陕西省西工大附中2015届高三下学期5月模拟考试数学(文)试题及答案
- 格式:doc
- 大小:765.50 KB
- 文档页数:8
2015年陕西省西安市西北工业大学附中高考二模(文)一.选择题:(5′×12=60′)1.(5分)设i是虚数单位,若复数a﹣(a∈R)是纯虚数,则a的值为()A.﹣3 B.﹣1 C.1 D. 3【考点】复数的基本概念.【专题】计算题.【分析】利用复数的运算法则把a﹣(a∈R)可以化为(a﹣3)﹣i,再利用纯虚数的定义即可得到a.【解析】解:∵=(a﹣3)﹣i是纯虚数,∴a﹣3=0,解得a=3.故选D.【点评】熟练掌握复数的运算法则和纯虚数的定义是解题的关键.2.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]【考点】交集及其运算;其他不等式的解法.【专题】不等式的解法及应用.【分析】求出集合A中其他不等式的解集,确定出A,找出A与B的公共部分即可求出交集.【解析】解:由A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴A∩B=(1,2].【点评】此题考查了交集及其运算,以及其他不等式的解法,熟练掌握交集的定义是解本题的关键.3.(5分)(2015•西安校级二模)“a=0”是“直线l1:x+ay﹣a=0与l2:ax﹣(2a﹣3)y﹣1=0”垂直的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】直线与圆;简易逻辑.【分析】根据充分条件和必要条件的定义结合直线垂直的等价条件进行判断即可.【解析】解:若两直线垂直,则a﹣a(2a﹣3)=0,即a(4﹣2a)=0,解得a=0或a=2,故“a=0”是“直线l1:x+ay﹣a=0与l2:ax﹣(2a﹣3)y﹣1=0”垂直充分不必要条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据直线垂直的等价条件是解决本题的关键.4.(5分)(2015•西安校级二模)已知向量,满足||=||=1,•=﹣,则|+2|=()A.B.C.D.【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】运用好∴|+2|2=(+2)2,运用完全平方公式展开,代入求解即可.【解析】解:∵||=||=1,•=﹣,∴|+2|2=(+2)2=2+42+4•=5﹣2=3,∴|+2|=,【点评】本题考查了向量的模数量积,向量的乘法运用算,属于中档题,关键是利用好模与向量的乘法公式.5.(5分)(2015•西安校级二模)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7815 6572 0802 6314 0702 4369 9728 08053204 9234 4935 8200 3623 4869 6936 7481A.08 B.07 C.05 D.02【考点】随机事件.【专题】计算题;概率与统计.【分析】从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,05符合条件,故可得结论.【解析】解:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,05故第5个数为05.故选C.【点评】本题主要考查简单随机抽样.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.6.(5分)(2015•西安校级二模)函数f(x)=ln(x2+1)的图象大致是()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案.【解析】解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A【点评】对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题.7.(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,8【考点】棱柱、棱锥、棱台的体积.【专题】立体几何.【分析】由题意可知原四棱锥为正四棱锥,由四棱锥的主视图得到四棱锥的底面边长和高,则其侧面积和体积可求.【解析】解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,其主视图为原图形中的三角形PEF,如图,由该四棱锥的主视图可知四棱锥的底面边长AB=2,高PO=2,则四棱锥的斜高PE=.所以该四棱锥侧面积S=,体积V=.故选B.【点评】本题考查了棱锥的体积,考查了三视图,解答的关键是能够由三视图得到原图形,是基础题.8.(5分)在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()A.B.C.D.【考点】几何概型.【专题】概率与统计.【分析】设AC=x,则BC=12﹣x,由矩形的面积S=x(12﹣x)>20可求x的范围,利用几何概率的求解公式可求.【解析】解:设AC=x,则BC=12﹣x(0<x<12)矩形的面积S=x(12﹣x)>20∴x2﹣12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率P==.故选C.【点评】本题主要考查了二次不等式的解法,与区间长度有关的几何概率的求解公式的应用,属于基础试题.9.(5分)(2015•西安校级二模)圆x2+y2+2x﹣4y+1=0关于直线2ax﹣by+2=0(a,b∈R)对称,则ab的取值范围是()A.B.C.D.(0,]【考点】直线与圆的位置关系.【专题】计算题;直线与圆.【分析】由题意知,直线2ax﹣by+2=0经过圆的圆心(﹣1,2),可得a+b=1,再利用基本不等式求得ab的取值范围.【解析】解:由题意可得,直线2ax﹣by+2=0经过圆x2+y2+2x﹣4y+1=0的圆心(﹣1,2),故有﹣2a﹣2b+2=0,即a+b=1,故1=a+b≥2,求得ab≤,当且仅当a=b=时取等号,故选:C.【点评】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.10.(5分)(2015•西安校级二模)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R上为()A.周期函数B.奇函数C.偶函数D.增函数【考点】函数单调性的判断与证明.【专题】函数的性质及应用.【分析】依题意,可求得f(x+1)=f(x),由函数的周期性可得答案【解析】解:∵f(x)=x﹣[x],∴f(x+1)=(x+1)﹣[x+1]=x+1﹣[x]﹣1=x﹣[x]=f(x),∴f(x)=x﹣[x]在R上为周期是1的函数.故选:A【点评】本题考查函数的周期性,理解题意,得到f(x+1)=f(x)是关键,属于基础题11.(5分)将函数y=f(x)cosx的图象向左移个单位后,再作关于x轴的对称变换得到的函数y=2cos2x﹣1的图象,则f(x)可以是()A.﹣2cosx B.2cosx C.﹣2sinx D.2sinx【考点】函数y=Asin(ωx+φ)的图象变换;二倍角的余弦.【专题】常规题型.【分析】化简函数y=2cos2x﹣1,图象逆向平移到函数y=f(x)cosx的图象,求出函数f (x)的表达式即可.【解析】解:y=2cos2x﹣1=cos2x,其关于x轴的对称的函数为y=﹣cos2x,将其向右平移个单位后得到:y=﹣cos2(x﹣)=﹣sin2x=﹣2sinxcosx;所以f(x)=﹣2sinx.故选C【点评】本题是基础题,考查三角函数图象的平移,注意平移是顺序的逆运用的方向,以及自变量的系数,是容易出错的地方.12.(5分)(2015•西安校级二模)椭圆C:=1的左、右顶点分别为A1,A2,点P 在C上且直线PA2的斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C.D.【考点】椭圆的简单性质;直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】由题意求A1、A2的坐标,设出点P的坐标,代入求斜率,进而求PA1斜率的取值范围.【解析】解:由椭圆的标准方程可知,左右顶点分别为A1(﹣2,0)、A2(2,0),设点P(a,b)(a≠±2),则=1…①,=,=;则==,将①式代入得=﹣,∵∈[﹣2,﹣1],∴∈.故选:D.【点评】本题考查了圆锥曲线的简单性质应用,同时考查了直线的斜率公式及学生的化简能力,属于中档题.二.填空题:(5′×4=20′)13.(5分)(2015•西安校级二模)定义运算a⊗b为执行如图所示的程序框图输出的S值,则(2cos)⊗(2tan)的值为4.【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图可得其功能是求分段函数S=的值,从而由诱导公式化简已知后即可得解.【解析】解:模拟执行程序框图可得其功能是求分段函数S=的值,∵2cos=1<2tan=2∴(2cos)⊗(2tan)=1⊗2=2(1+1)=4.故答案为:4.【点评】本题主要考查了分支结构的程序框图,考查了诱导公式的应用,属于基本知识的考查.14.(5分)(2015•西安校级二模)已知不等式表示的平面区域为M,若直线y=kx﹣3k与平面区域M有公共点,则k的范围是[﹣,0].【考点】简单线性规划.【专题】数形结合.【分析】要先画出满足约束条件的平面区域,然后分析平面区域里各个角点,再将其代入y=kx﹣3k中,求出y=kx﹣3k对应的k的端点值即可.【解析】解:满足约束条件的平面区域如图示:其中A(0,1),B(1,0),C(﹣1,0).因为y=kx﹣3k过定点D(3,0).所以当y=kx﹣3k过点A(0,1)时,得到k=﹣当y=kx﹣3k过点B(1,0)时,对应k=0.又因为直线y=kx﹣3k与平面区域M有公共点.所以﹣≤k≤0.故答案为:[﹣,0].【点评】本题考查的知识点是简单线性规划的应用.我们在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.15.(5分)△ABC中,a、b、c分别是角A、B、C的对边,若a2﹣c2=2b,且sinB=6cosA•sinC,则b的值为3.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】由条件利用正弦定理可得b=6c•cosA,再把余弦定理代入化简可得b=3×,再把a2﹣c2=2b代入化简可得b(b﹣3)=0,由此可得b的值.【解析】解:△ABC中,∵sinB=6cosA•sinC,∴由正弦定理可得b=6c•cosA=6c•=3×.∵a2﹣c2=2b,∴b=3•,化简可得b(b﹣3)=0,由此可得b=3,故答案为3.【点评】本题主要考查正弦定理、余弦定理的应用,属于中档题.16.(5分)(2015•西安校级二模)将数列{3n﹣1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第10组中的第一个数是345.【考点】归纳推理.【专题】规律型;归纳猜想型.【分析】根据前三个分组中的第一个数分别为1,3,27,可以归纳每一组的第一个数的规律,利用归纳推理进行归纳.【解析】解:根据分组的第一个数分别为1=30,3=31,27=33,可知指数的指数幂分别为0,1,3,6,设指数幂构成数列{a n},则a1=0,a2=1,a3=3,满足a2﹣a1=1,a3﹣a2=2,a4﹣a3=3,…a10﹣a9=9,等式两边累加得,a10﹣a1=1+2+⋅⋅⋅+9=,即a10=45,所以第10组中的第一个数是345.故答案为:345.【点评】本题主要考查归纳推理的应用,观察数组第一个数的规律,是解决本题的关键.三.解答题:(12′×5+10′=70′)17.(12分)已知数列{x n}的首项x1=3,通项x n=2n p+nq(n∈N*,p,q为常数),且x1,x4,x5成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.【考点】数列递推式;等差数列的前n项和;等比数列的前n项和;等差数列的性质.【专题】计算题;综合题.【分析】(Ⅰ)根据x1=3,求得p,q的关系,进而根据通项x n=2n p+np(n∈N*,p,q为常数),且x1,x4,x5成等差数列.建立关于p的方求得p,进而求得q.(Ⅱ)进而根据(1)中求得数列的首项和公差,利用等差数列的求和公式求得答案.【解析】解:(Ⅰ)∵x1=3,∴2p+q=3,①又x4=24p+4q,x5=25p+5q,且x1+x5=2x4,∴3+25p+5q=25p+8q,②联立①②求得p=1,q=1(Ⅱ)由(1)可知x n=2n+n∴S n=(2+22+…+2n)+(1+2+…+n)=.【点评】本题主要考查等差数列和等比数列的基本知识,考查运算及推理能力.18.(12分)若函数f(x)=sin2ax﹣sinaxcosax(a>0)的图象与直线y=m相切,并且切点的横坐标依次成公差为的等差数列.(1)求m的值.(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈[0,],求点A的坐标.【考点】正弦函数的定义域和值域;等差数列的通项公式;正弦函数的对称性.【专题】计算题.【分析】(1)利用二倍角公式将f(x)=sin2ax﹣sinaxcosax化为f(x)=﹣sin(2ax+)+,结合函数图象可得所以m为f(x)的最大值或最小值.(2)切点的横坐标依次成公差为的等差数列.得出f(x)的最小正周期为.从而a=2,确定出f(x)解析式.若点A(x0,y0)是y=f(x)图象的对称中心则应有y0=0=f(x0),利用特殊角的三角函数值解此方程求出x0.【解析】解:(1)f(x)=(1﹣cos2ax)﹣sin2ax=﹣(sin2ax+cos2ax)+=﹣sin(2ax+)+因为y=f(x)的图象与y=m相切.所以m为f(x)的最大值或最小值.即m=或m=.(2)因为切点的横坐标依次成公差为的等差数列,所以f(x)的最小正周期为.由T==得a=2.∴f(x)=﹣sin(4x+)+.由sin(4x0+)=0得4x0+=kπ,即x0=﹣(k∈Z).由0≤﹣≤得k=1或k=2,因此点A的坐标为(,)或(,)【点评】本题考查三角函数公式的应用(包括正用,逆用)、三角函数图象及性质(最值、周期、对称点)、特殊角的三角函数值.需有转化、计算、方程的思想和能力.19.(12分)(2015•西安校级二模)甲乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回的摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢.(Ⅰ)求游戏Ⅰ中甲赢的概率;(Ⅱ)求游戏Ⅱ中乙赢的概率;并比较这两种游戏哪种游戏更公平?试说明理由.【考点】列举法计算基本事件数及事件发生的概率.【专题】概率与统计.【分析】(Ⅰ)列出甲赢包含基本事件总数,所有基本事件数目,即可求解游戏Ⅰ中甲赢的概率.(Ⅱ)设4个白球为a,b,c,d,2个红球为A,B,则游戏Ⅱ中有放回地依次摸出两球基本事件有6*6=36种,其中乙赢包含16种基本事件,求出概率,即可判断游戏的公平程度.【解析】解:(Ⅰ)∵游戏Ⅰ中有放回地依次摸出两球基本事件有5*5=25种,其中甲赢包含(1,1)(1,3)(1,5)(3,3)(3,5)(5,5)(3,1)(5,1)(5,3)(2,2)(2,4)(4,4)(4,2)13种基本事件,∴游戏Ⅰ中甲赢的概率为:P=…..…..(5分)(Ⅱ)设4个白球为a,b,c,d,2个红球为A,B,则游戏Ⅱ中有放回地依次摸出两球基本事件有6*6=36种,其中乙赢包含(a,A),(b,A),(c,A)(d,A)(a,B)(b,B)(c,B)(d,B)(A,a)(A,b)(A,c)(A,d)(B,a)(B,b)(B,c)(B,d)16种基本事件,∴游戏Ⅱ中乙赢的概率为:P’=….(10分)∵.∴游戏Ⅰ更公平…(12分)【点评】本题考查古典概型概率的求法,基本知识的考查.20.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【考点】平面与平面垂直的判定;棱柱的结构特征;棱柱、棱锥、棱台的体积.【专题】计算题;证明题.【分析】(Ⅰ)由题意易证DC1⊥平面BDC,再由面面垂直的判定定理即可证得平面BDC1⊥平面BDC;(Ⅱ)设棱锥B﹣DACC1的体积为V1,AC=1,易求V1=××1×1=,三棱柱ABC﹣A1B1C1的体积V=1,于是可得(V﹣V1):V1=1:1,从而可得答案.【解析】证明:(1)由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1⊂平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.【点评】本题考查平面与平面垂直的判定,着重考查线面垂直的判定定理的应用与棱柱、棱锥的体积,考查分析,表达与运算能力,属于中档题.21.(12分)(2015•西安校级二模)设函数f(x)=x2+bln(x+1),其中b≠0.(1)若b=﹣12,求f(x)在[1,3]的最小值;(2)如果f(x)在定义域内既有极大值又有极小值,求实数b的取值范围.【考点】利用导数求闭区间上函数的最值;函数在某点取得极值的条件.【专题】综合题.【分析】(1)当b=﹣12时令由得x=2则可判断出当x∈[1,2)时,f(x)单调递减;当x∈(2,3]时,f(x)单调递增故f(x)在[1,3]的最小值在x=2时取得.(2)要使f(x)在定义域内既有极大值又有极小值即f(x)在定义域内与X轴有三个不同的交点即使在(﹣1,+∞)有两个不等实根即2x2+2x+b=0在(﹣1,+∞)有两个不等实根这可以利用一元二次函数根的分布可得解之求b的范围.【解析】解:(1)由题意知,f(x)的定义域为(1,+∞)b=﹣12时,由,得x=2(x=3舍去),当x∈[1,2)时f′(x)<0,当x∈(2,3]时,f′(x)>0,所以当x∈[1,2)时,f(x)单调递减;当x∈(2,3]时,f(x)单调递增,所以f(x)min=f(2)=4﹣12ln3(2)由题意在(﹣1,+∞)有两个不等实根,即2x2+2x+b=0在(﹣1,+∞)有两个不等实根,设g(x)=2x2+2x+b,则,解之得【点评】本题第一问较基础只需判断f(x)在定义域的单调性即可求出最小值.而第二问将f(x)在定义域内既有极大值又有极小值问题利用数形结合的思想转化为f(x)在定义域内与X轴有三个不同的交点即在(﹣1,+∞)有两个不等实根即2x2+2x+b=0在(﹣1,+∞)有两个不等实根此时可利用一元二次函数根的分布进行求解.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分.【选修4-1:几何证明选讲】22.(10分)如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB,AC于点D,E.(Ⅰ)证明:∠ADE=∠AED;(Ⅱ)若AC=AP,求的值.【考点】弦切角;相似三角形的性质.【专题】证明题.【分析】(Ⅰ)根据弦切角定理,得到∠BAP=∠C,结合PE平分∠APC,可得∠BAP+∠APD=∠C+∠CPE,最后用三角形的外角可得∠ADE=∠AED;(Ⅱ)根据AC=AP得到∠APC=∠C,结合(I)中的结论可得∠APC=∠C=∠BAP,再在△APC 中根据直径BC得到∠PAC=90°+∠BAP,利用三角形内角和定理可得.利用直角三角形中正切的定义,得到,最后通过内角相等证明出△APC∽△BPA,从而.【解析】解:(Ⅰ)∵PA是切线,AB是弦,∴∠BAP=∠C.又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE.∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,∴∠ADE=∠AED.…(5分)(Ⅱ)由(Ⅰ)知∠BAP=∠C,∵∠APC=∠BPA,∵AC=AP,∴∠APC=∠C∴∠APC=∠C=∠BAP.由三角形内角和定理可知,∠APC+∠C+∠CAP=180°.∵BC是圆O的直径,∴∠BAC=90°.∴∠APC+∠C+∠BAP=180°﹣90°=90°.∴.在Rt△ABC中,,即,∴.∵在△APC与△BPA中∠BAP=∠C,∠APB=∠CPA,∴△APC∽△BPA.∴.∴.…(10分)【点评】本题综合考查了弦切角、三角形的外角定理、直角三角形中三角函数的定义和相似三角形的性质等知识点,属于中档题.找到题中角的等量关系,计算出Rt△ABC是含有30度的直角三角形,是解决本题的关键所在.【选修4-4:极坐标系与参数方程】23.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.【考点】简单曲线的极坐标方程.【专题】计算题.【分析】(I)先利用三角函数的和角公式展开圆C的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆C的直角坐标方程,从而得到圆心C的直角坐标.(II)欲求切线长的最小值,转化为求直线l上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.【解析】解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.【选修4-5:不等式选讲】24.选修4﹣5:不等式选讲设不等式|2x﹣1|<1的解集为M,且a∈M,b∈M.(Ⅰ)试比较ab+1与a+b的大小;(Ⅱ)设maxA表示数集A中的最大数,且,求h的范围.【考点】绝对值不等式的解法;不等式比较大小.【专题】不等式的解法及应用.【分析】(1)先解不等式得出其解集M,再利用作差法比较大小即可;(2)不妨设0<a≤b<1,先找出其最大值,进而即可求出其范围.【解析】解:由不等式|2x﹣1|<1化为﹣1<2x﹣1<1解得0<x<1,∴原不等式的解集M={x|0<x<1},(Ⅰ)∵a,b∈M,∴0<a<1,0<b<1.∴(ab+1)﹣(a+b)=(1﹣a)(1﹣b)>0,∴ab+1>a+b.(Ⅱ)∵a,b∈M,∴0<a<1,0<b<1.不妨设0<a≤b<1,则,∴;.故最大,即>2.∴h∈(2,+∞).【点评】熟练掌握绝对值不等式的解法、作差法比较数的大小及不等式的基本性质是解题的关键.。
模拟训练语文本试卷分第I卷(阅读题)和第II卷(表达题)两部分,其中第I卷第三、四题为选考题,其它题为必考题。
考生作答时,将答案写在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.答题时使用0.5毫米黑色签字笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠、不破损。
第Ⅰ卷阅读题甲必做题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成l~3题。
华夏文明之源甲骨文是中国的一种古代文字,被认为是现代汉字的早期形式。
但是,它既不是世界上最古老的文字,也不是中国最古老的文字,它只是中国现存最古老的一种成熟文字系统。
说甲骨文是中国最古老的文字,是不确切的。
甲骨文在当时只是作为一种占卜的工具,字也绝对不是当时存在的所有的字,却表现出成熟和发达的文字系统,是任何一种古代文明都不可能在短时间内就可以达到的。
所以汉字的起源和发展在甲骨文以前一定还有一个很长的历史阶段。
那么,甲骨文以前的文字面貌究竟如何?古书中说仓颉?生而能书,又受河图录书,于是穷天地之变,仰视奎星圜曲之势,俯察鱼文鸟羽,山川指掌,而创文字?。
《说文解字序》中也记载:?仓颉之初作书,盖依类象形,故谓之文;其后形声相益,即谓之字。
?不过这只是传说,任何一种文字的诞生绝非一人一手之功,汉字的出现必定是先民在历史发展进程中,历经长期的摸索使用,然后累积发展、约定俗成的结果。
仓颉应当是在汉字发展中具有特别重大贡献的人物,他极有可能是整理汉字的集大成者。
最早的汉字在哪里?更多的来自地下考古资料,展现出有关中国文字起源的大量线索:不仅有商代前期,相当于夏代的遗物,还有属于更早的种种考古文化的资料。
在公元前4000年的仰韶文化和其后的龙山文化遗址中,都曾发现有不同的刻划符号。
陕西省西工大附中2015届高三下学期二模考试(A )(理)第Ⅰ卷(共60分)一.选择题:(5′×12=60′)1.已知A={x|x≥k },B={x|13+x <1},若A ⊆B 则实数k 的取值范围为( ) A.(1,+∞)B.(-∞,-1)C.(2,+∞)D.[2,+∞)2.复数iiz -+=13的共轭复数z =( ) A.2+iB.2-iC.1+2iD.1-2i3.设f(x)是定义在R 上的奇函数,当x≥0时恒有f(x+2)=f(x),当x ∈[0,2]时, f(x)=e x -1,则f(2014)+f(-2015)=( )A.1-eB.e-1C.-1-eD.e+14.在锐角三角形ABC 中,BC=1, B=2A ,则AACcos 的值为( ) A.6 B.4C.23D.25.一个算法的程序框图如右图所示,若输入的x 值为2015, 则输出的i 值为( ) A.3B.5C.6D.96.a=b 是直线y=x+2与圆(x-a)2+(y-b)2=2相切的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件7.已知向量与的夹角为120°,||=3,|+||=( ) A.5B.4C.3D.18.设S n 为等差数列{a n }的前n 项和,给出四个结论: (1)a 2+a 8≠a 10(2)S n =an2+bn(a≠0)(3)若m,n,p,q ∈N +,则a m +a n =a p +a q 的充要条件是m+n=p+q (4)若S 6=S 11,则a 9=0 其中正确命题的个数为( )xa =1=i ba =1+=i i xb ≠ab -=11iA.1B.2C.3D.49.已知双曲线22a x -22by =1(a>0,b>0)的左、右焦点为F 1(-c,0),F 2(c,0),若直线y=2x 与双曲线的一个交点的横坐标为c ,则双曲线的离心率为 A.2+1B.3+1C.3+2 D.210.若a>0,b>0,lga+lgb=lg(a+b),则a+b 的最小值为( ) A.8B.6C.4D.211.若二项式(xx 1552+)6的展开式中的常数项为m ,则dx x x m )2(12-⎰=( )A.31B.-31 C.32 D.-32 12.定义在[0,+∞)的函数f(x),对任意x≥0,恒有f(x)>f´(x),a=2)2(e f ,b=3)3(e f , 则a 与b 的大小关系为( )A.a>bB.a<bC.a=bD.无法确定第Ⅱ卷(共90分)二.填空题:(5′×4=20′)13.一个类似杨辉三角形的数阵:则第九行的第二个数为14.某班班会,准备从包括甲、乙两人的七名同学中选派4名学生发言,要求甲、乙两人中至少有1人参加,则甲、乙都被选中且发言时不相邻的概率为15.已知满足条件⎪⎩⎪⎨⎧>≥≤+≥)0(20k kx y y x x 的动点(x,y)所在的区域D 为一直角三角形区域,则区域D 的面积为16.已知函数f(x)对一切实数a 、b 满足f(a+b)=f(a)·f(b),f(1)=2,(且f(x)恒非零),数列{a n }的通项a n =)12()2()(2-+n f n f n f (n ∈N +),则数列{a n }的前n 项和=三.解答题: (12′×5+10′=70′)17.已知函数f(x)=3sin(x+2ϕ)cos(x+2ϕ)+sin 2(x+2ϕ)(0<φ<2π)的图象经过点(3π,1)(1)求f(x).(2)在△ABC 中,A 、B 、C 的对边为a 、b 、c ,a=5,S △ABC =25,角C 为锐角且 f(2C -12π)=67,求C 边长 18.某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为54,m ,n(m>n),设该同学三门课程都取得优秀成绩的概率为12524,都未取得优秀成绩的概率为1256,且不同课程是否取得优秀成绩相互独立。
陕西省西安市西北工业大学附中2015届高考数学模拟试卷(文科)一、选择题(本大题共12小题,每小题5分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置.)1.(5分)已知全集U=R,集合M={x|x2﹣x>0},则∁U M=()A.{x|0<x<1} B.{x|0≤x≤1}C.{x|x<0或x>1} D.{x|x≤0或x≥1}2.(5分)如图,在复平面内,若复数z1,z2对应的向量分别是,,则复数z1+z2所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)若一个几何体的三视图,其正视图和侧视图均为矩形、俯视图为正三角形,尺寸如图所示,则该几何体的体积为()A.B.C.D.24.(5分)下列命题正确的个数有()(1)命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;(2)命题“∃x∈R,使得x2+x+1<0”的否定是:“对∀x∈R,均有x2+x+1>0”;(3)经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y﹣y1)(x2﹣x1)=(x ﹣x1)(y2﹣y1)来表示;(4)在数列{a n}中,a1=1,S n是其前n项和,且满足S n+1=+2,则{a n}是等比数列;(5)若函数f(x)=x3+ax2﹣bx+a2在x=1处有极值10,则a=4,b=11.A.1个B.2个C.3个D.4个5.(5分)如图,执行程序框图后,输出的结果为()A.8 B.10 C.12 D.326.(5分)已知{a n}是等差数列,S n为其前n项和,若S13=S2000,则S2013=()A.﹣2014 B.2014 C.1007 D.07.(5分)向量=(﹣2,﹣1),=(λ,1),若与夹角为钝角,则λ取值范围是()A.(,2)∪(2,+∞)B.(2,+∞)C.(﹣,+∞) D.(﹣∞,﹣)8.(5分)把函数y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为()A.y=sin(2x﹣),x∈R B.y=sin(2x+),x∈RC.y=sin(+),x∈R D.y=sin(x﹣),x∈R9.(5分)若不等式(m,n∈Z)所表示的平面区域是面积为1的直角三角形,则实数n的一个值为()A.2 B.﹣1 C.﹣2 D.110.(5分)已知a,b,c是直线,α,β是平面,下列条件中,能得出直线a⊥平面α的是()A.a⊥c,a⊥b,其中b⊂α,c⊂αB.a⊥b,b∥αC.α⊥β,a∥βD.a∥b,b⊥α11.(5分)已知双曲线﹣=1的左、右焦点分别为F1、F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的渐近线方程为()A.y=±3x B.y=±2x C.y=±(+1)x D.y=±(﹣1)x 12.(5分)已知定义在R上的函数f(x)满足:f(x)=且f(x+2)=f(x),g(x)=,则方程f(x)=g(x)在区间[﹣5,1]上的所有实根之和为()A.﹣8 B.﹣7 C.﹣6 D.0二.填空题:本大题共4小题,每小题5分.13.(5分)已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1,2cosC+c=2b,则△ABC的周长的取值范围是.14.(5分)设a∈R,函数f(x)=e x+a•e﹣x的导函数y=f′(x)是奇函数,若曲线y=f(x)的一条切线斜率为,则切点的横坐标为.15.(5分)已知ω∈N+,函数f(x)=sin(ωx+)在(,)上单调递减,则ω=.16.(5分)定义函数y=f(x),x∈I,若存在常数M,对于任意x1∈I,存在唯一的x2∈I,使得=M,则称函数f(x)在I上的“均值”为M,已知f(x)=log2x,x∈[1,22014],则函数f(x)=log2x在[1,22014]上的“均值”为.三、解答题:本大题共5小题,共70分.解答写在答题卡相应位置,应写出文字说明、证明过程或演算步骤.17.(12分)已知等差数列{a n}.满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后成等比数列,a n+2log2b n=﹣1.(Ⅰ)分别求数列{a n},{b n}的通项公式;(Ⅱ)求证:数列{a n•b n}的前n项和T n.18.(12分)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数 2 1 0 ﹣160岁至79岁的人数120 133 34 1380岁及以上的人数9 18 14 9其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.19.(12分)如图,在多面体ABCDEF中,ABCD是边长为2的正方形,DEFB是一平行四边形,且DE⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(Ⅰ)求证:平面AEF∥平面BDGH;(Ⅱ)求V E﹣EFH.20.(12分)如图,圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的左侧),且|MN|=3.(Ⅰ)求圆C的方程;(Ⅱ)过点M任作一条直线与椭圆Γ:=1相交于两点A、B,连接AN、BN,求证:∠ANM=∠BNM.21.(12分)已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3,(Ⅰ)求函数f(x)的单调区间和最小值;(Ⅱ)若对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.四、请考生从22、23、24题中任选一题作答.多答按所答的首题进行评分.选修4-4:极坐标与参数方程22.(10分)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点A、B的极坐标分别为、,曲线C的参数方程为为参数).(Ⅰ)求直线AB的直角坐标方程;(Ⅱ)若直线AB和曲线C只有一个交点,求r的值.【选修4-5:不等式选讲】23.已知关于x的不等式<m对于任意的x∈[﹣1,2]恒成立(Ⅰ)求m的取值范围;(Ⅱ)在(Ⅰ)的条件下求函数f(m)=m+的最小值.【选修4-1:几何问题选讲】24.如图,已知AB是⊙O的直径,弦CD与AB垂直,垂足为M,E是CD延长线上的一点,且AB=10,CD=8,3DE=4OM,过F点作⊙O的切线EF,BF交CD于G(Ⅰ)求EG的长;(Ⅱ)连接FD,判断FD与AB是否平行,为什么?陕西省西安市西北工业大学附中2015届高考数学模拟试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置.)1.(5分)已知全集U=R,集合M={x|x2﹣x>0},则∁U M=()A.{x|0<x<1} B.{x|0≤x≤1}C.{x|x<0或x>1} D.{x|x≤0或x≥1}考点:补集及其运算.专题:集合.分析:求出M中不等式的解集确定出M,根据全集U=R求出M的补集即可.解答:解:由M中不等式变形得:x(x﹣1)>0,解得:x<0或x>1,即M={x|x<0或x>1},∵全集U=R,∴∁U M={x|0≤x≤1},故选:B.点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.(5分)如图,在复平面内,若复数z1,z2对应的向量分别是,,则复数z1+z2所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:读图得到A,B的坐标,求出复数z1,z2,作和后得到z1+z2,进一步得到z1+z2所对应的点的坐标,则答案可求.解答:解:由图可得,A(1,2),B(1,﹣1),则z1=1+2i,z2=1﹣i,则z1+z2=2+i.∴z1+z2所对应点的坐标为(2,1),位于第一象限.故选:A.点评:本题考查了复数的代数表示法及其几何意义,是基础题.3.(5分)若一个几何体的三视图,其正视图和侧视图均为矩形、俯视图为正三角形,尺寸如图所示,则该几何体的体积为()A.B.C.D.2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图想象出该几何体为三棱柱,从而得到其体积.解答:解:由三视图可知,该几何体为三棱柱,其底面为高为的正三角形,则底面面积S=×2×=,体高h=2,则体积为×2=2.故选D.点评:本题考查了三视图的识图与计算能力,属于基础题.4.(5分)下列命题正确的个数有()(1)命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;(2)命题“∃x∈R,使得x2+x+1<0”的否定是:“对∀x∈R,均有x2+x+1>0”;(3)经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y﹣y1)(x2﹣x1)=(x ﹣x1)(y2﹣y1)来表示;(4)在数列{a n}中,a1=1,S n是其前n项和,且满足S n+1=+2,则{a n}是等比数列;(5)若函数f(x)=x3+ax2﹣bx+a2在x=1处有极值10,则a=4,b=11.A.1个B.2个C.3个D.4个考点:命题的真假判断与应用.专题:简易逻辑.分析:对于(1),由复合命题的真值表加以判断;对于(2),直接写出特称命题的否定加以判断;对于(3),化直线方程的两点式为整式方程,说明命题正确;对于(4),由数列递推式得到2a n+1=a n(n≥2),求出a2后说明,命题错误;对于(5),求导数,利用函数在x=1处有极值10,得到两个条件f(1)=10和f'(1)=0,然后利用方程组求解a,b.解答:解:(1),“p∧q为真命题”是p和q均为真命题.而“p∨q为真命题”只要p和q 中至少有一个真命题即可,故命题“p∧q为真”是命题“p∨q为真”的充分不必要条件,命题(1)错误;(2)命题“∃x∈R,使得x2+x+1<0”的否定是:“对∀x∈R,均有x2+x+1≥0”,命题(2)错误;(3)经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y﹣y1)(x2﹣x1)=(x ﹣x1)(y2﹣y1)来表示,命题(3)正确;(4)在数列{a n}中,a1=1,S n是其前n项和,且满足S n+1=+2,即2S n+1=S n+4,取n=n﹣1,得2S n=S n﹣1+4(n≥2),两式作差得:2a n+1=a n(n≥2),由S n+1=+2,且a1=1求得,则{a n}不是等比数列,命题(3)错误;(5)若函数f(x)=x3+ax2﹣bx+a2在x=1处有极值10,则a=4,b=11,正确.由函数的导数为f'(x)=3x2+2ax﹣b,∵函数f(x)=x3+ax2﹣bx+a2在x=1处有极值10,∴f(1)=10且f'(1)=0.即,解得或.当a=﹣3,b=﹣3时,f'(x)=3x2﹣6x+3=3(x﹣1)2≥0,此时函数单调递增,此时函数没有极值,不满足条件.经检验值当a=4,b=11时,满足条件,命题(5)正确.∴正确的命题是2个.故选:B.点评:本题考查了命题的真假判断与应用,考查了等比关系的确定,训练了利用导数求函数的最值,是中档题.5.(5分)如图,执行程序框图后,输出的结果为()A.8 B.10 C.12 D.32考点:程序框图.专题:算法和程序框图.分析:根据题意,模拟程序框图的运行过程,即可得出该程序输出的结果是什么.解答:解:模拟程序框图的运行过程,如下;A=10,S=0,A>5?,是,S=0+2=2;A=9,A>5?,是,S=2+2=4;A=8,A>5?,是,S=4+2=6;A=7,A>5?,是,S=6+2=8;A=6,A>5?,是,S=8+2=10;A=5,A>5?,否,输出S=10.故选:B.点评:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结果,是基础题.6.(5分)已知{a n}是等差数列,S n为其前n项和,若S13=S2000,则S2013=()A.﹣2014 B.2014 C.1007 D.0考点:等差数列的性质.专题:等差数列与等比数列.分析:由已知结合等差数列的性质求得a1007=0,代入等差数列的前n项和得答案.解答:解:在等差数列{a n}中,由S13=S2000,得a14+…+a2000=0,即a1007=0,∴=0.故选:D.点评:本题考查了等差数列的性质,考查了等差数列的前n项和,是基础题.7.(5分)向量=(﹣2,﹣1),=(λ,1),若与夹角为钝角,则λ取值范围是()A.(,2)∪(2,+∞)B.(2,+∞)C.(﹣,+∞) D.(﹣∞,﹣)考点:平面向量数量积的运算.专题:平面向量及应用.分析:由于与夹角为钝角,可知=﹣2λ﹣1<0,且与夹角不为平角,解出即可.解答:解:∵与夹角为钝角,∴=﹣2λ﹣1<0,解得λ,当λ=2时,与夹角为平角,不符合题意.因此(,2)∪(2,+∞).故选:A.点评:本题考查了向量的夹角公式,属于基础题.8.(5分)把函数y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为()A.y=sin(2x﹣),x∈R B.y=sin(2x+),x∈RC.y=sin(+),x∈R D.y=sin(x﹣),x∈R考点:向量的物理背景与概念.专题:计算题.分析:先根据左加右减的性质进行平移,再根据横坐标伸长到原来的2倍时w的值变为原来的倍,得到答案.解答:解:向左平移个单位,即以x+代x,得到函数y=sin(x+),再把所得图象上所有点的横坐标伸长到原来的2倍,即以x代x,得到函数:y=sin(x+).故选C.点评:本题主要考查三角函数的平移变换.属基础题.9.(5分)若不等式(m,n∈Z)所表示的平面区域是面积为1的直角三角形,则实数n的一个值为()A.2 B.﹣1 C.﹣2 D.1考点:简单线性规划.专题:不等式的解法及应用.分析:先画出满足条件表示的平面区域,再根据x+my+n≥0表示的平面区域表示为直线x+my+n=0右侧的阴影部分,结合已知中不等式组所表示的平面区域是面积为1的直角三角形,得到满足条件的直线,进而根据直线的方程求出n的值.解答:解:满足条件的平面区域如下图所示:由于x+my+n≥0表示的平面区域表示为直线x+my+n=0右侧的阴影部分面积,故分析可得直线x+my+n=0有2种情况:①过(2,1)点且与直线直线x+2y=4垂直,解得n=﹣,但由于直角三角形面积为1,不满足题意,故舍去.②过(2,1)点且与x轴垂直,n=﹣2,满足直角三角形的面积为1,满足题意;故选:C.点评:本题考查的知识点是二元一次不等式(组)与平面区域,根据已知条件分析满足的直线方程是解答本题的关键.10.(5分)已知a,b,c是直线,α,β是平面,下列条件中,能得出直线a⊥平面α的是()A.a⊥c,a⊥b,其中b⊂α,c⊂αB.a⊥b,b∥αC.α⊥β,a∥βD.a∥b,b⊥α考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离;空间角.分析:在A中,当b,c平面时,直线a与平面α不一定平行;在B和C中,直线a与平面α相交、平行或a⊂α;在D中,由直线与平面垂直的判定定理得直线a⊥平面α.解答:解:a⊥c,a⊥b,其中b⊂α,c⊂α,当b,c相交时,直线a⊥平面α,当b,c平面时,直线a与平面α不一定平行,故A错误;由a⊥b,b∥α,得直线a与平面α相交、平行或a⊂α,故B错误;由α⊥β,a∥β,得直线a与平面α相交、平行或a⊂α,故C错误;∵a∥b,b⊥α,∴由直线与平面垂直的判定定理得直线a⊥平面α,故D正确.故选:D.点评:本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养,注意线线、线面、面面的位置关系的合理运用.11.(5分)已知双曲线﹣=1的左、右焦点分别为F1、F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的渐近线方程为()A.y=±3x B.y=±2x C.y=±(+1)x D.y=±(﹣1)x考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,可得|BF1|=2a,求出B的坐标,代入双曲线方程,即可求出双曲线的渐近线方程.解答:解:∵过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,∴|BF1|=2a,设切点为T,B(x,y),则利用三角形的相似可得∴x=,y=∴B(,)代入双曲线方程,整理可得b=(+1)a,∴双曲线的渐近线方程为y=±(+1)x,故选:C.点评:本题考查双曲线的渐近线方程,考查学生的计算能力,比较基础.12.(5分)已知定义在R上的函数f(x)满足:f(x)=且f (x+2)=f(x),g(x)=,则方程f(x)=g(x)在区间[﹣5,1]上的所有实根之和为()A.﹣8 B.﹣7 C.﹣6 D.0考点:分段函数的应用.专题:计算题;数形结合;函数的性质及应用.分析:化简g(x)的表达式,得到g(x)的图象关于点(﹣2,1)对称,由f(x)的周期性,画出f(x),g(x)的图象,通过图象观察[﹣5,1]上的交点的横坐标的特点,求出它们的和解答:解:由题意知g(x)==2+,函数f(x)的周期为2,则函数f(x),g(x)在区间[﹣5,1]上的图象如右图所示:由图形可知函数f(x),g(x)在区间[﹣5,1]上的交点为A,B,C,易知点B的横坐标为﹣3,若设C的横坐标为t(0<t<1),则点A的横坐标为﹣4﹣t,所以方程f(x)=g(x)在区间[﹣5,1]上的所有实数根之和为﹣3+(﹣4﹣t)+t=﹣7.故选:B.点评:本题考查分段函数的图象和运用,考查函数的周期性、对称性和应用,同时考查数形结合的能力,属于中档题.二.填空题:本大题共4小题,每小题5分.13.(5分)已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1,2cosC+c=2b,则△ABC的周长的取值范围是(2,3].考点:余弦定理.专题:压轴题;解三角形.分析:由余弦定理求得 cosC,代入已知等式可得(b+c)2﹣1=3bc,利用基本不等式求得b+c≤2,故a+b+c≤3.再由三角形任意两边之和大于第三边求得a+b+c>2,由此求得△ABC 的周长的取值范围.解答:解:△ABC中,由余弦定理可得 2cosC=,∵a=1,2cosC+c=2b,∴+c=2b,化简可得(b+c)2﹣1=3bc.∵bc≤,∴(b+c)2﹣1≤3×,解得b+c≤2(当且仅当b=c时,取等号).故a+b+c≤3.再由任意两边之和大于第三边可得 b+c>a=1,故有 a+b+c>2,故△ABC的周长的取值范围是(2,3],故答案为(2,3].点评:本题主要考查余弦定理、基本不等式的应用,三角形任意两边之和大于第三边,属于中档题.14.(5分)设a∈R,函数f(x)=e x+a•e﹣x的导函数y=f′(x)是奇函数,若曲线y=f(x)的一条切线斜率为,则切点的横坐标为ln2.考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:对函数求导,先有导函数为奇函数可求a,利用导数的几何意义设切点,表示切线的斜率,解方程可得.解答:解:由题意可得,f′(x)=e x﹣是奇函数,∴f′(0)=1﹣a=0∴a=1,f(x)=e x+,f′(x)=e x﹣,∵曲线y=f(x)在(x,y)的一条切线的斜率是,∴=e x﹣,解方程可得e x=2,∴x=ln2.故答案为:ln2.点评:本题主要考查函数的导数的定义及导数的四则运算及导数的运算性质、函数的奇偶性、导数的几何意义:在某点的导数值即为改点的切线斜率,属于基础知识的简单运用,难度不大.15.(5分)已知ω∈N+,函数f(x)=sin(ωx+)在(,)上单调递减,则ω=2或3.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:首先利用整体思想求出ω的范围,进一步求出整数值.解答:解:数f(x)=sin(ωx+)的单调递减区间为:(k∈Z),解得:,所以:,解得:6k+≥,当k=0时,ω=2或3,故答案为:2或3.点评:本题考查的知识要点:正弦型函数单调性的应用,属于基础题型.16.(5分)定义函数y=f(x),x∈I,若存在常数M,对于任意x1∈I,存在唯一的x2∈I,使得=M,则称函数f(x)在I上的“均值”为M,已知f(x)=log2x,x∈[1,22014],则函数f(x)=log2x在[1,22014]上的“均值”为1007.考点:进行简单的合情推理;函数的值.专题:计算题;函数的性质及应用.分析:f(x)=log2x,x∈[1,22014],是单调增函数,利用定义,即可求出函数f(x)=log2x 在[1,22014]上的“均值”解答:解:f(x)=log2x,x∈[1,22014],是单调增函数,∴函数f(x)=log2x在[1,22014]上的“均值”为M=(log21+log222014)=1007,故答案为:1007.点评:此题主要应用新定义的方式考查平均值不等式在函数中的应用.对于新定义的问题,需要认真分析定义内容,切记不可偏离题目.三、解答题:本大题共5小题,共70分.解答写在答题卡相应位置,应写出文字说明、证明过程或演算步骤.17.(12分)已知等差数列{a n}.满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后成等比数列,a n+2log2b n=﹣1.(Ⅰ)分别求数列{a n},{b n}的通项公式;(Ⅱ)求证:数列{a n•b n}的前n项和T n.考点:数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设d、为等差数列{a n}的公差,且d>0,利用数列的前三项分别加上1,1,3后成等比数列,求出d,然后求解b n.(Ⅱ)写出利用错位相减法求和即可.解答:(本小题满分12分)解:(Ⅰ)设d、为等差数列{a n}的公差,且d>0由a1=1,a2=1+d,a3=1+2d,分别加上1,1,3成等比数列,得(2+d)2=2(4+2d),d>0,所以d=2,所以a n=1+(n﹣1)×2=2n﹣1,又因为a n=﹣1﹣2log2b n,所以log2b n=﹣n即b n=.…(6分)(Ⅱ)…①,…②,①﹣②,得.…(10分)∴…(12分)点评:本题考查数列求和的基本方法错位相减法的应用,等差数列以及等比数列的应用,考查计算能力.18.(12分)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数 2 1 0 ﹣160岁至79岁的人数120 133 34 1380岁及以上的人数9 18 14 9其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.考点:古典概型及其概率计算公式.专题:概率与统计.分析:(Ⅰ)根据80岁以下老龄人的人数,即可估计该地区80岁以下老龄人生活能够自理的概率.(Ⅱ)由分层抽样方法可得被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0,设被抽取的4位健康指数大于0的老龄人为1,2,3,4,健康指数不大于0的老龄人为B;列举从这五人中抽取3人的结果,由古典概型公式计算可得答案.解答:解:(Ⅰ)该小区80岁以下老龄人生活能够自理的频率为,所以该小区80岁以下老龄人生活能够自理的概率约为.(Ⅱ)该小区健康指数大于0的老龄人共有280人,健康指数不大于0的老龄人共有70人,由分层抽样可知,被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.设被抽取的4位健康指数大于0的老龄人为1,2,3,4,健康指数不大于0的老龄人为B.从这五人中抽取3人,结果有10种:(1,2,3),(1,2,4),(1,2,B),(1,3,4),(1,3,B),(1,4,B),(2,3,4),(2,3,B),(2,4,B),(3,4,B,),其中恰有一位老龄人健康指数不大于0的有6种:(1,2,B),(1,3,B),(1,4,B),(2,3,B),(2,4,B),(3,4,B,),∴被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率为.点评:本题考查概率的计算,考查学生利用数学知识解决实际问题,考查学生的计算能力,属于中档题.19.(12分)如图,在多面体ABCDEF中,ABCD是边长为2的正方形,DEFB是一平行四边形,且DE⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(Ⅰ)求证:平面AEF∥平面BDGH;(Ⅱ)求V E﹣EFH.考点:棱柱、棱锥、棱台的体积;平面与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)证明GH∥EF,推出GH∥平面AEF,设AC∩BD=O,连接OH,证明OH∥平面AEF.然后利用平面与平面平行的判定定理证明平面BDGH∥平面AEF.(Ⅱ)证明AC⊥BD.然后证明平面BDEF⊥平面ABCD,推出H到平面BDEF的距离为CO的一半,求出三角形BEF的面积,即可求解棱锥的体积.解答:(本小题满分12分)解:(Ⅰ)证明:在△CEF中,∵G、H分别是CE、CF的中点,∴GH∥EF,又∵GH⊂平面AEF,EF⊂平面AEF,∴GH∥平面AEF,设AC∩BD=O,连接OH,在△ACF中,∵OA=OC,CH=HF,∴OH∥AF,又∵OH⊄平面AEF,AF⊂平面AEF,∴OH∥平面AEF.又∵OH∩GH=H,OH、GH⊂平面BDGH,∴平面BDGH∥平面AEF…(6分)(Ⅱ)因为四边形ABCD是正方形,所以AC⊥BD.又因为DE⊥平面ABCD,则平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.得AC⊥平面BDEF…(8分)则H到平面BDEF的距离为CO的一半又因为,三角形BEF的面积,所以…(12分)点评:本题考查直线与平面平行的判定定理以及平面与平面平行的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.20.(12分)如图,圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的左侧),且|MN|=3.(Ⅰ)求圆C的方程;(Ⅱ)过点M任作一条直线与椭圆Γ:=1相交于两点A、B,连接AN、BN,求证:∠ANM=∠BNM.考点:直线和圆的方程的应用.专题:计算题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设圆C的半径为r(r>0),由|MN|=3可得,从而求圆C的方程;(Ⅱ)求出点M(1,0),N(4,0),讨论当AB⊥x轴时与AB与x轴不垂直时∠ANM是否相等∠BNM,从而证明.解答:解:(Ⅰ)设圆C的半径为r(r>0),则圆心坐标为(r,2).∵|MN|=3,∴,解得.∴圆C的方程为.(Ⅱ)证明:把y=0代入方程,解得x=1,或x=4,即点M(1,0),N(4,0).(1)当AB⊥x轴时,由椭圆对称性可知∠ANM=∠BNM.(2)当AB与x轴不垂直时,可设直线AB的方程为y=k(x﹣1).联立方程,消去y得,(k2+2)x2﹣2k2x+k2﹣8=0.设直线AB交椭圆Γ于A(x1,y1)、B(x2,y2)两点,则,.∵y1=k(x1﹣2),y2=k(x2﹣2),∴=.∵,∴k AN+k BN=0,∠ANM=∠BNM.综上所述,∠ANM=∠BNM.点评:本题考查了圆的方程的求法及圆锥曲线与直线的交点问题,化简比较复杂,通过根与系数的关系简化运算,要细心,属于中档题.21.(12分)已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3,(Ⅰ)求函数f(x)的单调区间和最小值;(Ⅱ)若对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.考点:导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(Ⅰ)由f(x)=xlnx,知f′(x)=1+lnx,利用导数的正负,可得函数f(x)的单调区间,从而可求函数的最小值;(Ⅱ)由对一切x∈(0,+∞),2f(x)≥g(x)恒成立,知2xlnx≥﹣x2+ax﹣3,分离参数,求最值,由此能够求出实数a的取值范围.解答:解:(Ⅰ)∵f(x)=xlnx,∴f′(x)=1+lnx,x>0,由f′(x)=1+lnx<0,可得0<x<,f′(x)=1+lnx>0,可得x>,∴函数f(x)的减区间为(0,),增区间为(,+∞).∴x=时,函数取得最小值﹣;(Ⅱ)∵对一切x∈(0,+∞),2f(x)≥g(x)恒成立,∴2xlnx≥﹣x2+ax﹣3,∴a≤2lnx+x+,令h(x)=2lnx+x+,则h′(x)=当x>1时,h(x)是增函数,当0<x<1时,h(x)是减函数,∴a≤h(1)=4.即实数a的取值范围是(﹣∞,4].点评:本题考查利用导数求函数的单调区间和实数的取值范围的方法,解题时要认真审题,仔细解答,注意分类讨论思想和等价转化思想的合理运用.四、请考生从22、23、24题中任选一题作答.多答按所答的首题进行评分.选修4-4:极坐标与参数方程22.(10分)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点A、B的极坐标分别为、,曲线C的参数方程为为参数).(Ⅰ)求直线AB的直角坐标方程;(Ⅱ)若直线AB和曲线C只有一个交点,求r的值.考点:简单曲线的极坐标方程.专题:计算题;直线与圆;坐标系和参数方程.分析:(Ⅰ)由x=ρcosθ,y=ρsinθ,可将A,B化为直角坐标,再由直线方程的形式,即可得到AB的方程;(Ⅱ)运用同角的平方关系,可将曲线C化为普通方程即为圆,再由直线和圆相切:d=r,即可得到半径r.解答:解:(Ⅰ)∵点A、B的极坐标分别为、,∴点A、B的直角坐标分别为、,∴直线AB的直角坐标方程为;(Ⅱ)由曲线C的参数方程,化为普通方程为x2+y2=r2,∵直线AB和曲线C只有一个交点,∴半径.点评:本题考查极坐标和直角坐标的互化,以及极坐标方程和直角坐标方程的互化,考查直线和圆的位置关系,考查运算能力,属于基础题.【选修4-5:不等式选讲】23.已知关于x的不等式<m对于任意的x∈[﹣1,2]恒成立(Ⅰ)求m的取值范围;(Ⅱ)在(Ⅰ)的条件下求函数f(m)=m+的最小值.考点:二维形式的柯西不等式;函数恒成立问题.专题:不等式的解法及应用.分析:(Ⅰ)由题意可得m大于式子的最大值,再利用柯西不等式求得式子的最大值,可得m的范围.(Ⅱ)由(Ⅰ)得m﹣2>0,则,再利用基本不等式,求得它的最小值.解答:解:(Ⅰ)∵关于x的不等式对于任意的x∈[﹣1,2]恒成立,可得m大于式子的最大值.根据柯西不等式,有,所以,当且仅当时等号成立,故.(Ⅱ)由(Ⅰ)得m﹣2>0,则,∴,当且仅当,即时取等号,所以函数的最小值为.点评:本题主要考查柯西不等式、基本不等式的应用,函数的恒成立问题,体现了转化的数学思想,属于基础题.【选修4-1:几何问题选讲】24.如图,已知AB是⊙O的直径,弦CD与AB垂直,垂足为M,E是CD延长线上的一点,且AB=10,CD=8,3DE=4OM,过F点作⊙O的切线EF,BF交CD于G(Ⅰ)求EG的长;(Ⅱ)连接FD,判断FD与AB是否平行,为什么?考点:与圆有关的比例线段.专题:推理和证明.分析:(Ⅰ)连接AF,OF,推出A,F,G,M共圆,证明EF=EG,通过切割线定理求出EG.(Ⅱ)连接AD,通过求解推出∠BAD≠∠MBG,∠MBF≠∠BFD,说明FD与AB不平行.解答:(本小题满分10分)选修4﹣1:几何问题选讲解:(Ⅰ)连接AF,OF,则A,F,G,M共圆,因为EF⊥OF,∵∠FGE=∠BAF又∠EFG=∠BAF,∴∠EFG=∠FGE,有EF=EG….(3分)由AB=10,CD=8知OM=3∴ED=OM=4EF2=ED•EC=48∴EF=EG=….(5分)(Ⅱ)连接AD,∠BAD=∠BFD及(Ⅰ)知GM=EM﹣EG=∴tan∠MBG=,tan∠BAD=tan∠MBG∴∠BAD≠∠MBG,∠MBF≠∠BFD∴FD与AB不平行…(10分)点评:本题考查直线与圆的位置关系,考查推理以及计算能力.。
2015届模拟考试1 文科数学试题(满分150分,考试时间120分钟)第Ⅰ卷(共60分)一.选择题:(5′×12=60′)1.设i 是虚数单位,若复数10()3a a R i-∈-是纯虚数,则a 的值为( ) A.-3B. -1C .3D .12.已知集合A ={x|0<log 4x <1},B ={x|x ≤2},则A ∩B=( )A .()01,B .(]02,C .()1,2D .(]12, 3.“a =0”是“直线l 1:x+ay -a=0与l 2:ax -(2a -3)y -1=0”垂直的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.已知向量,满足21,1||||-=⋅==,则=+|2|b a ( )A .2B .3C .5D .75.总体编号为01,02,…19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01 6.函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .7.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示 该四棱锥侧面积和体积分别是( )A .B . 83C . 81),3+ D . 8,8 8.在长为12cm 的线段AB 上任取一点C. 现作一矩形,邻边长分别等于线段AC,CB 的长, 则该矩形面积大于20cm 2的概率为( ) :A .16 B .13 C . 23 D . 459.圆()R b a by ax y x y x ∈=+-=+-++,022014222关于直线对称, 则ab 的取值范围是( )A.⎥⎦⎤ ⎝⎛∞-41,B. ⎥⎦⎤ ⎝⎛41,0C.⎪⎭⎫ ⎝⎛-0,41D. ⎪⎭⎫⎝⎛∞-41,10.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 ( )A .奇函数B .偶函数C .增函数D . 周期函数 11.将函数()x x f y cos =的图像向左平移4π个单位后,再做关于x 轴的对称变换得到函数1cos 22-=x y 的图像,则()x f 可以是( )A.x cos 2-B. x sin 2-C. x cos 2D. x sin 212. 椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的 取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( ) A .1324⎡⎤⎢⎥⎣⎦, B .3384⎡⎤⎢⎥⎣⎦, C .112⎡⎤⎢⎥⎣⎦, D .314⎡⎤⎢⎥⎣⎦,第Ⅱ卷(共90分)二.填空题:(5′×4=20′)13.定义运算a b ⊗为执行如图所示的程序框图输出的S 值, 则552cos2tan 34ππ⎛⎫⎛⎫⊗ ⎪ ⎪⎝⎭⎝⎭的值为 14.已知不等式组⎪⎩⎪⎨⎧≥-≥-≤+0,1,1y y x y x 所表示的平面区域为D,若直线y=kx -3k与平面区域D 有公共点,则k 的取值范围为15.ABC ∆中,a,b,c 分别是角A 、B 、C 的对边,若C A B b c a sin cos 6sin ,222⋅==-且, 则b=16. 将数列{}13n -按“第n 组有n 个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第10组中的第一个数是_____________三.解答题: (12′×5+10′=70′)17. 已知数列{}n x 的首项31=x ,通项()2,,n n x p qn n N p q *=+∈为常数,且541,,x x x 成等差数列,求: (Ⅰ)p,q 的值;(Ⅱ)数列{}n x 前n 项和n S 的公式.18. 若函数()()2sin sin cos 0f x ax ax ax a =->的图像与直线y=m (m 为常数)相切, 并且切点的横坐标依次成等差数列,且公差为2π. (Ⅰ)求m 的值;(Ⅱ)若点A ()00,y x 是y=f(x)图像的对称中心,且⎥⎦⎤⎢⎣⎡∈2,00πx ,求点A 的坐标.19. 甲乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球, 编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回的摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢. (Ⅰ)求游戏Ⅰ中甲赢的概率;(Ⅱ)求游戏Ⅱ中乙赢的概率;并比较这两种游戏哪种游戏更公平?试说明理由.20. 18.如图:三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC=121AA ,D 是侧棱AA 1的中点. (Ⅰ)证明:平面BDC 1⊥平面BDC ;(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 21. 设函数)1ln()(2++=x b x x f ,其中0≠b . (Ⅰ)若12b =-,求)(x f 在[]3,1的最小值;(Ⅱ)如果()f x 在定义域内既有极大值又有极小值,求实数b 的取值范围;请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分. 22.选修4—1:几何证明选讲如图,已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B 、C ,∠APC 的平分线分别交AB 、AC 于点D 、E , (Ⅰ)证明:∠ADE =∠AED ; (Ⅱ)若AC=AP ,求PCPA 的值.23.选修4-4:极坐标系与参数方程已知直线l的参数方程是2x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 是参数),圆C 的极坐标方程为ρ=2cos(θ+π4).(Ⅰ)求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值.24.选修4-5:不等式选讲设不等式112<-x 的解集为M , 且M b M a ∈∈,. (Ⅰ) 试比较1+ab 与b a +的大小;(Ⅱ) 设A max 表示数集A 中的最大数, 且⎭⎬⎫⎩⎨⎧+=b abb a ah 2,,2max , 求h 的范围.P2015届模拟考试数学1(文)参考答案一、选择题:(5′×12=60′) (A 卷) CDABD ABCAD BB 二、填空题:(5′×4=20′) 13.4; 14.031≤≤-k ; 15.3; 16. 345; 三、解答题:(12′×5+10′=70′)17.解:(Ⅰ)由31=x 得2p+q=3,又∵45155442,52,42x x x q p x q p x =++=+=且 ∴q p q p 8252355+=++,解得p=1,q=1 ………..………………………….…..6分(Ⅱ)由(Ⅰ)得n x n n +=2∴()2122...3212 (2221)32++-=+++++++++=+n n n S n n n ……….……….12分18.解:(Ⅰ) ∵()⎪⎭⎫ ⎝⎛+-=42sin 2221πax x f …………….………………………….……3分 ∴ 2221±=m ……………………………………………………………………..5分 (Ⅱ) ∵切点的横坐标依次成等差数列,且公差为2π, ∴a a T πππ===2222=⇒a ()⎪⎭⎫⎝⎛+-=44sin 2221πx x f ……………………………....7分 ∵ 点A ()00,y x 是y=f(x)图像的对称中心 ∴1644400ππππ-=⇒=+k x k x ….9分 ∵⎥⎦⎤⎢⎣⎡∈2,00πx ∴1671630ππ或=x ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛2116721163,或,ππA ……………………….12分19.解:(Ⅰ)∵游戏Ⅰ中有放回地依次摸出两球基本事件有5*5=25种,其中甲赢包含(1,1)(1,3)(1,5)(3,3)(3,5)(5,5)(3,1)(5,1)(5,3)(2,2)(2,4)(4,4)(4,2)13种基本事件, ∴游戏Ⅰ中甲赢的概率为 P=2513…………………………..……………..5分 (Ⅱ)设4个白球为a,b,c,d, 2个红球为A,B ,则游戏Ⅱ中有放回地依次摸出两球基本事件有6*6=36种,其中乙赢包含(a,A ), (b,A ),(c,A )(d,A )(a,B )(b, B )(c, B )(d, B )(A,a )(A,b )(A,c )(A,d )(B,a )(B,b )(B,c )(B,d )16种基本事件, ∴游戏Ⅱ中乙赢的概率为P’=1583016= ………………………………...……………….10分∵21158212513-<- ∴游戏Ⅰ更公平 ………………………………....12分 20.解:解:(1)证明:由题设可知1111,,A ACC BC C AC CC AC BC CC BC 平面⊥⇒=⊥⊥1111DC ACC A DC BC≠⊂∴⊥又平面…………………………………………2分DC DC CDC ADC DC A ⊥=∠∴=∠=∠1010119045即又 …………4分 BDC DC C BC DC 平面又⊥∴=1,111DC BDC BDC BDC ≠⊂⊥又平面,故平面平面…………………………6分(2)设棱锥1DACC B -的体积为/V ,21122113131,11/=⨯+⨯⨯=⋅=∴=DACC S BC V AC 设 ……………………………………9分又三棱柱的体积为V=1,故平面1BDC 分棱柱所得两部分的体积比为1:1 ……………12分 21.解:其中第一问6分,第二问6分,共12分.四、选考题(本题满分10分):请考生从第(22)、(23)、(24)三题中任选一题作答。
2015年陕西省西安市西北工业大学附中高考数学二模试卷(文科)一.选择题:(5′×12=60′)1.(5分)设i是虚数单位,若复数a﹣(a∈R)是纯虚数,则a的值为()A.﹣3B.﹣1C.1D.32.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2]C.(1,2)D.(1,2]3.(5分)“a=0”是“直线l1:x+ay﹣a=0与l2:ax﹣(2a﹣3)y﹣1=0”垂直的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4.(5分)已知向量,满足||=||=1,•=﹣,则|+2|=()A.B.C.D.5.(5分)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08B.07C.02D.016.(5分)函数f(x)=ln(x2+1)的图象大致是()A.B.C.D.7.(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8B.C.D.8,88.(5分)在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()A.B.C.D.9.(5分)圆x2+y2+2x﹣4y+1=0关于直线2ax﹣by+2=0(a,b∈R)对称,则ab的取值范围是()A.B.C.D.(0,]10.(5分)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R上为()A.周期函数B.奇函数C.偶函数D.增函数11.(5分)将函数y=f(x)cos x的图象向左移个单位后,再作关于x轴的对称变换得到的函数y=2cos2x﹣1的图象,则f(x)可以是()A.﹣2cos x B.2cos x C.﹣2sin x D.2sin x12.(5分)椭圆C:=1的左、右顶点分别为A1,A2,点P在C上且直线P A2的斜率的取值范围是[﹣2,﹣1],那么直线P A1斜率的取值范围是()A.B.C.D.二.填空题:(5′×4=20′)13.(5分)定义运算a⊗b为执行如图所示的程序框图输出的S值,则(2cos)⊗(2tan)的值为.14.(5分)已知不等式表示的平面区域为M,若直线y=kx﹣3k与平面区域M有公共点,则k的范围是.15.(5分)△ABC中,a、b、c分别是角A、B、C的对边,若a2﹣c2=2b,且sin B=6cos A •sin C,则b的值为.16.(5分)将数列{3n﹣1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第10组中的第一个数是.三.解答题:(12′×5+10′=70′)17.(12分)已知数列{x n}的首项x1=3,通项x n=2n p+nq(n∈N*,p,q为常数),且x1,x4,x5成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.18.(12分)若函数f(x)=sin2ax﹣sin ax cos ax(a>0)的图象与直线y=m相切,并且切点的横坐标依次成公差为的等差数列.(1)求m的值.(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈[0,],求点A的坐标.19.(12分)甲乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回的摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢.(Ⅰ)求游戏Ⅰ中甲赢的概率;(Ⅱ)求游戏Ⅱ中乙赢的概率;并比较这两种游戏哪种游戏更公平?试说明理由.20.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.21.(12分)设函数f(x)=x2+bln(x+1),其中b≠0.(1)若b=﹣12,求f(x)在[1,3]的最小值;(2)如果f(x)在定义域内既有极大值又有极小值,求实数b的取值范围.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分.【选修4-1:几何证明选讲】22.(10分)如图,已知P A与圆O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB,AC于点D,E.(Ⅰ)证明:∠ADE=∠AED;(Ⅱ)若AC=AP,求的值.【选修4-4:极坐标系与参数方程】23.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.【选修4-5:不等式选讲】24.选修4﹣5:不等式选讲设不等式|2x﹣1|<1的解集为M,且a∈M,b∈M.(Ⅰ)试比较ab+1与a+b的大小;(Ⅱ)设maxA表示数集A中的最大数,且h=max{,,},求h的范围.2015年陕西省西安市西北工业大学附中高考数学二模试卷(文科)参考答案与试题解析一.选择题:(5′×12=60′)1.(5分)设i是虚数单位,若复数a﹣(a∈R)是纯虚数,则a的值为()A.﹣3B.﹣1C.1D.3【解答】解:∵=(a﹣3)﹣i是纯虚数,∴a﹣3=0,解得a=3.故选:D.2.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2]C.(1,2)D.(1,2]【解答】解:由A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴A∩B=(1,2].故选:D.3.(5分)“a=0”是“直线l1:x+ay﹣a=0与l2:ax﹣(2a﹣3)y﹣1=0”垂直的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【解答】解:若两直线垂直,则a﹣a(2a﹣3)=0,即a(4﹣2a)=0,解得a=0或a=2,故“a=0”是“直线l1:x+ay﹣a=0与l2:ax﹣(2a﹣3)y﹣1=0”垂直充分不必要条件,故选:B.4.(5分)已知向量,满足||=||=1,•=﹣,则|+2|=()A.B.C.D.【解答】解:∵||=||=1,•=﹣,∴|+2|2=(+2)2=2+42+4•=5﹣2=3,∴|+2|=,故选:A.5.(5分)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08B.07C.02D.01【解答】解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01,故第5个数为01.故选:D.6.(5分)函数f(x)=ln(x2+1)的图象大致是()A.B.C.D.【解答】解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A.7.(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8B.C.D.8,8【解答】解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,其主视图为原图形中的三角形PEF,如图,由该四棱锥的主视图可知四棱锥的底面边长AB=2,高PO=2,则四棱锥的斜高PE=.所以该四棱锥侧面积S=,体积V=.故选:B.8.(5分)在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()A.B.C.D.【解答】解:设AC=x,则BC=12﹣x(0<x<12)矩形的面积S=x(12﹣x)>20∴x2﹣12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率P==.故选:C.9.(5分)圆x2+y2+2x﹣4y+1=0关于直线2ax﹣by+2=0(a,b∈R)对称,则ab的取值范围是()A.B.C.D.(0,]【解答】解:由题意可得,直线2ax﹣by+2=0经过圆x2+y2+2x﹣4y+1=0的圆心(﹣1,2),故有﹣2a﹣2b+2=0,即a+b=1,故ab=a(1﹣a)=﹣(a﹣)2+,求得ab≤,当且仅当a=b=时取等号,故选:C.10.(5分)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R上为()A.周期函数B.奇函数C.偶函数D.增函数【解答】解:∵f(x)=x﹣[x],∴f(x+1)=(x+1)﹣[x+1]=x+1﹣[x]﹣1=x﹣[x]=f(x),∴f(x)=x﹣[x]在R上为周期是1的函数.故选:A.11.(5分)将函数y=f(x)cos x的图象向左移个单位后,再作关于x轴的对称变换得到的函数y=2cos2x﹣1的图象,则f(x)可以是()A.﹣2cos x B.2cos x C.﹣2sin x D.2sin x【解答】解:y=2cos2x﹣1=cos2x,其关于x轴的对称的函数为y=﹣cos2x,将其向右平移个单位后得到:y=﹣cos2(x﹣)=﹣sin2x=﹣2sin x cos x;所以f(x)=﹣2sin x.故选:C.12.(5分)椭圆C:=1的左、右顶点分别为A1,A2,点P在C上且直线P A2的斜率的取值范围是[﹣2,﹣1],那么直线P A1斜率的取值范围是()A.B.C.D.【解答】解:由椭圆的标准方程可知,左右顶点分别为A1(﹣2,0)、A2(2,0),设点P(a,b)(a≠±2),则=1…①,=,=;则==,将①式代入得=﹣,∵∈[﹣2,﹣1],∴∈.故选:D.二.填空题:(5′×4=20′)13.(5分)定义运算a⊗b为执行如图所示的程序框图输出的S值,则(2cos)⊗(2tan)的值为4.【解答】解:模拟执行程序框图可得其功能是求分段函数S=的值,∵2cos=1<2tan=2∴(2cos)⊗(2tan)=1⊗2=2(1+1)=4.故答案为:4.14.(5分)已知不等式表示的平面区域为M,若直线y=kx﹣3k与平面区域M 有公共点,则k的范围是[﹣,0].【解答】解:满足约束条件的平面区域如图示:其中A(0,1),B(1,0),C(﹣1,0).因为y=kx﹣3k过定点D(3,0).所以当y=kx﹣3k过点A(0,1)时,得到k=﹣当y=kx﹣3k过点B(1,0)时,对应k=0.又因为直线y=kx﹣3k与平面区域M有公共点.所以﹣≤k≤0.故答案为:[﹣,0].15.(5分)△ABC中,a、b、c分别是角A、B、C的对边,若a2﹣c2=2b,且sin B=6cos A •sin C,则b的值为3.【解答】解:△ABC中,∵sin B=6cos A•sin C,∴由正弦定理可得b=6c•cos A=6c•=3×.∵a2﹣c2=2b,∴b=3•,化简可得b(b﹣3)=0,由此可得b=3,故答案为3.16.(5分)将数列{3n﹣1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第10组中的第一个数是345.【解答】解:根据分组的第一个数分别为1=30,3=31,27=33,可知指数的指数幂分别为0,1,3,6,设指数幂构成数列{a n},则a1=0,a2=1,a3=3,满足a2﹣a1=1,a3﹣a2=2,a4﹣a3=3,…a10﹣a9=9,等式两边累加得,a10﹣a1=1+2+⋅⋅⋅+9=,即a10=45,所以第10组中的第一个数是345.故答案为:345.三.解答题:(12′×5+10′=70′)17.(12分)已知数列{x n}的首项x1=3,通项x n=2n p+nq(n∈N*,p,q为常数),且x1,x4,x5成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.【解答】解:(Ⅰ)∵x1=3,∴2p+q=3,①又x4=24p+4q,x5=25p+5q,且x1+x5=2x4,∴3+25p+5q=25p+8q,②联立①②求得p=1,q=1(Ⅱ)由(1)可知x n=2n+n∴S n=(2+22+…+2n)+(1+2+…+n)=.18.(12分)若函数f(x)=sin2ax﹣sin ax cos ax(a>0)的图象与直线y=m相切,并且切点的横坐标依次成公差为的等差数列.(1)求m的值.(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈[0,],求点A的坐标.【解答】解:(1)f(x)=(1﹣cos2ax)﹣sin2ax=﹣(sin2ax+cos2ax)+=﹣sin(2ax+)+因为y=f(x)的图象与y=m相切.所以m为f(x)的最大值或最小值.即m=或m=.(2)因为切点的横坐标依次成公差为的等差数列,所以f(x)的最小正周期为.由T==得a=2.∴f(x)=﹣sin(4x+)+.由sin(4x0+)=0得4x0+=kπ,即x0=﹣(k∈Z).由0≤﹣≤得k=1或k=2,因此点A的坐标为(,)或(,)19.(12分)甲乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回的摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢.(Ⅰ)求游戏Ⅰ中甲赢的概率;(Ⅱ)求游戏Ⅱ中乙赢的概率;并比较这两种游戏哪种游戏更公平?试说明理由.【解答】解:(Ⅰ)∵游戏Ⅰ中有放回地依次摸出两球基本事件有5*5=25种,其中甲赢包含(1,1)(1,3)(1,5)(3,3)(3,5)(5,5)(3,1)(5,1)(5,3)(2,2)(2,4)(4,4)(4,2)13种基本事件,∴游戏Ⅰ中甲赢的概率为:P=…..…..(5分)(Ⅱ)设4个白球为a,b,c,d,2个红球为A,B,则游戏Ⅱ中有放回地依次摸出两球基本事件有6*6=36种,其中乙赢包含(a,A),(b,A),(c,A)(d,A)(a,B)(b,B)(c,B)(d,B)(A,a)(A,b)(A,c)(A,d)(B,a)(B,b)(B,c)(B,d)16种基本事件,∴游戏Ⅱ中乙赢的概率为:P’=….(10分)∵.∴游戏Ⅰ更公平…(12分)20.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【解答】证明:(1)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1⊂平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.21.(12分)设函数f(x)=x2+bln(x+1),其中b≠0.(1)若b=﹣12,求f(x)在[1,3]的最小值;(2)如果f(x)在定义域内既有极大值又有极小值,求实数b的取值范围.【解答】解:(1)由题意知,f(x)的定义域为(1,+∞)b=﹣12时,由,得x=2(x=﹣3舍去),当x∈[1,2)时f′(x)<0,当x∈(2,3]时,f′(x)>0,所以当x∈[1,2)时,f(x)单调递减;当x∈(2,3]时,f(x)单调递增,所以f(x)min=f(2)=4﹣12ln3.(2)由题意在(﹣1,+∞)有两个不等实根,即2x2+2x+b=0在(﹣1,+∞)有两个不等实根,设g(x)=2x2+2x+b,则,解之得请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分.【选修4-1:几何证明选讲】22.(10分)如图,已知P A与圆O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB,AC于点D,E.(Ⅰ)证明:∠ADE=∠AED;(Ⅱ)若AC=AP,求的值.【解答】解:(Ⅰ)∵P A是切线,AB是弦,∴∠BAP=∠C.又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE.∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,∴∠ADE=∠AED.…(5分)(Ⅱ)由(Ⅰ)知∠BAP=∠C,∵∠APC=∠BP A,∵AC=AP,∴∠APC=∠C∴∠APC=∠C=∠BAP.由三角形内角和定理可知,∠APC+∠C+∠CAP=180°.∵BC是圆O的直径,∴∠BAC=90°.∴∠APC+∠C+∠BAP=180°﹣90°=90°.∴.在Rt△ABC中,,即,∴.∵在△APC与△BP A中∠BAP=∠C,∠APB=∠CP A,∴△APC∽△BP A.∴.∴.…(10分)【选修4-4:极坐标系与参数方程】23.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.【解答】解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)【选修4-5:不等式选讲】24.选修4﹣5:不等式选讲设不等式|2x﹣1|<1的解集为M,且a∈M,b∈M.(Ⅰ)试比较ab+1与a+b的大小;(Ⅱ)设maxA表示数集A中的最大数,且h=max{,,},求h的范围.【解答】解:由不等式|2x﹣1|<1化为﹣1<2x﹣1<1解得0<x<1,∴原不等式的解集M={x|0<x<1},(Ⅰ)∵a,b∈M,∴0<a<1,0<b<1.∴(ab+1)﹣(a+b)=(1﹣a)(1﹣b)>0,∴ab+1>a+b.(Ⅱ)∵a,b∈M,∴0<a<1,0<b<1.不妨设0<a≤b<1,则,∴;.故最大,即>2.∴h∈(2,+∞).。
陕西省西安市西北工业大学附属中学2015届高三下学期5月模拟考试 数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数2015计算的结果是( )A .-1B .i - C【答案】C 【解析】试题分析:()10072015201410072===2i i -⋅⋅⋅=考点:复数的运算2.若sin 20a =,则sin 230的值为( )A .221a -B .21a -C .21a -D .212a -【答案】A 【解析】试题分析:()()22sin 230sin 18050sin 50cos 4012sin 2021a =+=-=-=--=-考点:二倍角公式,诱导公式3.522x⎫⎪⎭-的展开式中常数项是( ) A .5 B .5- C .10 D .10- 【答案】D 【解析】试题分析:522x⎫⎪⎭-的展开式的通项公式为()()5552225522rr rrr rC x C x---=-,当1r =时,常数项为()115210C -=-考点:二项展开式的通项公式4.已知{}n a 为等差数列,n S 为其前n 项和.若112a =,611S S =,则必有( ) A .170a = B .6120a a += C .170S > D .90a < 【答案】B 【解析】试题分析:设{}n a 的公差为d ,则由112a =,()()()6111116611111161158022S S a d a d a d ⨯-⨯-=⇒+=+⇒+=,即90a =,由等差数列的性质,可得612920a a a +== 考点:等差数列的性质5.已知一几何体的三视图如图所示,则该几何体的体积是( ) A .6 B .9 C .12 D .18 【答案】B 【解析】试题分析:由三视图可知,该几何体为高为3,底面为一个等腰三角形的三棱锥,故其体积为11633932V =⨯⨯⨯⨯= 考点:三视图,三棱锥的体积6.右图是函数2sin()(0)y x ωφω=+>图像的一部分,则ω和φ为( )A.115ω=, 56πφ=- B.75ω=, 6πφ=-C.175ω=, 56πφ=-D.135ω=, 6πφ=- 【答案】A 【解析】试题分析:由图可得,52sin 1652sin 01165πφφπωφω⎧=-⎧=-⎪⎪⎪⇒⎡⎤⎨⎨⎛⎫+= ⎪⎢⎥⎪⎪=⎝⎭⎣⎦⎩⎪⎩考点:函数sin()(0)y A x ωφω=+>的图像和性质7.展开10()a b c ++合并同类项后的项数是( ) A .11 B .66 C .76 D .134 【答案】B考点:排列组合,计数原理8.已知随机变量X 的取值为0,1,2,若1(0)5P X ==,1EX =,则DX =( ) A .25 B .45 C .23 D .43【答案】A 【解析】试题分析:设(1),P X p ==则1(2)1,5P X p ==--由14310121555EX p p p ⎛⎫=⇒⨯+⨯+⨯-=⇒= ⎪⎝⎭则()()()22213120111215555DX =-⨯+-⨯+-⨯= 考点:期望与方差9.若变量,x y 满足约束条件1020y x y x y ≤⎧⎪+≥⎨⎪--≤⎩,则2z x y =-的最大值为( )A .4B .3C .2D .1 【答案】B 【解析】试题分析:画出可行域如图所示,由图可知,当目标函数2z x y =-经过点A 时 ,取到最大值()max 1213z =-⨯-=考点:简单的线性规划10.已知三棱锥P ABC -的四个顶点均在半径为1的球面上,且满足0PA PB ⋅=,0PB PC ⋅=,0PC PA ⋅=,则三棱锥P ABC -的侧面积的最大值为( )A .12B .1C .2D .4 【答案】C考点:棱锥的侧面积11..已知抛物线x y 82=的焦点与双曲线1222x y a-=的一个焦点重合,则该双曲线的离心率为( )ABC【答案】C 【解析】试题分析:抛物线x y 82=的焦点为(2,0),即双曲线1222x y a-=的2c =,又双曲线中2142a c a +==∴=,因此双曲线的离心率c e a ==考点:双曲线的离心率12.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围是( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】B 【解析】试题分析:由32()31f x ax x =-+知22()36f x ax x '=-,若0a =,则函数2()31f x x =-+有两个零点,不合题意;当0a >时,令22()360f x ax x '=-=,解得0x =或20x a=>,列表如下:∵x f x →-∞→-∞,(), 而010f =()>,故存在0x <,使得()0f x =,不符合条件:()f x 存在唯一的零点0x ,且0x >0,当0a <时,令22()360f x ax x '=-=,解得0x =或20x a=<,列表如下:而010f =()>,x f x →+∞→-∞,(),∴存在0x >0,使得00f x =(),32()31f x ax x ∴=-+存在唯一的零点0x ,且0x >0∴极小值2()0f a>,化为2402a a a ><∴<-,综上可知:a 的取值范围是2-∞-(,).故选:B .考点:利用导数研究函数的性质第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是 ; 【答案】15,24⎡⎤⎢⎥⎣⎦【解析】试题分析:由正弦函数的单调性,可得322,242k x k k Z ππππωπ+≤+≤+∈,因为()f x 在,2ππ⎛⎫ ⎪⎝⎭上单调递减,故可令0k =,且满足1224235424πππωωππωπω⎧⎧≤⋅+≤⎪⎪⎪⎪⇒⎨⎨⎪⎪⋅+≤≤⎪⎪⎩⎩,即15,24ω⎡⎤∈⎢⎥⎣⎦ 考点:正弦函数的单调性14.如右图,输入正整数,m n ,满足n m ≥,则输出的p = ;【答案】mn A【解析】试题分析:第一次运行的结果为1n m -+;第二次运行的结果为()()()()1212n m n m n m n m -+-+=----⎡⎤⎡⎤⎣⎦⎣⎦,…,故第m 次运行的结果为()()12...m n n m n m n A -+-+=考点:程序框图15.若直线l :1y kx =+被圆C :22x y 2x 30+--=截得的弦最短,则k= ; 【答案】1k = 【解析】试题分析:由题意圆C :22x y 2x 30+--=得圆心为()1,0C 直线l :1y kx =+过定点()0,1A ,且点()0,1A 在圆内,当,A C 连线与直线l :1y kx =+垂直时,直线l :1y kx =+被圆C 截得的弦最短,即101101k k -⋅=-⇒=- 考点:直线与圆的位置关系16.将全体正整数排成如图的一个三角形数阵,按照此排列规律,第10行从左向右的第5个数为 . 【答案】50 【解析】试题分析:由图可知,第n 行的第一个数为()12n n -,则第10行从左向右的第5个数为()101015502-+= 考点:归纳推理三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(Ⅰ)求从该批产品中任取1件是二等品的概率p ;(Ⅱ)若该批产品共20件,从中任意抽取2件,X 表示取出的2件产品中二等品的件数,求X 的分布列与期望.【答案】(Ⅰ)0.2p =(Ⅱ)见解析 【解析】试题分析:(Ⅰ)设从该批产品中任取1件是二等品的概率为p ,则由题意取出的2件产品中至多有1件是二等品的概率即为2()1-0.96P A p ==,则p 可求;(Ⅱ),由(Ⅰ)知该批产品二等品有200.24⨯=件,由题意,0,1,2X =,而X 服从超几何分布,则其分布列及其期望可求试题解析:(Ⅰ)设从该批产品中任取1件是二等品的概率为p ,则由题意取出的2件产品中至多有1件是二等品的概率即为2()1-0.960.2P A p p ==⇒=.(Ⅱ)∵该批产品共20件,由(Ⅰ)知其二等品有200.24⨯=件,显然0,1,2X =.故216220C 12(0)C 19P X ===.11164220C C 32(1)C 95P X ===.24220C 3(2)C 95P X ===.所以X 的分布列为3895EX ∴=考点:对立事件,服从超几何分布及其期望18.已知数列{n a }中,n S 为其前n 项和,且12a a ≠,当n N +∈时,恒有n n S pna =(p 为常数).(Ⅰ)求常数p 的值;(Ⅱ)当22a =时,求数列{n a }的通项公式; (Ⅲ)设14(2)n n n b a a +=+,数列{}n b 的前n 项和为n T ,求证:74n T <.【答案】(Ⅰ) 12p =(Ⅱ) 2 2.n a n =-(Ⅲ)见解析19.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知∠ABC =45°,AB =2,BC =22,SA =SB =3.(Ⅰ)求证:SA ⊥BC ;(Ⅱ)求直线SD 与平面SAB 所成角的正弦值.【答案】(Ⅰ)(Ⅱ)11【解析】试题分析:(Ⅰ)为了证明SA BC ⊥,作SO BC ⊥,易得SO ABCD ⊥平面,又因为SA SB =,所以AO BO =.因为45ABC =∠,AOB 为等腰直角三角形,AO BO ⊥.则如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O —xyz ,可得0SA CB =,即SA BC ⊥(Ⅱ)由(Ⅰ)建立空间直角坐标系的基础上,求出直线SD 的方向向量和平面SAB 的法向量利用夹角公式即可.试题解析:(Ⅰ)作SO BC ⊥,垂足为O ,连结SO ,由侧面SBC ABCD ⊥底面,得S O A B C D⊥平面.因为SA SB =,所以AO BO =.又45ABC =∠,AOB 为等腰直角三角形,AO BO ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O —xyz ,0)A ,,(0B ,(0C ,001S (,,), (21)SA =-,,,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,0E ⎫⎪⎪⎝⎭,连结SE ,取SE 中点G ,连结OG ,12G ⎫⎪⎪⎝⎭,.12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直。
2015届第二次模拟考试理科数学试题(B 卷)(满分150分,考试时间120分钟)第Ⅰ卷(共60分)一.选择题:(5′×12=60′)1.已知A={x|x≥k },B={x|<1},若AB 则实数k 的取值范围为( )A.(1,+∞)B.(-∞,-1) C .[2,+∞) D.(2,+∞)2.复数的共轭复数=( )A.2+B.2-C.1-2D.1+23.设f(x)是定义在R 上的奇函数,当x≥0时恒有f(x+2)=f(x),当x ∈[0,2]时, f(x)=e x 1,则f(2014)+f(-2015)=( )A.e-1B.1-eC.-1-eD.e+14.在锐角三角形ABC 中,BC=1, B=2A ,则的值为( )A.6B.4C.2D.25.一个算法的程序框图如右图所示,若输入的x 值为2015,则输出的值为( )A.5B.3C.6D.9 6.a=b 是直线y=x+2与圆(x-a)2+(y-b)2=2相切的( ) A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件 7.已知向量与的夹角为120°,||=3,|+|=,则||=( ) A.5 B.3 C.4 D.18.设S n 为等差数列{a n }的前n 项和,给出四个结论:(1)a 2+a 8≠a 10(2)S n =an 2+bn(a≠0)(3)若m,n,p,q ∈N +,则a m +a n =a p +a q 的充要条件是m+n=p+q(4)若S 6=S 11,则a 9=0其中正确命题的个数为( )A.2B.3C.4D.19.已知双曲线-=1(a>0,b>0)的左、右焦点为F 1(-c,0),F 2(c,0),若直线y=2x 与双曲线的 一个交点的横坐标为c ,则双曲线的离心率为A. +1B. +1C. +D.10.若a>0,b>0,lga+lgb=lg(a+b),则a+b 的最小值为( )A.8B.6C.2D.411.若二项式()6的展开式中的常数项为m ,则=( )A. B. C.- D.-x a =1=i b a =1+=i i xb ≠a b -=11i12.定义在[0,+∞)的函数f(x),对任意x≥0,恒有f(x)>f´(x),a=,b=,则a与b的大小关系为()A.a<bB.a=bC.a>bD.无法确定第Ⅱ卷(共90分)二.填空题:(5′×4=20′)13.一个类似杨辉三角形的数阵:则第九行的第二个数为14.某班班会,准备从包括甲、乙两人的七名同学中选派4名学生发言,要求甲、乙两人中至少有1人参加,则甲、乙都被选中且发言时不相邻的概率为15.已知满足条件的动点(x,y)所在的区域D为一直角三角形区域,则区域D的面积为16.已知函数f(x)对一切实数a、b满足f(a+b)=f(a)·f(b),f(1)=2,(且f(x)恒非零),数列{a n}的通项a n= (n∈N+),则数列{a n}的前n项和=三.解答题: (12′×5+10′=70′)17.已知函数f(x)= sin(x+)cos(x+)+sin2(x+)(0<φ<)的图象经过点(,1)(1)求f(x).(2)在△ABC中,A、B、C的对边为a、b、c,a=,S△ABC=2,角C为锐角且f()=,求C边长18.某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为,m,n(m>n),设该同学三门课程都取得优秀成绩的概率为,都未取得优秀成绩的概率为,且不同课程是否取得优秀成绩相互独立。
2016届陕西省西工大附中高三下学期第五次适应性训练数学(文)试题第Ⅰ卷 选择题(共60分)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.已知1,()(1),x x Rf x i x x R +∈⎧=⎨+∉⎩,则[](1)f f i -等于( )A .2i -B .1C .3D .3i +2.若直线n m 、的方向向量分别为,a b r r ,则“m n P ”是“a b r rP ”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件3.对具有线性相关关系的变量,x y ,测得一组数据如右表所示,由最小二乘法求得回归方程为$0.95 2.6y x =+,则表中看不清的数据为( )A .4.8B .5.2C .5.8D .6.24.若两个正实数y x ,满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围为( )A .(1,4)-B .(4,1)-C .(,1)(4,)-∞-+∞UD .(,0)(3,)-∞+∞U5. 函数121x y =-的值域是( )A.(),1-∞B.()(),00,-∞+∞UC.()1,-+∞D.()(,1)0,-∞-+∞U 6.函数)cos (sin log 21x x y -=的单调增区间是( )A .)(],432,42[Z k k k ∈+-ππππ B .)(],472,432[Z k k k ∈++ππππC . )(],452,432[Z k k k ∈++ππππD .)(],432,42[Z k k k ∈++ππππ7.若一个双曲线实轴的长度、虚轴的长度和焦距依次成等差数列,则该双曲线的离心率是( )A .43 B .53 C .65 D .748.在ABC ∆中,3,2,AB BC == 3AB BC ⋅=u u u r u u u r ,则AC 等于( )A .3B .7C .19D .239.已知{}(,)1,1A x y x y =≤≤,B 是曲线()211--=x y 围成的封闭区域,若向区域A 上随机投一点P ,则点P 落入区域B 的概率为( )A .4π B .16π C .2π D .8π10.数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,若167a =,则2016a 的值是( )A .67B .57C .37D .1711.将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的左视图为( )12.已知函数2,0()3ln 2,0xa x f x x x a x ⎧-≤⎪=⎨⎪-+>⎩有三个不同的零点,则实数a 的取值范围是( ) A .(]1ln 2,3+ B .(]ln 2,3 C .(0,1ln 2)+ D .(]0,3第Ⅱ卷 非选择题(共90分)二.填空题(本大题共4小题,每小题5分,满分20分,把答案填写在答题卡相应的位置)13.若命题“存在0x R ∈,200390x ax -+<”为假命题,则实数a 的取值范围是 ; 14.执行如下图所示的程序框图,若输入的a 值为2,则输出的P 值是 ;15.已知直线()()R m m y x ∈=--+0432恒过定点P ,若点P 平分圆44222=---+y x y x 的弦MN ,则弦MN 所在的直线方程是 ;16.设等差数列{}n a 的前n 项和为n S ,若4510,15S S ≥≤,则4a 的最大值为____; 三.解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共70分) 17(本小题满分12分).已知等差数列{}n a 的各项均为正数,11a =,且212a -,3a ,612a -成等比数列. (Ⅰ)求n a 的通项公式;(Ⅱ)设11n n n b a a +=,求数列{}n b 的前n 项和n S .18(本小题满分12分)某班t 名学生在2015年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组[120,130],下表是按上述分组方法得到的频率分布表:(Ⅰ)求t 及分布表中,,x y z 的值; (Ⅱ)数学老师决定从第一组和第五组的学生中随机抽取2名进行交流,求第一组至少有一名学生被抽到的概率; (III )设从第一组或第五组中任意抽取的两名学生的数学测试成绩分别记为,m n ,求事件“||10m n -≤”的概率. 图,AB 为圆O 的直径,点19(本小题满分12分)如E 、F 在圆O 上,EF AB //,矩形ABCD 所在平面和圆O 所在的平面互相垂直.已知2=AB ,1=EF . (Ⅰ)求证:平面⊥DAF 平面CBF ;(Ⅱ)设几何体F ABCD -、F BCE -的体积分别为1V 、2V ,求12:V V 的值.20(本小题满分12分)已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过3(2,0),(2,0),(1,)2A B C -. (I )求椭圆E 的方程; (II )设经过(1,0)D 点的直线l 交椭圆异于A 、B 的两点M,N ,试证明直线AM 与BN 的交点在一条定直线上,并求出该直线的方程.21(本小题满分12分).已知函数2()ln(1)(0)2xf x ax a x =+->+其中a R ∈ (I )当12a =,求()f x 的单调区间和极值; (II )当1,12a ⎛⎫∈ ⎪⎝⎭时,()f x 存在两个极值点12,x x ,试比较12()()f x f x +与(0)f 的大小,并说明理由.请考生从第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,CD AB ,是圆的平行弦,BF AC P ,BF 交CD 于点E 、交圆于F ,过点A 的切线交DC 的延长线于点P ,.2,1===PA ED PC(Ⅰ)求AC 的长;(Ⅱ)求证:EF BE =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线的C 极坐标方程为2sin 2cos (0)a a ρθθ=>,直线l 的参数方程为:222242x ty t ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),点P 的坐标为(-2,-4),直线l 与曲线C 分别交于B A ,两点. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若,,PA AB PB 成等比数列,求a 的值.分 组 频 数 频 率[80,90) x 0.04[90,100) 9 y [100,110) z 0.38[110,120) 17 0.34 [120,130] 3 0.0624.(本小题满分10分)选修4—5:不等式选讲 已知函数2()223,()1+2f x x a x g x x x =-++=-. (Ⅰ)若1a =时,解不等式:2236x a x -++≤;(Ⅱ)若对任意[]102x ∈,,都存在2x R ∈,使得12()()g x f x =成立,求实数a 的取值范围.2016年普通高等学校招生全国统一考试西工大附中第五次适应性训练数 学(文科答案)一.选择题:CAACD CBCBC BA二.填空题:13.[2,2]-; 14.4; 15.05=-+y x ; 16.4. 三.解答题:17.【解】:(I )由题意设1(1)(0)n a n d d =+->,211(12)(1)(15)22d d d +=+-+- 得32d =,213-=n a n ; (II )44114111111()()(31)(32)33132325583132n n b S n n n n n n ==-⇒=-+-++--+-+-+L232n n =+ 18.【解】:(Ⅰ) 350,500.042,0.06t x ===⨯=10.040.380.340.060.18y =----= 500.3819z =⨯= (4分) (Ⅱ)设第5组的3名学生分别为123,,A A A ,第1组的2名学生分别为12,B B ,则从5名学生中抽取两位学生有:12131112232122313212(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)A A A A A B A B A A A B A B A B A B B B ,共10种可能.其中第一组的2位学生12,B B 至少有一位学生入选的有:11122122313212(,),(,),(,),(,),(,),(,),(,)A B A B A B A B A B A B B B ,共7种可能,所以第一组至少有一名学生被老师抽到的概率为.7.0107= (8分)(III )第1组[80,90)中有2个学生,数学测试成绩设为,a b 第5组[120,130]中有3个学生,数学测试成绩设为,,A B C , 则,m n 可能结果为(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a b a A a B a C b A b B b C A B A C B C 共10种 使||10m n -≤成立有(,),(,),(,),(,)a b A B A C B C 共4种所以42(||10)105P m n -≤==即事件“||10m n -≤”的概率为25. (12分)19.【解】:(Ⅰ)证明:如图.Θ平面⊥ABCD 平面ABEF ,AB CB ⊥,平面I ABCD 平面ABEF =AB ,⊥∴CB 平面ABEF .⊂AF Θ平面ABEF ,CB AF ⊥∴, 又AB Θ为圆O 的直径,BF AF ⊥∴, ⊥∴AF 平面CBF . ⊂AF Θ平面ADF ,∴平面⊥DAF 平面CBF . (6分) 【注】也可证明⊥BF 平面ADF .(Ⅱ)几何体F ABCD -是四棱锥、F BCE -是三棱锥, 过点F 作AB FH ⊥,交AB 于H .Θ平面⊥ABCD 平面ABEF , FH ∴⊥平面ABCD .则113V AB BC FH =⨯⨯,211()32V EF HF BC =⨯⨯⨯.因此,1222241V AB V EF ⨯===. (12分) 20.【解】:20.【解】:(I )设椭圆E:221(0,0)Ax By A B +=>>,将A,B,C 代入得22143x y += (II )将直线:(1)l y k x =-代入椭圆方程得2222(34)84(3)0k x k x k +-+-=,设1122(,),(,)M x y N x y ,则22121212122284(3),25()83434k k x x x x x x x x k k-+==⇒=+-++, 直线AM 的方程为11(2)2y y x x =++,即11(1)(2)2k x y x x -=++, 直线BN 的方程为22(2)2y y x x =--,即22(1)(2)2k x y x x -=--, 联立得1212121212122(23)2(5583)43434x x x x x x x x x x x x x -++--+===+-+-或[]22222121221212212122228(3)242+4223(+434342(23)834()242434k k x x x x x x k k x x x x x k x x x x x x k ⎡⎤--⎢⎥-+++-+⎣⎦===+-++-+-+) 222222464()3444634k x k k x k+-++==+-++,所以直线AM 与直线BN 的交点在直线x=4上 21.【解】:(Ⅰ)()2221ln +-⎪⎭⎫ ⎝⎛+=x x x x f , 22142()2(2)(2)x f x x x x -'=-=+++ 所以(2,2)-上递减,在(2,)+∞上递增。
数学文科试题第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z 的虚部是【 】 A .i - B .1- C .i D .12.若R,1xx x ∈+那么是正数的充要条件是【 】 A .0>x B .1-<x C .10-<>x x 或 D .01<<-x3.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n =【 】 A.80 B.120 C.160 D.604. 已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=【 】A .43- B.54 C.34- D.455. 直线t x =(0>t )与函数1)(2+=x x f ,x x g ln )(=的图象分别交于A 、B 两点,当||AB 最小时,t 值是【 】 A. 1B.22C. 21 D.336.在同一平面直角坐标系中,函数)(x f y =的图象与x e y =的图象关于直线x y =对称.而函数)(x f y =的图象与()y g x =的图象关于y 轴对称,若1)(-=m g ,则m 的值是【 】A .eB . e1C .e -D .e 1-7.某品牌香水瓶的三视图如图 (单位:cm), 则该几何体的表面积为【 】A. 2952cm π⎛⎫- ⎪⎝⎭B. 2942cm π⎛⎫- ⎪⎝⎭C. 2942cm π⎛⎫+ ⎪⎝⎭D. 2952cm π⎛⎫+ ⎪⎝⎭8. 设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0,b>0)的最大值为12,则23a b +的最小值为【 】 A.625 B.38 C. 311 D. 4 9. 甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任2x = 20y = IF 0<x THEN 3x y =+ ELSE 3x y = x y -意找两人玩这个游戏,则他们“心有灵犀”的概率为【 】A.19B.29C.718D.4910.函数()f x 是定义域为R 的可导函数,且对任意实数x 都有(2)()f x f x +=-成立.若当1x ≠时,不等式(1)()0x f x '-⋅<成立,设(0.5)a f =,4()3b f =,(3)c f =,则a ,b ,c 的大小关系是【 】A.b a c >>B.c b a >>C.a b c >>D.b c a >>11. 已知I 为ABC △所在平面上的一点,且AB c =,AC b =,BC a = .若0aI A b I B c I C ++=,则I 一定是ABC △的【 】A. 垂心B. 内心C. 外心D.重心.12.已知双曲线的顶点与焦点分别是椭圆()222210y x a b a b+=>>的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为【 】A.13B.12C.3D.2第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则抛物线的焦点坐标是 .14. 在ABC ∆中,若222sin sin sin sin sin A B B C C =++,则A ∠= . 15. 右图所示的程序运行后输出的结果是 .16. 五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1.第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为3的倍数,则报该数的同学需拍手一次.当第30个数被报出时,五位同学拍手的总次数为 .三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17.(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为51、41、31,且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率; (Ⅱ)“密码被破译”与“密码未被破译”的概率哪个更大?说明理由.18. (本小题满分12分)已知公差不为零的等差数列}{n a 的前4项和为10,且732,,a a a 成等比数列.DAB C 图2 B A C D 图1 (Ⅰ)求通项公式n a ;(Ⅱ)设2523n a n n a b ++=,求数列{}n b 的前n 项和n S .19.(本小题满分12分) 如图1,45ACB ∠=,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使BDC θ∠=, 且(0,)θπ∈(如图2所示). (Ⅰ)求证:平面ABD ⊥平面BDC ; (Ⅱ)若90θ=︒,当BD 的长为多少时,三棱锥A BCD -的体积最大;并求出其体积的最大值.20. (本小题满分12分) 如图所示,点N 在圆O :228x y +=上,点D 是N 在x 轴上投影,M 为DN 上一点,且满足2DN DM =.(Ⅰ)当点N 在圆O 上运动时,求点M 的轨迹C 的方程. (Ⅱ)过(2,0)F 不与坐标轴垂直的直线交曲线C 于,P Q 两点,线段PQ 的垂直平分线交x 轴于点E ,试判断EFPQ是否为定值?若是定值,求此定值;若不是定值,请说明理由。
数学文科试题 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z 的虚部是【 】A .i -B .1-C .iD .12.若R,1xx x ∈+那么是正数的充要条件是【 】 A .0>x B .1-<x C .10-<>x x 或 D .01<<-x3.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n =【 】A.80B.120C.160D.604. 已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=【 】A .43- B.54 C.34- D.455. 直线t x =(0>t )与函数1)(2+=x x f ,x x g ln )(=的图象分别交于A 、B 两点,当||AB 最小时,t 值是【 】 A. 1B.22C. 21 D.336.在同一平面直角坐标系中,函数)(x f y =的图象与x e y =的图象关于直线x y =对称.而函数)(x f y =的图象与()y g x =的图象关于y 轴对称,若1)(-=m g ,则m 的值是【 】A .eB . e1C .e -D .e 1-7.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为【 】A. 2952cm π⎛⎫- ⎪⎝⎭ B. 2942cm π⎛⎫- ⎪⎝⎭C. 2942cm π⎛⎫+ ⎪⎝⎭D. 2952cm π⎛⎫+ ⎪⎝⎭2x =20y = IF 0<x THEN3x y =+ELSE 3x y =8. 设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0,b>0)的最大值为12,则23a b +的最小值为【 】A.625B.38C. 311 D. 4 9. 甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为【 】A.19B.29C.718D.4910.函数()f x 是定义域为R 的可导函数,且对任意实数x 都有(2)()f x f x +=-成立.若当1x ≠时,不等式(1)()0x f x '-⋅<成立,设(0.5)a f =,4()3b f =,(3)c f =,则a ,b ,c 的大小关系是【 】A.b a c >>B.c b a >>C.a b c >>D.b c a >>11. 已知I 为ABC △所在平面上的一点,且A B c =,AC b =,BC a = .若0a I A b I B c I C ++=,则I 一定是ABC △的【 】A. 垂心B. 内心C. 外心D.重心.12.已知双曲线的顶点与焦点分别是椭圆()222210y x a b a b+=>>的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为【 】A.13B.12C.3D.2第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则抛物线的焦点坐标是 .14. 在ABC ∆中,若222sin sin sin sin sin A B B C C =++,则A ∠= .15. 右图所示的程序运行后输出的结果是 .DAB C 图2BA C D 图116. 五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1.第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为3的倍数,则报该数的同学需拍手一次.当第30个数被报出时,五位同学拍手的总次数为 .三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17.(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为51、41、31,且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率; (Ⅱ)“密码被破译”与“密码未被破译”的概率哪个更大?说明理由. 18. (本小题满分12分)已知公差不为零的等差数列}{n a 的前4项和为10,且732,,a a a 成等比数列.(Ⅰ)求通项公式n a ;(Ⅱ)设2523n a n n a b ++=,求数列{}n b 的前n 项和n S .19.(本小题满分12分) 如图1,45ACB ∠=,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使BDC θ∠=, 且(0,)θπ∈(如图2所示).(Ⅰ)求证:平面ABD ⊥平面BDC ;(Ⅱ)若90θ=︒,当BD 的长为多少时,三棱锥A BCD -的体积最大;并求出其体积的最大值.20. (本小题满分12分) 如图所示,点N 在圆O :228x y +=上,点D 是N 在x 轴上投影,M 为DN 上一点,且满足2DN DM =.(Ⅰ)当点N 在圆O 上运动时,求点M 的轨迹C 的方程. (Ⅱ)过(2,0)F 不与坐标轴垂直的直线交曲线C 于,P Q 两点,线段PQ 的垂直平分线交x 轴于点E ,试判断EF PQ是否为定值?若是定值,求此定值;若不是定值,请说明理由。
21.(本小题满分12分) 已知函数2()8ln f x x x =-,2()14g x x x =-+.(Ⅰ)求函数()f x 在点(1,(1))f 处的切线方程;(Ⅱ)若函数()f x 与()g x 在区间)1,(+a a 上均为增函数,求a 的取值范围; (Ⅲ)设1x ≥, 讨论曲线()y f x =与曲线()y g x m =+公共点的个数.请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲 如图,O ⊙是△ABC 的外接圆,D 是AC ⌒ 的中点, BD 交AC 于E .(Ⅰ)若2,BE 4,DE ==试求DC 的值;(Ⅱ)在(Ⅰ)的条件下,O 到AC 的距离为1, 求⊙O 的半径r .23.(本小题满分10分)选修4—4:坐标系与参数方程平面直角坐标系中,直线l 的方程是x y 3=,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,又曲线C 的极坐标方程为-+θρθρ2222sin cos 03sin 2=-θρ.(Ⅰ)求直线l 的极坐标方程;(Ⅱ)若直线l 与曲线C 相交于A 、B 两点,求||AB .24.(本小题满分l0分)选修4—5:不等式选讲已知函数|1||2|)(+--=x x x f . (Ⅰ)求()f x 的最值;(Ⅱ)解不等式x x x f 2)(2-≥.数学文科试题参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项二、填空题:本大题共4小题,每小题5分.第22题图DAB C图2BACD图113.(1,0) 14. 120 15. 40 16. 7三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17.(本小题满分12分)【解析】记“第i 个人破译出密码”为事件(1,2,3)i A i =,依题意有123111(),(),()543P A P A P A ===,且A 1,A 2,A 3相互独立. ………2分(1) 设“恰好二人破译出密码”为事件B,则有: B =A 1·A 2·3A ·A 1·2A ·A 3+1A ·A 2·A 3且A 1·A 2·3A ,A 1·2A ·A 3,1A ·A 2·A 3 彼此互斥,于是P (B )=P (A 1·A 2·3A )+P (A 1·2A ·A 3)+P (1A ·A 2·A 3) =314154314351324151⨯⨯+⨯⨯+⨯⨯=203. …………6分(2)设“密码被破译”为事件C ,“密码未被破译”为事件D ,则有: D =1A ·2A ·3A ,且1A ,2A ,3A 互相独立,则有 P (D )=P (1A )·P (2A )·P (3A )=324354⨯⨯=52.而P (C )=1-P (D )=53,故P (C )>P (D ).所以密码被破译的概率比密码未被破译的概率大. …………12分18. (本小题满分12分)【解析】(1)由题意知⎩⎨⎧++=+=+).6)(()2(,106411211d a d a d a d a 解得⎩⎨⎧=-=321d a 所以a n =3n -5. …………………………………………6分(Ⅱ)∵233152283n a n n n n a b n n +--+==⋅=⋅ 则21128388n n S n -=+⨯+⨯++⨯ ,所以 238828388n n S n =+⨯+⨯++⨯ 作差得2118718888818nn nnn S n n ---=++++-⨯=-⨯- 788149n n n n S ⨯-+∴=。
…………………………………………12分19.(本小题满分12分)【解析】(Ⅰ)在如图1所示的△ABC 中,由折起前AD BC ⊥知,折起后(如图2),A D D C ⊥,AD BD ⊥,且B D DC =,所以AD ⊥平面BCD .又AD 在平面ABD 中。
所以平面ABD ⊥平面BDC 。
…………………………………………6分(Ⅱ)在△ABC 中,设(03)BD x x =<<,则3CD x =-.由AD BC ⊥,45ACB ∠=知,△ADC 为等腰直角三角形,所以3AD CD x ==-.又90BDC ∠=,所以11(3)22BCD S BD CD x x ∆=⋅=-.于是321111(3)(3)(69)3326A BCD BCD V AD S x x x x x x -∆=⋅=-⋅-=-+.令321()(69)6f x x x x =-+,由1()(1)(3)02f x x x '=--=,且03x <<,解得1x =.当(0,1)x ∈时,()0f x '>;当(1,3)x ∈时,()0f x '<.当1x =时,()f x 取得最大值.故当1BD =时, 三棱锥A BCD -的体积最大. ……………………12分20. (本小题满分12分)【解析】(Ⅰ)设),(y x M 、00(,)N x y ,由于2DN DM =和ND ⊥x 轴, 所以0x x y =⎧⎪⎨=⎪⎩ 代入圆方程得:22184x y += 所以,曲线C 的轨迹方程为 22184x y += ……………………………6分 (Ⅱ)EF PQ由题设直线2x my =+ ()0m ≠ 交曲线C :22184x y +=于()()1122,,,P x y Q x y ,所以:222280x my x y =+⎧⎨+-=⎩ 得()222440m y my ++-=,则1221224242m y y m y y m -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩ ,PQ ==)2212m m +=+ 又弦PQ 的中点为2242,22m m m -⎛⎫ ⎪++⎝⎭,所以直线2x my =+ ()0m ≠的垂直平分线为222422m y m x m m -⎛⎫-=-- ⎪++⎝⎭令0,y = 得222x m =+ 所以()222212222m FE m m +=-=++故4EF PQ = …………………………………………12分21.(本小题满分12分)【解析】(1)因为8()2f x x x'=-,所以切线的斜率(1)6k f '==-………2分又(1)1f =,故所求切线方程为16(1)y x -=--,即67y x =-+ …………4分(2)因为2(2)(2)()x x f x x+-'=,又x>0,所以当x>2时,()0f x '>;当0<x<2时,()0f x '<.即()f x 在(2,)+∞上递增,在(0,2)上递减…………………6分又2()(7)49g x x =--+,所以()g x 在(,7)-∞上递增,在(7,)+∞上递减…7分欲()f x 与()g x 在区间(),1a a +上均为增函数,则217a a ≥⎧⎨+≤⎩,解得26a ≤≤………………………………………………………………8分 (3) 当 1x ≥ 时,曲线()y f x =与曲线()y g x m =+公共点的个数方程228ln 14x x x m --=根的个数,令2()28ln 14h x x x x =--,方程即为()h x m =.又82(4)(21)()414x x h x x x x-+'=--=,且x>0,所以当x>4时,()0h x '>;当0<x<4时,()0h x '<,即()h x 在(4,)+∞上递增,在(0,4)上递减.故h(x)在x=4处取得最小值,且(1)12h =- ……………………10分 所以对曲线()y f x =与曲线()y g x m =+公共点的个数,讨论如下:当(,16ln 224)m ∈-∞--时,有0个公共点;当16ln 224m =--或(12,)m ∈-+∞时,有1个公共点;当(16ln 224,12]m ∈---时,有2个公共点。