和长期平衡关系,为投资决策和风险管理提供依据。
神经⽹络模型基本原理⼈⼯神经⽹络是⼀个数学模型,旨在模拟⼈脑的神经系统对复杂信息的处理机制,其⽹络结构是对⼈脑神经元⽹络的抽象,两者有很多相似之处。
当然 ANN 还远没有达到模拟⼈脑的地步,但其效果也让⼈眼前⼀亮。
1. ⼈⼯神经元结构⼈⼯神经元是⼀个多输⼊单输出的信息处理单元,是对⽣物神经元的建模。
建模⽅式可以有很多种,不同的建模⽅式就意味着不同的⼈⼯神经元结构。
⽐较著名的⼈⼯神经元模型是 MP 神经元,直到今天,我们仍然在使⽤这个神经元模型。
MP 神经元是模仿⽣物的神经元设计的: 1)输⼊向量 x 模拟⽣物神经元中其他神经细胞给该细胞的刺激,值越⼤刺激越⼤; 2)w 向量模拟该细胞不同来源的刺激的敏感度;3)⽤阈值 θ 来描述激活该神经元的难易程度,越⼤越难激活; 4)⽤ w 1x 1+w 2x 2+...+w n x n −θ 来计算神经元的兴奋程度;5)y =f (x ) 为激活函数,⽤来计算神经元的输出,因为⽣物神经元的输出是有上下限的,所以激活函数也是能够“饱和”的有界函数; 6)在 MP 神经元中,激活函数为阶梯函数。
兴奋函数⼤于阈值输出 1,⼩于阈值输出 0; 下图是 MP 神经元模型的⽰意图:将激活函数代⼊,将项 −θ 设为 b ,则可以得到 MP 神经元的数学模型:y =sgn n∑i =1(w i x i +b )=sgn w T x +b惊讶得发现它就是⼀个线性分类模型,和的数学模型是完全⼀样的,所以⼀个 MP 神经元的作⽤就是:对输⼊进⾏⼆分类。
这是符合⽣物神经元的特点的,因为⼀个⽣物神经元对输⼊信号所产⽣的作⽤就是:兴奋或这抑制。
所以通俗来讲:⼀条直线把平⾯⼀分为⼆,⼀个平⾯把三维空间⼀分为⼆,⼀个 n −1 维超平⾯把 n 维空间⼀分为⼆,两边分属不同的两类,这种分类器就叫做神经元,⼀个神经元只能分两类,输出是⼀个能体现类别的标量。
⼀个神经元的作⽤就是这么简单,所做的也只能是线性分类,但是当多个神经元互联的时候就会产⽣神奇的效果,下⾯再叙述。