希望杯第四届(1993年)届全国希望杯数学邀请赛初二第2试试卷
- 格式:doc
- 大小:371.50 KB
- 文档页数:36
历届希望杯初二试题及答案一、选择题(每题5分,共20分)1. 下列哪个数不是质数?- A. 2- B. 3- C. 4- D. 5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?- A. 5- B. 6- C. 7- D. 8答案:A3. 一个数的平方根是4,这个数是多少?- A. 16- B. 8- C. 4- D. 2答案:A4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?- A. 25π- B. 50π- C. 100π- D. 200π答案:B二、填空题(每题3分,共15分)1. 一个数的立方根是2,这个数是______。
答案:82. 如果一个数的绝对值是5,那么这个数可能是______或______。
答案:5,-53. 一个数的倒数是1/4,这个数是______。
答案:44. 一个圆的直径是10厘米,那么它的半径是______厘米。
答案:55. 一个直角三角形的两个锐角的度数之和是______度。
答案:90三、解答题(每题10分,共30分)1. 一个长方形的长是宽的两倍,如果长是10厘米,求这个长方形的面积。
答案:首先,我们知道长方形的宽是长的一半,即5厘米。
长方形的面积是长乘以宽,所以面积是10厘米乘以5厘米,等于50平方厘米。
2. 一个数列的前三项是2,4,8。
如果这个数列是一个等比数列,求第四项。
答案:等比数列的每一项都是前一项的固定倍数。
这里,每一项都是前一项的2倍。
所以,第四项是8乘以2,等于16。
3. 一个水池的容积是100立方米,如果每小时流入水池的水是5立方米,求需要多少小时才能填满水池。
答案:要填满100立方米的水池,每小时流入5立方米,需要的时间是100除以5,等于20小时。
结束语希望杯数学竞赛不仅考查学生的数学知识,更注重考查学生的逻辑思维和解决问题的能力。
通过这样的竞赛,学生能够更好地理解数学知识,提高自己的数学素养。
历届希望杯初二选择题希望杯第二十届(2009年) 初二第二试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内.1.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中镂空的)( )2.如果1-<<y x ,那么代数式xyx y -++11的值是( ) (A ) 0 (B ) 正数 (C )负数 (D )非负数3.将x 的整数部分记为[x ],x 的小数部分记为{x },易知=x [x ]+{x }({}10<<x ).若5353+--=x ,那么[x ]等于( )(A ) 2- (B )1- (C ) 0 (D )1 4.某种产品由甲、乙、丙三种元件构成.根据图2,为使生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( )(A )120°,180°,60°(B )108°,144°,108° (C )90°,180°,90° (D ) 72°,216°,72°5.面积是48的矩形的边长和对角线的长都是整数,则它的周长等于 ( ) (A )20 (B ) 28 (C ) 36 (D )406.In the rectangular coordinates,abscissa and ordinate of the intersection point ofthe lines k x y -= and 2+=kx y are integers for imteger k ,then the number of the possible values of k is ( )(A )4 (B )5 (C )6 (D )7(英汉小词典:abscissa 横坐标;ordinate 纵坐标;intersection point 交点;integer 整数)7.将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可以拼成( )(A )梯形 (B )矩形 (C )菱形 (D )平行四边形 8.若不等式组⎩⎨⎧>++<+-mx x m x 1104的解集是4>x ,则( )(A )29≤m (B )5≤m (C )29=m (D )5=m 9.如图4,四边形ABCD 中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD 的长等于( )(A ) 134 (B )38 (C )12 (D )31010.任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解q p n ⨯=(q p ≤)可称为正整数n 的最佳分解,并规定qpn F =)(.如:12=1×12=2×6=3×4,则43)12(=F . 则在以下结论 ①21)2(=F ②83)24(=F ③若n 是一个完全平方数,则1)(=n F④若n 是一个完全立方数,即3a n =(a 是正整数),则an F 1)(=. 中,正确的结论有( )(A ) 4个 (B )3个 (C )2个 (D )1个第二十一届“希望杯”全国数学邀请赛一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.1.计算91252⨯,得数是( )(A)9位数. (B) 10位数. (C) 11位数. (D) 12位数.图1fed c ba2.若132=-yx ,则代数式189189---+y x y x 的值( )(A )等于57. (B)等于75. (C)等于75或不存在. (D)等于57或不存在. 3. The integer solutions of the inequalities about x ⎪⎩⎪⎨⎧-<+--≥+-23)21(22)(3xb b x a x a xare1,2,3, then the number of integer pairs (a,b) is( )(A)32. (B)35. (C)40. (D)48. (英汉词典:integer 整数)4.已知三角形三个内角的度数之比为z y x ::,且x+y<z ,则这个三角形是( ) (A)锐角三角形. (B)直角三角形. (C)钝角三角形. (D)等腰三角形. 5.如图1,一个凸六边形的六个内角都是120°,六条边的长分别为 a ,b ,c ,d ,e ,f ,则下列等式中成立的是( ) (A)a+b+c=d+e+f . (B)a+c+e=b+d+f . (C)a+b=d+e . (D)a+c=b+d .6.在三边互不相等的三角形中,最长边的长为a ,最长的中线的长为m ,最长的 高线的长为h ,则( )(A)a>m>h . (B)a>h>m . (C)m>a>h . (D)h>m>a .7.某次足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得O 分,某球队参赛15场,积33分,若不考虑比赛顺序,则该队胜、平、负的情况可能有( ) (A) 15种. (B)11种. (C)5种. (D)3种. 8.若yx y x xy 11,0,0+=/+=/与x+y 成反比,则2)(y x +与22y x + ( ) (A)成正比. (B)成反比. (C)既不成正比,也不成反比. (D)关系不确定.9.如图2,已知函数)0(),0(2<=>=x xky x x y ,点A 在正y 轴上,过点A 作x BC //轴,交两个函数的图象于点B 和C ,若3:1:=AC AB ,则k 的值是( )(A)6. (B)3. (C)一3. (D)一6.10. 10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图3所示,则报出来的数是3的人心里想的数是( )(A)2. (B)一2. (C)4. (D)一4.第二十二届”希望杯”全国数学邀请赛 初二 第2试2011年4月10日 上午9:00至11:00一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内. 1. Given A :B =32:3,A =2,C =1029. The size relationship between B and C is (A) B >C (B) B =C (C) B <C (D) uncertain2. 已知a 2-a =7,则代数式21+-a a .12422+--a a a ÷112-a 的值是(A) 3 (B)27(C) 4 (D) 5 3. 一个凸四边形的四个内角可以(A) 都是锐角 (B) 都是直角 (C) 都是钝角 (D) 有三个是直角,另一个是锐角或钝角 .4. 如果直线y =2x +m 与直角坐标系的两坐标轴围成的三角形的面积等于4,则m 的值是 (A) ±3 (B) 3 (C) ±4 (D) 45. 若n +1=20102+20112,则12+n = (A) 2011 (B) 2010 (C) 4022 (D) 40216. 有四个命题:若两个等腰三角形的腰相等,腰上的高也相等,则这两个等腰三角形全等 有一条边相等的两个等腰直角三角形全等● 有一条边和一个锐角对应相等的两个直角三角形全等 ❍ 两边以及另一边上的高对应相等的两个三角形全等 其中,正确的命题有(A) 0个 (B) 1个 (C) 2个 (D) 3个7. 如图1,Rt △ABC 两直角边上的中线分别为AE 和BD , 则AE 2+BD 2与AB 2的比值为A BCD E 图1ABCDEFP(A)43 (B) 1 (C) 45 (D) 23 8. As shown in figure 2, ABCD is a rectangle and AD =12, AB =5, P is any point on AD and PE ⊥BD at point E , PF ⊥AC at point F . Then PE +PF has a total length of (A)1348 (B) 1360 (C) 5 (D) 1370 9. 如图3,正方形ABCD 的边AB 在x 轴的正半轴上,C (2,1),D (1,1). 反比例函数y =xk的图像与边BC 交于点E ,与边CD 交于点F .已知 BE :CE =3:1,则DF :FC 等于(A) 4:1 (B) 3:1 (C) 2:1 (D) 1:110. 如图4,a ,b ,c ,d ,e 分别代表1,2,3,4,5中的一个数. 若b +a +c 及d +a +e 除以3都余1,则不同的填数方法有 (A) 2种 (B) 4种 (C) 8种 (D) 16种 .第二十三届“希望杯”全国数学邀请赛初二 第2试2012年4月8日 上午9:00至11:00 得分一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在后面的圆括号内。
1993年第4届“希望杯”全国数学邀请赛试卷(初二第1试)一、选择题(共15小题,每小题1分,满分15分)1.(1分)如果a<b<0,那么下列不等式成立的是()A.B.ab<1 C.D.2.(1分)已知四个命题:①1是1的平方根.②负数没有立方根.③无限小数不一定是无理数.④一定没有意义.其中正确的命题的个数是()A.1 B.2 C.3 D.43.(1分)已知8个数:,,0.236,,3.1416,﹣π,,,其中无理数的个数是()A.3 B.4 C.5 D.64.(1分)若A=,A的算术平方根是()A.a2+3 B.(a2+3)2C.(a2+9)2D.a2+95.(1分)下列各组数可以成为三角形的三边长度的是()A.1,2,3 B.a+1,a+2,a+3,其中a>0C.a,b,c,其中a+b>c D.1,m,n,其中1<m<n6.(1分)方程x2+|x|﹣6=0的最大根与最小根的差是()A.6 B.5 C.4 D.37.(1分)等腰三角形的某个内角的外角是130°,那么这个三角形的三个内角的大小是()A.50°,50°,80°B.50°,50°,80°或130°,25°,25°C.50°,65°,65°D.50°,50°,80°或50°,65°,65°8.(1分)如果x+y=,x﹣y=,那么xy的值是()A.B.C.D.9.(1分)如图所示,△ABC中,AB=AC,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.55°B.60°C.65°D.70°10.(1分)已知﹣<x<1,将化简得()A.3﹣3x B.3+3x C.5+x D.5﹣x11.(1分)如图,在△ABC中,AB=AC,G是三角形的重心,那么图中全等的三角形的对数是()A.5 B.6 C.7 D.812.(1分)关于x的一元二次方程2x+(k﹣4)x2+6=0没有实数根,则k的最小整数是()A.﹣1 B.2 C.3 D.513.(1分)对于三边的长是三个连续自然数的任意三角形,在下列四个命题中①周长能被2整除.②周长是奇数.③周长能被3整除.④周长大于10.正确的命题的个数是()A.1 B.2 C.3 D.414.(1分)若方程9x2﹣6(a+1)x+a2﹣3=0的两根之积等于1,则a的值是()A.B.C.D.15.(1分)有下列四个命题:①两边和其中一边上的高对应相等的两个三角形一定是全等三角形.②两边和第三边上的高对应相等的两个锐角三角形一定是全等三角形.③两边和第三边上的高对应相等的两个三角形是全等三角形.④两边和其中一边所对的角对应相等的两个三角形不一定是全等三角形.其中正确的是()A.①,②B.②,③C.③,④D.②,④二、填空题(共15小题,每小题1分,满分15分)16.(1分)某自然数的平方是一个四位数,千位数字是4,个位数字是5,这个数是.17.(1分)实数x满足x+=10,则的值为.18.(1分)设10个数:195.5,196.5,197.5,198.5,199.5,200,200.5,201,201.5,202.5的平均数为A,则10A=.19.(1分)如果实数x、y满足2x2﹣6xy+9y2﹣4x+4=0,那么=.20.(1分)设△ABC的三边a,b,c的长度均为自然数,且a≤b≤c,a+b+c=13,则以a,b,c为三边的三角形共有个.21.(1分)+++┉┉+=.22.(1分)当0<x<2时,=.23.(1分)已知方程x2+(2m+1)x+(m2+m+1)=0没有实数根,那么m为.24.(1分)已知a,b,c,d满足a<﹣1<b<0<c<1<d,且|a+1|=|b+1|,|1﹣c|=|1﹣d|,那么a+b+c+d=.25.(1分)如图,在△ABC中,AE是∠BAC的外角的平分线,D是AE上任意一点,则AB+AC DB+DC.(用“>”、“<”、“=”号连接)26.(1分)如果x﹣y=+1,y﹣z=﹣1,那么x2+y2+z2﹣xy﹣yz﹣zx=.27.(1分)若u、v满足v=,则u2﹣uv+v2=.28.(1分)如图,B、C、D在同一条直线上,且AB=BC=AC,CD=DE=EC,若BM:ME=r,则DN:NA=.29.(1分)设方程x2﹣y2=1993的整数解为α,β,则|αβ|=.30.(1分)若,x+=3,则=.1993年第4届“希望杯”全国数学邀请赛试卷(初二第1试)参考答案与试题解析一、选择题(共15小题,每小题1分,满分15分)1.(1分)如果a<b<0,那么下列不等式成立的是()A.B.ab<1 C.D.【解答】解:A、如果a<b<0,则;故不成立;B、ab>1,故不成立;C、,故不成立;D、不等式成立的是.故选:D.2.(1分)已知四个命题:①1是1的平方根.②负数没有立方根.③无限小数不一定是无理数.④一定没有意义.其中正确的命题的个数是()A.1 B.2 C.3 D.4【解答】解:1的平方根是1或﹣1,故①正确.﹣1的立方根是﹣1,所以负数有立方根,故②错误.无限循环小数是有理数,所以③正确.当a≤0④中的根式有意义.所以①③两项正确.故选:B.3.(1分)已知8个数:,,0.236,,3.1416,﹣π,,,其中无理数的个数是()A.3 B.4 C.5 D.6【解答】解:=、=﹣1、﹣π,这三个数是无理数,、0.236、3.1416、=﹣、=8这五个数都是有理数,故选:A.4.(1分)若A=,A的算术平方根是()A.a2+3 B.(a2+3)2C.(a2+9)2D.a2+9【解答】解:∵a2≥0,∴a2+9>0,∴A==(a2+9)2,∵==a2+9,∴A的算术平方根是a2+9.故选:D.5.(1分)下列各组数可以成为三角形的三边长度的是()A.1,2,3 B.a+1,a+2,a+3,其中a>0C.a,b,c,其中a+b>c D.1,m,n,其中1<m<n【解答】解:A、∵1+2=3,∴1,2,3不能构成三角形,故此选项错误;B、∵(a+1)+(a+2)=2a+3>a+3,a+3﹣a﹣2=1<a+1(a>0),∴a+1,a+2,a+3可以成为三角形的三边,故此选项正确;C、例如:5+1>2,而1+2<5,∴以a,b,c,其中a+b>c为边的不一定能够成直角三角形;D、例如:m=2,n=3,∵1+2=3,∴以1,m,n(1<m<n)为边不一定能构成三角形.故选:B.6.(1分)方程x2+|x|﹣6=0的最大根与最小根的差是()A.6 B.5 C.4 D.3【解答】解:原方程化为(|x|+3)(|x|﹣2)=0,解得|x|=﹣3,或|x|=2.但应舍去|x|=﹣3.=±2.故由|x|=2得:x1,2则x1﹣x2=4.故选:C.7.(1分)等腰三角形的某个内角的外角是130°,那么这个三角形的三个内角的大小是()A.50°,50°,80°B.50°,50°,80°或130°,25°,25°C.50°,65°,65°D.50°,50°,80°或50°,65°,65°【解答】解:∵等腰三角形的某个内角的外角是130°∴等腰三角形的这个内角是50°①若50°的角是底角,则三个内角是50°,50°,80°;②若50°的角是顶角,则三个内角是50°,65°,65°.故选:D.8.(1分)如果x+y=,x﹣y=,那么xy的值是()A.B.C.D.【解答】解:∵(x+y)2=,(x﹣y)2=∴4xy=(x+y)2﹣(x﹣y)2=﹣()=12()∴xy=.故选:B.9.(1分)如图所示,△ABC中,AB=AC,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵DE⊥AC,∠BDE=140°,∴∠A=50°,又∵AB=AC,∴∠C==65°,∵EF⊥BC,∴∠DEF=∠C=65°.所以A错,B错,C对,D错.故选C.10.(1分)已知﹣<x<1,将化简得()A.3﹣3x B.3+3x C.5+x D.5﹣x【解答】解:∵﹣<x<1,∴2x+1>0,x﹣1<0,∴x﹣4<0,∴原式=|2x+1﹣(4﹣x)|=|3x﹣3|=3﹣3x.故选:A.11.(1分)如图,在△ABC中,AB=AC,G是三角形的重心,那么图中全等的三角形的对数是()A.5 B.6 C.7 D.8【解答】解:①∵AB=AC,G是三角形的重心,∴AD=AE,∠BAF=∠CAF,∵AG=AG,∴△AGD≌△AGE;②∴DG=EG,∵BD=EC,∠DGB=∠EGC,∴△DGB≌△EGC;③∴BG=CG,∵BF=CF,GF=GF,∴△BGF≌△CGF;④∵AB=AC,AG=AG,BG=CG,∴△AGB≌△AGC;⑤∵AB=AC,AF=AF,BF=CF,∴△AFB≌△AFC;⑥∵BE=CD,AD=AE,AB=AC,∴△AEB≌△ADC;⑦∵BD=CE,BE=CD,BC=BC,∴△DBC≌△ECB.故选:C.12.(1分)关于x的一元二次方程2x+(k﹣4)x2+6=0没有实数根,则k的最小整数是()A.﹣1 B.2 C.3 D.5【解答】解:∵一元二次方程2x+(k﹣4)x2+6=0没有实数根,∴△=b2﹣4ac=4﹣4×6(k﹣4)<0,解得k>.k最小整数=5.故选D.13.(1分)对于三边的长是三个连续自然数的任意三角形,在下列四个命题中①周长能被2整除.②周长是奇数.③周长能被3整除.④周长大于10.正确的命题的个数是()A.1 B.2 C.3 D.4【解答】解:设三个连续自然数为k、k+1、k+2(k>1),则k+(k+1)+(k+2)=3(k+1),故以k,k+1,k+2为三边的三角形的周长总可以被3整除.又∵以2,3,4为三边的三角形,其周长为9,显然不能被2、4整除,∴①,④错误.∵以3,4,5为三边的三角形,其周长为12,∴②错误.正确的结论是③.故选:A.14.(1分)若方程9x2﹣6(a+1)x+a2﹣3=0的两根之积等于1,则a的值是()A.B.C.D.【解答】解:∵△=36(a+1)2﹣4×9×(a2﹣3)=36(2a+4)≥0∴a≥﹣2.∵x1•x2==1∴a2=12∴a1=2,a2=﹣2(舍去)故选:B.15.(1分)有下列四个命题:①两边和其中一边上的高对应相等的两个三角形一定是全等三角形.②两边和第三边上的高对应相等的两个锐角三角形一定是全等三角形.③两边和第三边上的高对应相等的两个三角形是全等三角形.④两边和其中一边所对的角对应相等的两个三角形不一定是全等三角形.其中正确的是()A.①,②B.②,③C.③,④D.②,④【解答】解:①此题忽略了锐角和钝角三角形高的位置不相同的情况,故错误;②正确,两边和第三边上的高对应相等的两个锐角三角形是全等三角形,故正确.③不正确,举一反例说明,如图:在钝角△ABC与锐角△ABC1中,AB=AB,AC=AC1,AD⊥BC1,AD=AD.但△ABC 与△ABC1显然是不全等的;④正确,可举一例说明,如图:在钝角△ABC与锐角△ABC1中,AB=AB,AC=AC1,∠ABC=∠ABC1,但△ABC与△ABC1显然是不全等的.所以正确的是②④.故选:D.二、填空题(共15小题,每小题1分,满分15分)16.(1分)某自然数的平方是一个四位数,千位数字是4,个位数字是5,这个数是65.【解答】解:∵自然数的平方是一个四位数,千位数字是4,又∵1002=10000,92=81,∴这个自然数只能是两位数,∵个位数字是5,∴这个自然数的个位数字也为5,∵602=3600,802=6400,∴它的十位数字可能是6或7,∵752=5625,652=4225,∴它的十位数字是6,∴这个数为65.故答案为:65.17.(1分)实数x满足x+=10,则的值为6.【解答】解:∵x+=10,∴5x+16=(10﹣x)2,经整理得x2﹣25x+84=0,解得x=4或21,经检验x=4是方程的根,故=6.故答案为6.18.(1分)设10个数:195.5,196.5,197.5,198.5,199.5,200,200.5,201,201.5,202.5的平均数为A,则10A=1993.【解答】解:∵195.5,196.5,197.5,198.5,199.5,200,200.5,201,201.5,202.5与200分别相差﹣4.5,﹣3.5,﹣2.5,﹣1.5,﹣0.5,0,+0.5,+1,+1.5,+2.5,∵[(﹣4.5)+(﹣3.5)+(﹣2.5)+(﹣1.5)+(﹣0.5)+0+0.5+1+1.5+2.5]÷10=﹣0.7,∴A=200﹣0.7=199.3,则10A=1993.故答案为:1993.19.(1分)如果实数x、y满足2x2﹣6xy+9y2﹣4x+4=0,那么=.【解答】解:可把条件变成(x2﹣6xy+9y2)+(x2﹣4x+4)=0,即(x﹣3y)2+(x﹣2)2=0,因为x,y均是实数,∴x﹣3y=0,x﹣2=0,∴x=2,y=,∴==.故答案为.20.(1分)设△ABC的三边a,b,c的长度均为自然数,且a≤b≤c,a+b+c=13,则以a,b,c为三边的三角形共有5个.【解答】解:∵a+b+c=13∴a+b=13﹣c∵a+b>c∴13﹣c>c∴c<∵a+b+c=13∴c可取的值为5,6∴三边可能的取值为:∴以a,b,c为三边的三角形共有5种.21.(1分)+++┉┉+=9.【解答】解:原式=﹣1++┉┉+﹣=﹣1+=9.22.(1分)当0<x<2时,=.【解答】解:原式=+=+=+∵0<x<2,∴x+2>0,x﹣2<0,上式去掉绝对值符号得:+===.故答案是:.23.(1分)已知方程x2+(2m+1)x+(m2+m+1)=0没有实数根,那么m为任何实数.【解答】解:∵方程x2+(2m+1)x+(m2+m+1)=0没有实数根,∴△<0,而△=(2m+1)2﹣4(m2+m+1)=﹣3,即无论m取何实数,△总是小于0.所以m的取值范围为:任何实数.故答案为任何实数.24.(1分)已知a,b,c,d满足a<﹣1<b<0<c<1<d,且|a+1|=|b+1|,|1﹣c|=|1﹣d|,那么a+b+c+d=0.【解答】解:∵a<﹣1<b<0<c<1<d,∴a+1<0,b+1>0,1﹣c>0,1﹣d<0,∵|a+1|=|b+1|,|1﹣c|=|1﹣d|,∴﹣a﹣1=b+1,1﹣c=d﹣1,整理得:a+b=﹣2,c+d=2,则a+b+c+d=0.故答案为:025.(1分)如图,在△ABC中,AE是∠BAC的外角的平分线,D是AE上任意一点,则AB+AC<DB+DC.(用“>”、“<”、“=”号连接)【解答】解:在BA的延长线AF上,截取AG,使AG=AC,连接GD,∵∠GAD=∠CAD,AD是公共边,∴△ADG≌△ADC(SAS),∴AG=AC,DG=DC,∴DB+DC=DB+DG,又∵DB+DG>BG,BG=BA+AG=BA+AC,∴AB+AC<DB+DC.故答案为:<.26.(1分)如果x﹣y=+1,y﹣z=﹣1,那么x2+y2+z2﹣xy﹣yz﹣zx=7.【解答】解:∵x﹣y=+1①,y﹣z=﹣1②,∴x﹣z=2③,则①2+②2+③2=(x﹣y)2+(y﹣z)2+(x﹣z)2=(+1)2+(﹣1)2+(2)2=14,即2(x2+y2+z2﹣xy﹣yz﹣yx)=14,∴x2+y2+z2﹣xy﹣yz﹣yx=7.故答案为:7.27.(1分)若u、v满足v=,则u2﹣uv+v2=.【解答】解:由题意得:≥0,﹣≥0,从而=0,2u﹣v=0,u=v,又v=,∴u=,∴u2﹣uv+v2=.故答案为.28.(1分)如图,B、C、D在同一条直线上,且AB=BC=AC,CD=DE=EC,若BM:ME=r,则DN:NA=1:r.【解答】解:AB=BC=AC,CD=DE=EC,△ABC、△CDE是等边三角形,AB∥CE,AC∥DE,△ABM∽△CEM,AB:CE=BM:ME=r,同理AC∥DE,△ACN∽△DEN,AN:DN=AC:DE,∵AB=AC,DE=EC,∴AN:DN=AB:CE=r,∴DN:NA=1:r.29.(1分)设方程x2﹣y2=1993的整数解为α,β,则|αβ|=993012.【解答】由方程可知(x+y)(x﹣y)=1993×1,可得或或或,解得或或或.∴|αβ|=997×996=993012.30.(1分)若,x+=3,则=.【解答】解:∵x+=3,∴(x+)2=9,即x2+=7,∴(x2+)2=49,∴x4+=47,(x+)3=27,∴x3++3(x2•+•x)=27,即x3+=18,∴==.故答案为:.。
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。
解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。
代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。
答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。
求△ABC的面积。
解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。
底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。
答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。
解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。
将所有项移到一边得:3x² - 12x + 11 = 0。
对方程进行因式分解得:(x - 1)(3x - 11) = 0。
由此可得x = 1 或 x = 11/3。
答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。
已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。
解:由题意可推出ABCD为平行四边形,而AE = CD。
根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。
答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。
解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。
第24届“希望杯”全国数学邀请赛初二 第二试2013年4月15日 上午8:30至10:30一、 选择题(本大题共10小题,每小题4分,菜40分。
)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( ) (A )正方形 (B )矩形 C )菱形 (D )梯形2、设a 、b 、C 是不为零的实数,那么||||||a b c x a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( ) (A )等边三角形 (B )钝角三角形 (C )直角三角形 (D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( )(A )是2019年, (B )是2031年, (C )是2043年, (D )没有对应的年号5、实数 a 、b 、m 、n 满足a<b, -1<n<m, 若1a mb M m +=+,1a nbN n+=+,则M 与N 的大小关系是( )(A )M>N (B)M=N (C)M<N (D)无法确定的。
6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <328 、The number of intersection point of the graphs of function||k y x=and function (0)y kx k =≠ is( ) (A)0 (B)1 (C)2 (D)0 or 2.9、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( ) (A )16小时 (B )7158小时 (C )151516小时 (D )17小时 )10、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+|+2()a b c -+的结果是___ 12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么2007纳米的长度用科学记数法表示为__米。
希望杯初二试题及答案一、选择题(每题3分,共30分)1. 已知a、b、c是三角形的三边,下列哪个条件不能保证a、b、c构成三角形?A. a + b > cB. a + c > bC. b + c > aD. a = b = c答案:D2. 下列哪个数是无理数?A. 2B. πC. 0.33333...D. √4答案:B3. 如果x和y互为相反数,那么x + y的值是多少?A. 0B. 1C. -1D. 2答案:A4. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:C5. 下列哪个选项是正确的不等式?A. 5 > 3B. 2 < 2C. 0 ≤ 0D. -3 ≥ 0答案:C6. 一个正数的倒数是它本身,这个正数是多少?A. 1B. 2C. 0.5D. 0答案:A7. 一个等腰三角形的底角是45度,那么顶角是多少度?A. 45度C. 135度D. 180度答案:B8. 下列哪个选项是正确的因式分解?A. x^2 - 4 = (x + 2)(x - 2)B. x^2 + 4x + 4 = (x + 2)^2C. x^2 - 9 = (x - 3)^2D. x^2 + 2x + 1 = (x + 1)^2答案:D9. 一个圆的半径是5厘米,那么它的周长是多少厘米?A. 10πB. 20πC. 30π答案:B10. 下列哪个选项是正确的比例关系?A. 3:4 = 6:8B. 2:3 = 4:6C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题3分,共30分)11. 如果一个数的立方是-8,那么这个数是______。
答案:-212. 一个数的绝对值是5,那么这个数可以是______或______。
答案:5 或 -513. 一个等差数列的首项是3,公差是2,那么第5项是______。
答案:1114. 一个等比数列的首项是2,公比是3,那么第3项是______。
第十七届“希望杯’’全国数学邀请赛初二第2试2006年4月16日上午8:30至lO:30 得分___________一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号)2.要使代数式有意义,那么实数x的取值范围是( )3.以线段a=13,b=13,c=10,d=6为边作梯形,其中a,c为梯形的两底,这样的梯形( )(A)能作一个.(B)能作两个.(C)能作无数个.(D)一个也不能作.(英汉词典:Fig.figure的缩写,图;quadrilateral四边形;diagonal对角线;value 数值;variable变量;to depend on取决于;position位置)(A)是完全平方数,还是奇数.(B)是完全平方数,还是偶数.(C)不是完全平方数,但是奇数.(D)不是完全平方数,但是偶数.6.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合的部分后展开,此时纸片的形状是( )(A)正方形.(B)长方形.(C)菱形.(D)等腰梯形.7.若a,b,c都是大于l的自然数,且a=252b,则n的最小值是( )(A)42.(B)24.(C)21 (D)15(英汉词典:two-placed number两位数;number数,个数;to satisfy满足;complete square完全平方(数);total总的,总数) c9.下表是某电台本星期的流行歌曲排行榜,其中歌曲J是新上榜的歌曲,箭头“↑”或“↓”分别表示该歌曲相对于上星期名次的变化情况,“↑”表示上升,“↓”表示下降,不标注的则表明名次没有变化,已知每首歌的名次变化都不超过两位,则上星期排在第1,5,7名的歌曲分别是( )(A)D,E,H.(B)C,F,I.(C)C,E,I.(D)C,F,H.10.设n(n≥2)个正整数a1,a2,…,an,任意改变它们的顺序后,记作b1,b2,…,bn,若P=(a1-b1)(a2-一bn),则( )(A)P一定是奇数.(B)P一定是偶数.(C)当n是奇数时,P是偶数.(D)当”是偶数时,P是奇数.二、填空题(每小题4分,共40分.)11.消防云梯的长度是34米,在一次执行任务时,它只能停在离大楼16米远的地方,则云梯能达到大楼的高度是______米.15.从凸n边形的一个顶点引出的所有对角线把这个凸n边形分成了m个小三角形,若m等于这个凸n边形对角线条数的4,那么此n边形的要求:写出推算过程.21.(本小题满分10分)如图3,正方形ABCD的边长为a,点E、F、G、H分别在正方形的四条边上,已知EF∥GH.EF=GH.,BP的延长线PD2(1)若AE=AH=1a,求四边形EFGH的周长和面积;3(2)求四边形EFGH的周长的最小值.22.(本小题满分15分)已知A港在B港的上游,小船于凌晨3:00从A港出发开往B港,到达后立即返回,来回穿梭于A、B港之间,若小船在静水中的速度为16千米/小时,水流速度为4千米/小时,在当晚23:OO时,有人看见小船在距离A港80千米处行驶.求A、B两个港口之间的距离.23.(本小题满分15分)在2,3两个数之间,第一次写上,第二次在2,5之间和5,3之间分别写上1和如下所示:222第k次操作是在上一次操作的基础上,在每两个相邻的数之间写上这两个数的和的(1)请写出第3次操作后所得到的9个数,并求出它们的和;(2)经过k次操作后所有数的和记为Sk,第k+1次操作后所有数的和记为,写出与Sk之间的关系式;(3)求S6的值.第十七届“希望杯”全国数学邀请赛参考答案及评分标准(初中二年级第2试)一.选择题(每小题4分)二.填空题(每小题4分)三、解答题21.(1)如图1,连结HF.由题知四边形EFGH是平行四边形,所以又所以(3分)所以△AHE和△DHG都是等腰直角三角形,故∠EHG=90,四边形EFGH是矩形.易求得所以四边形EFGH的周长为22a,面积为042a.(5分) 9(2)如图2,作点H关于AB边的对称点,连结,交AB于,连结.显然,点E选在处时.EH+EF的值最小,最小值等于分) 仿(1)可知当AE≠AH时,亦有(8分)所以因此,四边形EFGH周长的最小值为22a.(10分)22.设A、B两个港口之间的距离为L,显然(1分)(1)若小船在23:00时正顺流而下,则小船由A港到达下游80千米处需用即19:00时小船在A港,那么在3:00到19:00的时间段t=6 (5分)即顺流行驶了由于所以A、B两个港口之间的距离是120千米.(7分)(2)若小船在23:00时正逆流而上,则小船到达A港需再用即小船在内顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了小时,则逆流行驶用了小时,所以解得即顺流行驶了由于(12分)所以A、B两个港口之间的距离可能是100千米或200千米.(14分)综上所述,A、B两港口之间的距离可能是100千米或120千米或200千米.(15分)23.(1)第3次操作后所得到的9个数为它们的和为55 (4分) 2(2)由题设知S0=5,则(10分) (3)因为所以(15分)。
第四届小学“希望杯”全国数学邀请赛四年级第2试一、填空题。
(每小题4分,共60分。
)1.25×32÷14+36÷21×25=________。
2.如果5×(2+△×△)-4=2006,那么△=________。
3.如果数A减去数B的3倍,差是51;数A加上数B的2倍,和是111,那么数A=________,数B=________。
4.如图,圆A表示1到50这50个自然数中能被3整除的数,圆B表示这50个数中能被5整除的数,则阴影部分表示的数是________。
5.有40个连续的自然数,其中最大的数是最小的数的4倍,那么最大的数与最小的数之和是________。
6.牧羊人赶一群羊过10条河,每过一条河时都有一半的羊掉人河中,每次他都捞上3只,最后清查还剩6只。
这群羊在过河前共有________只。
7.一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。
但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到________个桃子。
8.三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条。
黑猫钓上________条鱼。
9.从1,3,5,7中任取3个数字组成没有重复数字的三位数,这些三位数中能被3整除的有________个。
10.如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
8个这样的铁环依此连在一起长________厘米。
11.下图是3×3点阵,同一行(列)相邻两个点的距离均为1。
以点阵中的三个点为顶点构成三角形,其中面积为1的形状不同的三角形有________种。
12.如图,用标号为1,2,3,4,5的五种大小不同的正方形拼成一个大长方形,大长方形的长和宽分别是18,14,则标号为5的正方形的面积是________。
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
希望杯第四届(1993年)初中二年级第二试试题一、 选择题:(每题1分,共10分) 1.若a<0,[ ] A .1 B .C.D.2.若一个数的平方是,则这个数的立方是[ ]A.或;C.或或-3.在四边形ABCD 中,DA=2,S ΔABD =1, S ΔBCD=2,则 ∠ABC+∠CDA 等于[ ]A .150°B .180°.C .200°D .210°.4.一个三角形的三边长分别为2,4,a ,如果a 的数值恰是方程4|x-2|2-4|x-2|+1=0的根,那么三角形的周长为 [ ] A.712; B.812; C.9; D.10. 5.如果实数x ,y 满足等式2x+x 2+x 2y 2+2=-2xy ,那么x+y 的值是 [ ] A.1. B .0. C .1 .D .2. 6.设为正整数,如果2x 2+197xy+2y 2=1993成立,那么n 的值为[ ] A .7.B .8.C .9. D.107.如图81,在△ABC 中,∠A=36°,AB=AC 、BD 平分∠ABC .若△ABD 的周长比△BCD 的周长多1厘米,则BD 的长是 [ ]A .0.5厘米.B .1厘米.C .1.5厘米.D .2厘米8.方程x 2-2x-5|x-1|+7=0的所有根的和是 [ ]A . .B .0.C .-2 .D .4.9.如图82,将△ABC 的三边AB ,BC ,CA 分别延长至B ',C ',A ', 且使BB '=AB ,CC '=2BC ,AA '=3AC .若S △ABC =1,那么S △A 'B 'C '是 [ ] A .15. B .16. C .17. D .18.10.如果方程|3x|-ax-1=0的根是负数,那么a 的取值范围是 [ ] A .a >3. B.a ≥3. C .a <3. D .a ≤3. 二、填空题(每题1分,共10分)1.若两个数的平方和为637,最大公约数与最小公倍数的和为49,则这两个数是______.2.设x 1,x 2是方程x 2+px+1993=0的两个负整数根,则221212x x x x +=_______.3.1111x=-的解是____________.4.如图83,四边形ABCD的对角线AC和BD相交于O点,如果S△ABD=5,S△ABC=6,S△BCD=10,那么S△OBC______.5.设二次方程ax2+bx+c=0的两根为x1,x2,记S1=x1+1993x2,S2=x12+1993x22,┉┉,S n=x1n+1993x2n,则aS1993+bS1992+cS1991=__________.6.6.设[x]表示不大于x的最大整数,(例如[3]=3,[3.14=3]),那么┉]=_________.7.已知以x为未知数的二次方程abx2-(a2+b2)x+ab=0,其中a,b是不超过10的质数,且a>b,那么两根之和超过3的方程是______.8.如图84,在△ABC中,∠BAC=90°,AD⊥BC于D,∠BCA的平分线交AD于F,交AB于E,FG∥BC交AB于G.AE=4,AB=14,则BG=______.9.已知k为整数,且关于x的方程(k2-1)x2-3(3k-1)x+18=0有两个不相等的正整数根,则k=______.10.某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有______人.三、解答题:(写出推理、运算的过程及最后结果.每题5分,共10分)1.如图85,三所学校分别记作A,B,C.体育场记作O,它是△ABC的三条角平分线的交点.O,A,B,C每两地之间有直线道路相连.一支长跑队伍从体育场O点出发,跑遍各校再回到O点.指出哪条路线跑的距离最短(已知AC>BC>AB),并说明理由.2.如果求a2的值.答案与提示一、选择题提示:5.等式2x+x2+x2y2+2=-2xy化简为(x+1)2+(xy+1)2=0.∴x+1=0,xy+1=0.解之得x=-1,y=1.则x+y=0.∴应选(B).6.由题设得:xy=1,x+y=4n+2由2x2+197xy+2y2=1993,得2(x+y)2+193xy=1993.将xy=1,x+y=4n+2代入上式得:(4n+2)2=900,即4n+2=30.∴n=7.∴应选(A).7.由∠A=36°,AB=AC,可得∠B=∠C=72°.∴∠ABD=∠CBD=36°,∠BDC=72°.∴AD=BD=BC.由题意,1=(AB+AD+BD)-(BD+BC+CD)=AB-CD=AC-CD=AD=BD.∴应选(B).8.原方程化为(x2-2x+1)-5|x-1|+6=0.即|x-1|2-5|x-1|+6=0.∴|x-1|=2,或|x-1|=3.∴x1=-1,x2=3,x3=-2,x4=4.则x1+x2+x3+x4=4.∴应选(D).9.连结CB',∵AB=BB',∴S△BB'C=S△ABC=1,又CC'=2BC∴S△B'CC'=2S△BB'C=2.∴S△BB'C'=3.同理可得S△A'CC'=8,S△A'B'A=6.∴S△A'B'C'=3+8+6+1=17.∴应选(D).10.原方程为|3x|=ax+1.(1)若a=3,则|3x|=3x+1.当x≥0时,3x=3x+1,不成立.(2)若a>3.综上所述,a≥3时,原方程的根是负数.∴应选(B).另解:(图象解法)设y1=|3x|,y2=ax+1。
希望杯第四届(1993年)初中二年级第二试
试题
一、选择题:(每题1分,共10分)
1.若a<0,
得[ ]
A.1 B. C.
D.
2.若一个数的平方是
,则这个数的立方是[ ]
A.
或;
C.-
或
D.
或-3.在四边形ABCD
中
,D A=2,S ΔABD =1, S ΔBCD
=2
,则
∠ABC+∠CDA 等
于[ ]
A.150°B.180°.C.200°D.210°.
4.一个三角形的三边长分别为2,4,a,如果a的数值恰是方程
4|x-2|2-4|x-2|+1= 0的根,那么三角形的周长为[ ]
A.712;
B.812;
C.9;
D.10.
5.如果实数x,y满足等式
2x+x2+x2y2+2=-2xy,那么x+y的值是
[ ]
A.1. B.0. C.1
.D.2.
6.设
为
正整数,如果
2x2+197xy+2y2=1993 成立,那么n的值为[ ]
A.7. B.8. C.9.
D.10
7.如图81,在△ABC 中,∠A=36°,AB=AC、BD平分∠ABC.若△ABD的周长比△BCD的周长多1厘米,则BD的长是
[ ]
A.0.5厘米. B.1厘米. C.1.5厘米. D.2厘米
8.方程
x2-2x-5|x-1|+7=0
的所有根的和是
[ ]
A.. B.0. C.-2 . D.4.9.如图82,将△ABC
的三边AB,BC,CA 分别延长至B',C',A',
且使BB'=AB,CC'=2BC,AA'=3AC.若S
△ABC=1,那么S△A'B'C'是[ ]
A.15. B.16. C.17. D.18. 10.如果方程
|3x|-ax-1=0的根是
负数,那么a的取值范围是[ ] A.a>3. B.a≥3. C.a<3. D.a≤3.
二、填空题(每题1分,共10分)1.若两个数的平方和为637,最大公约数与最小公倍数的和为49,则这两个数是______.
2.设x 1,x 2是方程
x 2+px+1993=0的两个负整数根,则
221212x x x x +=_______.
3.
1111
x +=-的解是____________.
4.如图83,四边形ABCD 的对角线AC 和BD 相交于O 点,
如果S △ABD =5,S △ABC =6,
S△BCD=10,那么S△OBC______.
5.设二次方程
ax2+bx+c=0的两根为x1,x2,记
S1=x1+1993x2,
S2=x12+1993x22,┉┉,S n=x1n+1993x2n,则aS1993+bS1992+cS1991=___ _______.
6.设[x]表示不大于x
的最大整数,(例如[3]=3,[3.14=3]),那么
┉
___.
7.已知以x为未知数的二次方程
abx2-(a2+b2)x+ab=0,其中a,b是不超过10的质数,且a>b,
那么两根之和超过3的方程是______.8.如图84,在△ABC 中,∠BAC=90°,AD ⊥BC于D,∠BCA的平分线交AD于F,交AB 于E,FG∥BC交AB于G.AE=4,AB=14,则BG=______.
9.已知k为整数,且关于x的方程
(k2-1)x2-3(3k-1)x+ 18=0有两个不相等的正整数根,则
k=______.
10.某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9
件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有______人.
三、解答题:(写出推理、运算的过程及最后结果.每题5分,共10分)
1.如图85,三所学校分别记作A,B,C.体育场记作O,它是△ABC的三条角平分线的交点.O,A,B,C每两地之间有直线道路相连.一支长跑队伍从体育场O点出发,跑遍各校再回到O点.指出哪条路线跑的距离最短(已
知AC>BC>AB),并说明理由.
求
2.如果
a2
答案与提示一、选择题
提示:
5.等式
2x+x2+x2y2+2=-2xy
化简为
(x+1)2+(xy+1)2=0.∴x+1=0,xy+1=0.解之得x=-1,y=1.则x+y=0.∴应选(B).6.由题设得:xy=1,x+y=4n+2由
2x2+197xy+2y2=1993,得
2(x+y)2+193xy=199 3.将xy=1,x+y=4n+2代入上式得:
(4n+2)2=900,即
4n+2=30.∴n=7.∴应选(A).
7.由∠A=36°,
AB=AC,可得∠B=∠C=72°.∴∠ABD=∠CBD=36°,∠BDC=72°.∴
AD=BD=BC.由题意,1=(AB+AD+BD)-(BD+ BC+CD)=AB-CD=AC-C D=AD=BD.∴应选(B).
8.原方程化为
(x2-2x+1)-5|x-1|+ 6=0.即
|x-1|2-5|x-1|+6=0.∴|x-1|=2,或
|x-1|=3.
∴x1=-1,x2=3,x3=-2,x4=4.则
x1+x2+x3+x4=4.∴应选(D).
9.连结CB',∵AB=BB',∴S△BB'C=S△ABC=1,又CC'=2BC∴S△B'CC'=2S
△BB'C=2.∴S△BB'C'=3.同理可得S△A'CC'=8,S△A'B'A=6.∴S△A'B'C'=3+8+6+1=17.∴应
选(D).
10.原方程为
|3x|=ax+1.
(1)若a=3,则
|3x|=3x+1.
当x≥0时,3x=3x+1,不成立.
(2)若a>3.
综上所述,a≥3时,原方程的根是负数.∴应选(B).
另解:(图象解法)设y1=|3x|,y2=ax+1。
分别画出它们的图象.从图87中看出,当a≥3时,y1=|3x|的图象直线y2=ax+1的交点在第二象限.二、填空题
提示:
1.∵49=7×7,∴所求两数的最大公约数为7,最小公倍数为42.设a=7m,b=7n,(m<n),其中(m,n)=1.由ab=(a,b)·[a,b].∴
7m·7n=7·42,故mn=6.又(m,n)=1,∴m=2,n=3,故a=14,b=21.经检验,
142+212=637.∴这两个数为14,21.2.∴1993=1×
1993=(-1)×
(-1993),(1993为质数).而x1·x2=1993,且x1,x2为负整数根,
∴x1=-1,
x2=-1993.或
x1=-1993,x2=-1.则
4.设S△BOC=S,则S△AOB=6-S,S△COD=10-S,S△AOD=S-1.由于S·(S-1)=(6-S)(10 -S),解之得S=4.
6.∵432=1849<1900<1936=442,又1936<1993<2025=452.
其他都不合适.此时所求方程为
14x2-53x+14=0.8.过E作EH⊥BC于H.∵AD⊥BC.∴EH ∥AD.又∠ACE=∠BCE,EA⊥AC,EH⊥BC.∴EA=EH,∠AEC=∠HEC.∵EH∥AD,∴∠HEC=∠AFE,∴∠AEF=∠AFE.∴AE=AF,∴EH=AF.即可推出△AGF≌△
EHB.∴
4=10.∴
-AG=14-10= 4.
10.设初一获奖人数为n+1人,初二获奖人数为m+1人(n≠m).依题意有
3+7n=4+9m,即
7n=9m+1 ①
由于50<3+7n≤100,50<4+9m≤100.得
n=7,8,9,10,11,12,13.m=6,7,8,9,10.
但满足①式的解为唯一解:n=13,m=10.∴n+1=14,m+1=11.获
奖人数共有
14+11=25(人).三、解答题
1.解:若不考虑顺序,所跑的路线有三条:OABCO(或OCBAO),OACBO(或OBCAO),OBACO(或OCABO).其中OABCO的距离最短.
记d(OABCO),
d(OACBO),d(OBACO)分别为三条路线的距离.在AC上截取AB'=AB,连结OB'.则△ABO≌△AB'O.∴BO=B'O.
d(OABCO)-d(OACBO) =(OA+AB+BC+CO)-(OA +AC+CB+BO)
=AB+CO-AC-BO
=AB+CO-AB'-B'C-B'
O
=CO-(B'C+B'O)<0 同理可得,
d(OABCO)-d(OBACO)<0.
所以路线OABCO的距离最短.
因此x与是关于t
的方程
解二:由已知条件得
两边加上a4+1,得
显然0<a<1,0<a2<1.。