3.长方形和正方形,平移、旋转和轴对称复习
- 格式:pdf
- 大小:1.17 MB
- 文档页数:11
第六单元平移、旋转和轴对称知识点1:平移和旋转1.平移:物体或图形沿着直线运动的现象叫平移。
2.平移的特征:平移时物体的形状、大小和本身的方向都不改变,只是位置发生了改变。
3.旋转:物体或图形绕着一个固定中心转动的现象叫旋转。
4.旋转的特征:旋转时物体的形状,大小都不改变,只是本身的方向和位置发生了改变。
例1:下面的哪些运动是平移?哪些是旋转?是平移的画“√”,是旋转的画“○”。
例2:哪些小鱼通过平移可以和①号鱼重合?在它们的序号上画“√”例3:在括号里填上“平移”或“旋转”。
(1)(2)(3)例4:填一填,画一画。
(1)向()平移了()格。
(2)向()平移了()格。
(3)向()平移了()格。
(4)向右平移了6格,请在图中画出平移后的图形。
(5)向下平移了8格,请在图中画出平移后的图形。
例5:移一移,画一画,填一填。
(1)把Ο先向南平移4格,再向东平移4格。
(2)把∆先向西平移3格,再向北平移3格。
(3)平移后Ο在原来位置的()方向,平移后∆在原来位置的()方向。
例6:根据下面图形的变化规律在后面的空格里画出相关图形。
【练习题】1.看图判断下面物体的运动方式,是平移的画“□”,是旋转的画“○”。
2.下面的三幅图,哪幅图是通过图A平移得到的?哪幅图是通过图A旋转得到的?3.在()里填上“平移”或“旋转”。
4.假如你是一名出租车的调度员,你的任务就是答应顾客要求,调度车辆到达顾客指定的地点。
现在要接顾客()(选“A”或“B”),汽车要先向()平移()格,再向()平移()格,就能接到他。
5.把图①向右平移7格,图②向上平移5格。
6.下面的图形中,()不能通过1号图旋转得到A.B.C.D.知识点2:轴对称1.轴对称图形:把一个图形沿着某一条直线对折,对折后能完全重合,这样的图形就是轴对称图形。
折痕所在的直线是图形的对称轴。
2.轴对称图形的特征:对折后,对称轴两边能完全重合。
例1:是轴对称图形的在下面的()里画“√”,不是的画“×”。
四年级下册知识点复习(一)第一单元、平移,旋转,轴对称一、平移(1)定义:在平面内,把某个图形沿着某个移动一定的。
这样的图形运动称为平移。
(2)性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且(3)平移作图的关键是确定平移的和例画出下图的三角形向右平移6格,再向下平移3格后的图形。
二、旋转(1)定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为。
转动的称为旋转角(2)旋转的性质:Ⅰ、旋转前后的图形。
Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都。
(3)旋转作用的关键是确定、和。
三、轴对称(1)轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形。
(2)对称轴是而不是线段,轴对称图形的对称轴不一定只有一条(3)常见的轴对称图形有、、、、、。
(4)正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,正n变形有 n 条对称轴。
(5)画图形的另一半:①找对称轴。
②找对应点。
③连成图形。
例下面的的“表情图”中,属于轴对称图形的是()【温故知新】:1.把图形向右平移7格后得到的图形涂上颜色。
2.圆先向上平移3格,再向左平移5格,再向右平移7格后的位置如下图,这个圆原来的位置在哪里?请在图上画一画。
3.(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)小飞机向()平移了()格。
4.(1)画出图1中三角形AOB 绕O点(2)画出图2的锤形图绕O点顺时针旋转90°(3)画出图3绕O点逆时针旋转90°顺时针旋转90度后的图形。
图1 图2 图3 5.填空5.描述下图中,图A如何变换得到图B?图C如何变换得到图D?6.判断。
(1)拉抽屉是旋转现象。
()(2)所有的锐角都比直角小。
3.长方形和正方形,平移、旋转和轴对称复习 - 苏教版三年级数学上册教案教学目标1.复习长方形、正方形的定义和性质。
2.理解平移、旋转、轴对称的概念。
3.能够进行简单的平移、旋转、轴对称变换。
教学重点1.平移、旋转、轴对称的概念和基本操作。
2.平移、旋转、轴对称的特点和变化规律。
教学难点1.平移、旋转、轴对称的变换与图形的位置、面积、周长等性质的关系。
2.同时运用平移、旋转、轴对称的变换进行复合变换。
教学内容本节课将围绕长方形和正方形、平移、旋转、轴对称这些重要概念展开学习。
概念复习首先,让我们来回忆一下长方形和正方形的定义和性质。
长方形是指有两组相对平行的边且每组中的边相等的四边形。
它的性质有:•对角线相等,且相互垂直。
•对边相等,且相互平行。
•内角和为180度。
•面积为长乘宽。
正方形是一种特殊的长方形,它的性质有:•四条边相等,且相互平行。
•对角线相等,且相互垂直。
•内角和为360度,每个角为90度。
•面积为边长的平方。
平移接下来,我们介绍平移这一概念。
平移指的是在平面内把一个图形沿着某个方向上不改变它的大小和形状地移动。
对于二维图形,可以上下左右任意平移。
它的特点有:•只改变图形的位置,不改变图形的形状和大小。
•平移前后,图形的周长和面积不变。
旋转旋转是指以固定点(旋转中心)为中心,固定角度(旋转角)旋转一个平面图形。
它的特点有:•旋转前后,图形的形状和大小不变,但是位置会发生改变。
•旋转角度为正,表示逆时针旋转;旋转角度为负,表示顺时针旋转。
•每旋转一度,图形的每一个点会按照相对于旋转中心的距离和旋转角度的比例按逆时针方向旋转一个度。
轴对称轴对称是指一个图形绕着某一条轴对称轴翻折,翻折后的图形与原图重合。
它的特点有:•对称轴将图形分为两个相同的部分,两端的点称为对称点,两点到对称轴的距离相等。
•对称轴可以竖直、水平或倾斜。
平移、旋转、轴对称的复合变换当我们将平移、旋转、轴对称进行组合使用时,就会得到复合变换。
《图形的平移与旋转》全章复习与巩固(提高)巩固练习【巩固练习】 一、选择题1.轴对称与平移、旋转的关系不正确的是( ).A .经过两次翻折(对称轴平行)后的图形可以看作是原图形经过一次平移得到的B .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过一次平移得到的C .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D .经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过一次平移得到的 2.在旋转过程中,确定一个三角形旋转的位置所需的条件是( ). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角. A .①②④ B .①②③ C .②③④ D .①③④3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( ).A B C D4.(2016·株洲)如图,在△ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 顺时针方向旋转后得到△A ’B ’C ’,若点B ’恰好落在线段AB 上,AC 、A ’B ’交于点O ,则∠COA ’的度数是( )A .50°B .60°C .70°D .80°5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处, 若90FPH =o∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ). A.20 B.22 C.24 D.30第4题 第5题6.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼 成如下图的一座“小别墅”,则图中阴影部分的面积是( ). A .2 B .4 C .8 D .107. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC=2,将Rt △ABC 绕A 点按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( ).A.6π B.3π C.16π+ D.18.如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE. 过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是( ). A .①③④ B .①②⑤ C .③④⑤ D .①③⑤二、填空题9. 如图,图B 是图A 旋转后得到的,旋转中心是 ,旋转了 .10.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.第9题第10题第12题11.(2016•大连)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .12. 如图,正方形ABCD经过顺时针旋转后到正方形AEFG的位置,则旋转中心是,旋转角度是度.13. 时钟的时针不停地旋转,从上午8:30到上午10:10,时针旋转的旋转角是 .14. 如图所示,可以看作是一个基本图形经过次旋转得到的;每次旋转了度.15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是 .16.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、…所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a 与数轴上的数5对应,则a=_________;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是_________(用含n的代数式表示).三、解答题17. 如图,在正方形ABCD中,F是AD的中点,E是BA延长线上一点,且AE=12 AB.①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF变到△ADE的位置?若是旋转,指出旋转中心和旋转角.②线段BF和DE之间有何数量关系?并证明.18.阅读:我们把边长为1的等边三角形PQR沿着边长为整数的正n(n>3)边形的边按照如图1的方式连续转动,当顶点P回到正n边形的内部时,我们把这种状态称为它的“点回归”;当△PQR回到原来的位置时,我们把这种状态称为它的“三角形回归”.例如:如图2,边长为1的等边三角形PQR的顶点P在边长为1的正方形ABCD内,顶点Q与点A重合,顶点R与点B重合,△PQR沿着正方形ABCD的边BC、CD、DA、AB…连续转动,当△PQR连续转动3次时,顶点P回到正方形ABCD内部,第一次出现P的“点回归”;当△PQR连续转动4次时△PQR回到原来的位置,出现第一次△PQR的“三角形回归”.操作:如图3,如果我们把边长为1的等边三角形PQR沿着边长为1的正五边形ABCDE的边连续转动,则连续转动的次数k= 时,第一次出现P的“点回归”;连续转动的次数k= 时,第一次出现△PQR的“三角形回归”. 猜想:我们把边长为1的等边三角形PQR 沿着边长为1的正n (n >3)边形的边连续转动, (1)连续转动的次数k= 时,第一次出现P 的“点回归”; (2)连续转动的次数k= 时,第一次出现△PQR 的“三角形回归”;(3)第一次同时出现P 的“点回归”与△PQR 的“三角形回归”时,写出连续转动的次数k 与正多边形的边数n 之间的关系.19.(2015春•凉山州期末)如图,长方形ABCD 在坐标平面内,点A 的坐标是A (2,1),且边AB 、CD 与x 轴平行,边AD 、BC 与x 轴平行,点B 、C 的坐标分别为B (a ,1),C (a ,c ),且a 、c 满足关系式c=++3.(1)求B 、C 、D 三点的坐标;(2)怎样平移,才能使A 点与原点重合?平移后点B 、C 、D 的对应分别为B 1C 1D 1,求四边形OB 1C 1D 1的面积;(3)平移后在x 轴上是否存在点P ,连接PD ,使S △COP =S 四边形OBCD ?若存在这样的点P ,求出点P 的坐标;若不存在,试说明理由.20. 如图,P 是等边三角形ABC 中的一点,PA =2,PB =32,PC =4,求BC 边得长是多少?【答案与解析】 一.选择题 1.【答案】B.【解析】A 、多次平移相当于一次平移,故正确;B 、必须是对称轴有偶数条且平行时,才可以看作是原图形经过一次平移得到的,故错误;C 、一个图形围绕一个定点旋转一定的角度,得到另一个图形,这种变换称为旋转变换,故正确;D 、对称轴有偶数条且平行时,可以看作是原图形经过一次平移得到的,故正确. 故选B . 2.【答案】A. 3.【答案】B.BP4.【答案】B.【解析】解:由题意知:∠A=90°-50°=40°,由旋转性质可知:∴BC=B C′,∴∠B=∠BB ’C=50°,∵∠BB ′C =∠A +∠ACB ’=40°+∠ACB ’, ∴∠ACB ’=10°,∴∠COA ’=∠AOB ’=∠OB ’C+∠ACB ’=∠B+∠ACB ’=60°. 故选B .5.【答案】C.【解析】Rt △PHF 中,有FH=10,则矩形ABCD 的边BC 长为PF+FH+HC=8+10+6=24,故选C . 6.【答案】B.【解析】阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一, 正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4. 故选B .7. 【答案】B.【解析】阴影部分的面积等于扇形DAB 的面积,首先利用勾股定理即可求得AB 的长,然后利用扇形的面积公式即可求得扇形的面积.8.【答案】D.【解析】①利用同角的余角相等,易得∠EAB=∠PAD ,再结合已知条件利用SAS 可证两三角形全等;③利用①中的全等,可得∠APD=∠AEB ,结合三角形的外角的性质,易得∠BEP=90°,即可证;②过B 作BF ⊥AE ,交AE 的延长线于F ,利用③中的∠BEP=90°,利用勾股定理可求BE ,结合△AEP 是等腰直角三角形,可证△BEF 是等腰直角三角形,再利用勾股定理可求EF 、BF ;⑤在Rt △ABF 中,利用勾股定理可求AB 2,即是正方形的面积;④S △APD +S △APB = S △AP E +S △EPB =12. 二.填空题 9.【答案】X ;180°.【解析】观察图形中Z 点对应点的位置是图A 绕旋转中心X 按逆时针旋转180°得到的.故答案为:X ;180°.10.【答案】30°.【解析】解法一、在Rt △ABC 中,∠A <∠B∵CM 是斜边AB 上的中线, ∴CM=AM , ∴∠A=∠ACM ,将△ACM 沿直线CM 折叠,点A 落在点D 处 设∠A=∠ACM=x 度, ∴∠A+∠ACM=∠CMB , ∴∠CMB=2x ,如果CD 恰好与AB 垂直 在Rt △CMG 中, ∠MCG+∠CMB=90°即3x=90°x=30°则得到∠MCD=∠BCD=∠ACM=30°根据CM=MD,得到∠D=∠MCD=30°=∠A∠A等于30°.解法二、∵CM平分∠ACD,∴∠ACM=∠MCD∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°11.【答案】2.12.【答案】A,45.【解析】∵正方形ABCD经过顺时针旋转后得到正方形AEFG,∴旋转中心为点A,旋转角为∠CAD,∵AC是正方形ABCD的对角线,∴∠CAD=45°,∴旋转角为45°.故答案为:A,45.13.【答案】50°.【解析】从上午8:30到上午10:10,共1个小时40分钟;时针旋转了536圆周,故旋转角的度数是50度.故答案为:50°.14.【答案】3;90.【解析】如图所示的图形可以看作按照逆时针(或顺时针)旋转3次,且每次旋转了90°而成的.故答案是:3;90.15.【答案】6.【解析】如图,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG=4,再根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.16.【答案】(1)a=2,(2)3n+1.【解析】根据正半轴上的整数与圆周上的数字建立的这种对应关系可以发现:圆周上了数字0、1、2与正半轴上的整数每3个一组012;345;678…分别对应.三.解答题17.【解析】解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;(2)线段BF和DE的数量关系是相等.理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAF=∠EAD,∵F是AD的中点,AE=12 AB,∴AE=AF,∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,∴BF与DE为对应线段,∴BF=DE.18.【解析】解:操作:3,5.猜想:(1)第一次点回归,连续转动的次数都是3次,故填3;(2)第一次出现△PQR的“三角形回归”,连续转动的次数就是多边形的边数,故填n;(3)当n不是3的倍数时,k=3n,当n是3的倍数时,k=n.19.【解析】解:(1)由题意得,a﹣6≥0且6﹣a≥0,所以,a≥6且a≤6,所以,a=6,c=3,所以,点B(6,1),C(6,3),∵长方形ABCD的边AB、CD与x轴平行,边AD、BC与x轴平行,∴点D(2,3);(2)∵平移后A点与原点重合,∴平移规律为向左2个单位,向下1个单位,∴B1(4,0),C1(4,2),D1(0,2);(3)平移后点C到x轴的距离为2,∵S△COP=S四边形OBCD,∴×OP×2=4×2,解得OP=8,若点P在点O的左边,则点P的坐标为(﹣8,0),若点P在点O的右边,则点P的坐标为(8,0).综上所述,存在点P(﹣8,0)或(8,0).20.【解析】解:如图,将△ABP绕点B逆时针旋转60°得△BCQ,连接PQ.再过B作CQ的延长线的垂线BD,垂足为D,∴BQ=PB=23,∠PQB =60°,∴△PBQ是等边三角形,∴PQ=PB=23,∠QPC=60°.在△PCQ中,∵CQ=PA=2,,PQ=23,PC=4,∴CQ2+ PQ2=PC2,∴∠PQC=90°,∴∠CQB=∠PQB+∠PQC=150°,∴∠BQD=30°.在Rt△BQD中,BD=12BQ=3,QD=3,则CD=5.在Rt△BCD中,BC=32527+=.。
苏教版数学四年级下册期中考试复习之一《平移、旋转和轴对称》复习题姓名:__________ 班级:__________考号:__________题号一二三四五总分评分一、单选题(共10题;共20分)1.下列银行标志中,轴对称图形有()。
A. 2个B. 3个C. 4个2.下列说法正确的是()。
A. 旋转不改变图形的形状和大小。
B. 平移改变图形的形状和大小。
C. 三角形有三条对称轴。
D. 长方形有四条对称轴。
3.如图:正三角形ABC怎样运动得到正三角形ADE?()A. 平移B. 旋转C. 轴对称4.下列()中的现象属于平移。
A. 转动的风扇B. 开关推拉门C. 转方向盘D. 转动陀螺5.将平移或旋转,总是无法得到()。
A. B. C. D.6.下面()是顺时针旋转一周后的图形。
A. B. C. D.7.张叔叔在笔直的公路上开车,车身的运动是()现象。
A. 平移B. 旋转C. 静止8.下图中()是轴对称图形。
A. B. C.9.下面是旋转现象的是()。
A. B. C.10.下列汉字中,是轴对称图形的是()A. 明B. 开C. 旦二、判断题(共5题;共10分)11.一个50°的角,将它的一条边旋转40。
可得到一个直角。
()12.时针从1平移到2,走了30°是一小时。
()13.电风扇转动是平移现象。
()14.人和水中的倒影是对称的。
()15.如图由图形A得到图形B,可以通过旋转变换,也可以通过平移变换。
()三、填空题(共5题;共16分)16.看图填空。
图1绕________点________时针旋转________度得到现在的图形。
图2绕________点________时针旋转________度得到现在的图形。
17.小明向前走了3米,是________现象。
18.通过________、________和________可以设计出美丽的图案。
19.小明向前走了3米,是________现象。
初中数学图形的平移,对称与旋转的知识点总复习附解析一、选择题1.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P (-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A .【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.4.已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B 的对应点的坐标为( )A .(5,3)B .(﹣1,﹣2)C .(﹣1,﹣1)D .(0,﹣1)【答案】C【解析】【分析】根据点A 、点A 的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】∵A (1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B (2,1)的对应点的坐标为(﹣1,﹣1),故选C .【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.5.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.6.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣7b -,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( ) A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b =0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.7.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.在下列图案中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .【答案】A【解析】【分析】 根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、既是轴对称图形,又是中心对称图形,故本选项正确;B 、是轴对称图形,不是中心对称图形,故本选项错误;C 、不是轴对称图形,是中心对称图形,故本选项错误;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°【答案】C【解析】【分析】 根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.11.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.12.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.13.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三AOB角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形【答案】D【解析】【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D.【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=22=5,34作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.16.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO -∠CAO=90°.在等腰Rt △ABC 中,AB=6,则AC=BC=32.同理可求得:AO=OC=3.在Rt △AOD1中,OA=3,OD 1=CD 1-OC=4,由勾股定理得:AD 1=5.故选B .17.如图,平面直角坐标系中,已知点B (3,2)-,若将△ABO 绕点O 沿顺时针方向旋转90°后得到△A 1B 1O ,则点B 的对应点B 1的坐标是( )A .(3,1)B .(3,2)C .(1,3)D .(2,3)【答案】D【解析】【分析】 根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B 1的坐标即可.【详解】解:△A 1B 1O 如图所示,点B 1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.18.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A.10B.22C.3D.25【答案】B【解析】【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC,即可证得AE∥BC,得出2142EF AF AEFB FC BC====,即可求出BE.【详解】延长BE和CA交于点F∵ABC∆绕点A逆时针旋转90︒得到△AED ∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.19.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B 选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D 选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C 选项正确;故选D.20.如图,将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55oB .50oC .45oD .35o【答案】D【解析】【分析】根据旋转的性质可得AB AD =,BAD 110∠=o ,ADE ABC ∠∠=,根据等腰三角形的性质可得ABC ADE 35∠∠==o .【详解】如图,连接CD ,Q 将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,AB AD ∴=,BAD 110∠=o ,ADE ABC ∠∠=,∴∠ABC=∠ADB=(180°-∠BAD )÷2=35°,∴∠ADE=ABC 35∠=o ,故选D .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是解本题的关键.。
收稿日期:2021-01-16作者简介:曹自由(1979—),男,高级教师,主要从事中学数学教育研究.“图形的轴对称、平移和旋转”中考专题复习教学设计曹自由摘要:图形的变化是发展空间观念的内容抓手,也是研究图形的基本方法,是发现和构造不变量和不变关系的重要途径.学生在新授课阶段分别学习了轴对称、平移和旋转,在中考第二轮复习中需要建立它们之间的关联,进行整体复习.通过四个课时的复习教学,分别引导学生感受运动变化、理解运动变化、运用运动变化、整合运动变化,有效发展学生的空间观念、几何直观和推理能力.文章将第1课时设计整理成文,以供研讨.关键词:图形的变化;中考复习;教学设计一、内容和内容解析1.内容图形的变化(轴对称、平移、旋转).2.内容解析初中阶段学习的几何图形的变化包括轴对称、平移、旋转和相似(位似)的概念、性质和应用.本节课复习的内容是图形的全等变换——轴对称、平移和旋转.图形的全等变换可以看作是图形的刚体运动,用全等变换的思想研究图形的性质和关系是“图形与几何”领域重要的学习内容.在义务教育阶段,图形之间最重要的关系就是全等,全等可以用图形重合的方式直观获得,而“图形重合”需要通过图形的运动来实现,这种运动就是图形的轴对称、平移和旋转.图形的变化是理解图形空间结构的基本方法,也是空间观念的核心要素.抽象轴对称、平移和旋转的基本性质,用逻辑的方法理解图形的全等变换是从定性到定量研究图形的变化的桥梁.从小学直观认识图形的轴对称、平移和旋转到初中的逻辑研究、坐标表示再到后续的矩阵表示,是图形的全等变换的定性到定量发展的三个重要阶段.基于以上分析,确定本节课的教学重点是:建立三种图形的变化相关知识的逻辑体系,并用图形变化的观点认识几何图形.二、目标和目标解析1.目标(1)理解轴对称、平移、旋转之间的联系,加深对运动变化的认识,落实画图和识图的能力,渗透几何直观能力.(2)在问题探究的过程中,逐步形成用图形的变化思考、解决问题的意识,渗透图形变化思想.2.目标解析达成目标(1)的标志:能够从运动变化的角度描述两个已知图形之间的关系,能够根据图形变化(轴对称、平移、旋转)的概念和性质画出运动变化后的图形,通过梳理建立三种变化相关知识的逻辑体系.达成目标(2)的标志:能够以运动的视角观察图形,用变化的思想分析图形特征.三、教学问题诊断分析近几年北京中考试卷中的几何综合题都考查了图形的变化的相关内容,并且不是单一的,而是从一种变化到另一种变化的综合考查.但是学生学习时,知识是零散的、分割开的,先学习了平移,然后是轴对称和旋转,没有形成三种变化相关知识的逻辑体系.同时,图形的变化是一种观察图形的视角,培养这种“视角”与培养“知识与技能”同样重要.基于以上分析,可以确定本节课的教学难点是:三种图形的变化之间的转化.四、教学过程设计1.课前学习题目如图1,在平面直角坐标系xOy中,△AOB 可以看作是△OCD经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△OCD得到△AOB 的过程:.图1思考问题:什么是轴对称、平移、旋转?它们各有什么性质?它们之间有什么联系?【设计意图】此题为2017年中考北京卷第15题,学生在课前复习轴对称、平移、旋转的相关知识,关注知识的形成过程及知识之间的内在联系,在应用中不断深化认识.通过解决中考试题回顾思考涉及的知识和思想方法,进一步提升能力.2.交流梳理环节1:交流课前学习成果.(1)平移:如图2,平移前后的两个图形全等(从图形形状、大小关系来看);对应线段平行且相等,两对应点连线互相平行(共线)且相等(从图形位置变化来看).图2CC′BAA′B′(2)轴对称:如图3,关于某直线对称的两个图形全等(从图形形状、大小关系来看);对应线段相等,两个图形关于某直线对称,那么对称轴是任意一对对应点所连线段的垂直平分线(从图形位置变化来看).图3B′A′ABCNMC′(3)旋转:如图4,旋转前后的两个图形全等(从图形形状、大小关系来看);每两对对应点连线所形成的角都等于旋转角(从图形位置变化来看);对应点到旋转中心的距离相等(从图形位置变化来看).BCAA′C′(1)OB′ABCC′A′(2)图4(4)轴对称、平移、旋转三者的关系:如图5,两条对称轴平行的轴对称复合⇔一次平移;两条对称轴相交的轴对称复合⇔一次旋转.2(3)2(1)2(2)图5轴对称在三种变化中起到桥梁作用,轴对称与另外两种全等变换在地位上是有区别的,它是更加基础的一种变化,所有平移、旋转都可以用轴对称变化来解释.【设计意图】学生先回答思考问题,借此梳理三种变化的性质,明确各自的画图方法及依据,明确三种变化之间的关系.环节2:问题引导深入思考.思考:只用一种变化可不可以操作?如何操作?用两种变化如何操作?哪种方法容易快速想到?为什么?【设计意图】课上让学生先交流自己的结果.而学生在交流结果时一定是无序的,这时教师可以引导学生进行有序思考.问题1:对于题目,只用两种变化有哪些方法?学生活动:交流使用两种变化的情况.(1)旋转+平移.思路1:将△COD绕点C顺时针旋转90°后,再向左平移两个单位得到△AOB.思路2:将△COD绕点O顺时针旋转90°后,再向上平移两个单位得到△AOB.思路3:将△COD向左平移两个单位后,再绕点C 顺时针旋转90°得到△AOB.思路4:将△COD向上平移两个单位后,再绕点A 顺时针旋转90°得到△AOB.(2)旋转+轴对称.思路5:将△COD先关于x轴对称,再以点C为旋转中心顺时针旋转90°,再作关于直线x=1的对称得到△AOB.追问:采用“平移+轴对称”的方式可以吗?归纳:对应顶点排列的顺序一致——旋转;与目标图形的方向一致——平移.问题2:用一种变化有哪些方法?追问:两个全等的三角形通过某种运动方式一定能重合吗?若能重合,如何运动?归纳:对应顶点排列顺序一致,经过一次旋转能重合.学生活动:对于题目,展示只通过旋转或只通过轴对称完成任务的方法,并说明自己的画图方法和画图依据.方法1:(旋转)根据旋转的性质,确定旋转中心、旋转方向和旋转角.思路6:将△COD绕点()1,1顺时针旋转90°得到△AOB.思路7:将△COD先绕点()1,-1逆时针旋转90°后,再绕点O旋转180°得到△AOB.方法2:(轴对称)两条对称轴相交的轴对称复合⇔一次旋转.思路8:先将△COD沿直线x=1对称后,再沿直线y=x对称得到△AOB.思路9:先将△COD沿直线y=1对称后,再沿直线y=-x+2对称得到△AOB.【设计意图】题目难度不大,且学生具备直接识别运动变化的能力,但是学生自己描述运动变化的经验还是比较少的,而且运动的方式是不唯一的,给出运动前后的图形,描述运动变化要素,这对学生的要求实际上是提高了很多的.因此,要关注这三种运动变化之间的联系,通过这个过程深化学生对于运动变化的认识.3.变式练习变式1:如图6,在正方形ABCD中,点E,F分别是BC,CD的中点,试类比上一个问题的探究过程,说出△ABE经过怎样的图形的变化(平移、轴对称、旋转)得到△BCF?图6B E CFDA图7B E CDA变式2:如图7,在等边三角形ABC中,AD=BE,试类比上一个问题的探究过程,说出△ABE经过怎样的图形的变化(轴对称、平移、旋转)得到△CAD?学生活动:展示所画图形的变化过程,并用语言描述这个过程.学生可能想到如下情况.(1)旋转+平移(如图8和图9).D图8图9(2)两次轴对称(如图10).图10(3)一次旋转(如图11).图11【设计意图】将任务探究的思维过程结构化,形成解决问题的方法思路.同时渗透用运动变化的眼光观察图形的思想方法.满足特定条件下的图形的变化可能有多种情况,培养思维的有序性、多样性.4.归纳与提升总结、归纳本节课的教学流程如图12所示.运动的眼光,变换的思想ìíîïï图形的平移图形的轴对称图形的旋转图12【设计意图】归纳方法、提升能力,形成用运动的眼光、变换的思想看待两个图形之间的关系的能力,渗透运动变换思想.5.布置作业(1)如图13,在平面直角坐标系xOy中,△O′A′B′可以看作是△OAB经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△OAB得到△O′A′B′的过程:.图13(2)如图14,在平面直角坐标系xOy中,点A,B的坐标分别为A()-4,1,B()-1,3,经过两次变化(平移、轴对称、旋转)得到对应点A″,B″的坐标分别为A″()1,0,B″()3,-3,则由线段AB得到线段A′B′的过程是:,由线段A′B′得到线段A″B″的过程是:.图14(3)如图15,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由线段AB得到线段A′B′的过程:.图16图15ABA′B′(4)如图16,在平面直角坐标系xOy中,△ABC可以看作△DEF是经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△DEF得到△ABC的过程:.五、教学反思本节课是“图形的轴对称、平移和旋转”中考第二轮专题复习课,内容属于“图形的变化”.希望通过一系列数学活动,帮助学生在已有知识基础上对图形变换思想进行相应的概括和应用.同时,在落实“四基”、培养“四能”的过程中,促进学生数学学科核心素养的形成和发展.1.感受运动变化,建立逻辑体系学生通过亲身经历课前的数学操作活动后,体验的水平停留在“感觉”阶段,还没有对活动过程进行深入的思考,没有深刻认识到三种全等变换之间内在的逻辑关系.在此基础上,学生在课堂上通过交流及反思性观察将获得的体验进行抽象,梳理三种全等变换各自的性质及它们之间的联系,形成解决该类问题的一般思维模式.图形的变化是一种观察图形的视角,培养这种“视角”与培养“知识与技能”同样重要.在关注联系的基础上,通过问题引导,使学生能够进行知识的归纳梳理,并能够主动利用经验的迁移去研究其他问题.通过本节课的教学,进一步帮助学生感受运动变化,学会以运动变化的视角分析图形,也为后续进一步主动运用图形变化视角认识几何图形,运用图形变换思想解决综合性问题奠定基础. 2.培养思维的有序性、多样性满足特定条件下的图形的变化可能有多种情况,开放性问题有助于学生体验解决问题方法的多样性.与此同时,通过增加限定条件,从两种图形变化的组合,到只用一种图形变化,将任务探究的思维过程结构化,形成解决问题的方法思路.同时,渗透用运动变化的眼光观察图形的思想方法.本节课的教学目标定位在落实画图和识图能力,渗透几何直观能力,理解轴对称、平移、旋转之间的联系,加深对运动变化的认识;在问题探究的过程中,逐步形成用图形的变化视角思考解决问题的意识,渗透图形变化思想.在实际授课过程中,知识与技能落实得比较到位,而思想性体现不够充分,还需要深入研究,在思想性上多做文章.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]教育部基础教育课程教材专家工作委员会.《义务教育数学课程标准(2011年版)》解读[M].北京:北京师范大学出版社,2012.[3]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[4]任华中,傅海伦,邵亚娜.初中数学基本活动经验的教学目标层次划分[J].中国数学教育(初中版),2018(6):30-32.。
苏教版数学三年级上册《3.长方形和正方形平移、旋转和轴对称复习》教学设计一. 教材分析苏教版数学三年级上册《3.长方形和正方形平移、旋转和轴对称复习》这一章节主要让学生复习和巩固长方形和正方形的平移、旋转和轴对称的知识。
通过这一章节的学习,学生能够更好地理解和掌握长方形和正方形的基本性质,以及它们在几何变换中的应用。
教材通过丰富的图片和实例,引导学生理解和掌握平移、旋转和轴对称的概念,以及它们在实际问题中的应用。
二. 学情分析学生在二年级已经学习过平移、旋转和轴对称的知识,对本节课的内容有一定的了解。
但在实际应用中,部分学生可能会对如何判断一个图形的平移、旋转和轴对称有所困惑。
因此,在教学过程中,教师需要帮助学生巩固基础知识,并通过实例让学生更好地理解和掌握这些概念在实际问题中的应用。
三. 教学目标1.理解平移、旋转和轴对称的概念,并能正确判断图形的平移、旋转和轴对称。
2.能够运用平移、旋转和轴对称的知识解决实际问题。
3.培养学生的空间想象能力和几何思维。
四. 教学重难点1.重点:理解平移、旋转和轴对称的概念,掌握判断图形平移、旋转和轴对称的方法。
2.难点:如何运用平移、旋转和轴对称的知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考和操作,自主探索和解决问题。
2.使用多媒体辅助教学,通过丰富的图片和实例,帮助学生更好地理解和掌握知识。
3.小组讨论和合作交流,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于讲解和展示平移、旋转和轴对称的概念。
2.准备一些实际问题,用于巩固和拓展学生的知识。
3.准备课堂用的练习题和家庭作业,用于检测学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过展示一些图片和实例,引导学生回顾平移、旋转和轴对称的概念。
例如,展示一些运动的图片,如滑滑梯、荡秋千等,让学生判断这些运动是平移还是旋转。
2.呈现(10分钟)教师通过讲解和展示,让学生更好地理解和掌握平移、旋转和轴对称的概念。
第一单元平移、旋转和轴对称(知识清单)(思维导图+知识盘点+易错攻略+典例精讲+巩固培优)知识点一:图形的平移1、平移的特点和方法。
在平面内,将一个图形沿着某个方向移动一定的距离,叫图形的平移。
平移的距离是物体某个点到移动后相应的点的距离,而不是两个物体间的距离。
图形平移的距离可以通过平移点或线段来确定平移了几格。
2、图形平移的两个关键要素。
平移的方向和平移距离。
3、在方格纸上画简单图形平移后的图形的方法。
(1)找出原图形中具有代表性的点(或线段)。
(2)将原图形各点(或线段)按要求平移。
(3)把平移后的点(或线段)顺次连接。
知识点二:图形的旋转1、旋转方向。
与时针旋转方向相同的是顺时针旋转,相反的是逆时针旋转。
2、旋转的三要素。
旋转中心、旋转方向和旋转角度。
注意旋转中心在选举逆转过程中是保持不动的。
3、在方格纸上画简单图形旋转90°后的图形的方法。
(1)确定旋转中心和关键线段。
(2)绕着旋转中心,根据旋转方向和旋转角度,画出旋转后的对应线段,注意与原线段长度相等。
(3)顺次连接所画线段的端点。
知识点三:轴对称图形1、把一个图形对折,折痕两边完全重合的图形是轴对称图形,折痕所在的直线就是这个图形的对称轴。
2、要画轴对称图形的另一半,先要找到对称轴,想一想图形沿对称轴对折时的另一半的形状,然后找到几个关键点的对称点,如图形的顶点,相交点等对称点,最后顺次连接。
3、对称图形不管是水平方向的对称,还是竖直方向的对称,对称轴两侧相对的点到对称轴的距离都相等。
4、补全一个简单的轴对称图形的方法:(1)确定已知图形的几个关键点,如图形的顶点,相交点,端点等。
(2)数除或量出图形关键点到对称轴的距离。
(3)在对称轴的另一侧找出关键点的对应点。
(4)顺次连接对应点,画出轴对称图形的另一半。
1、图形平移时,形状、大小和自身方向均不发生变化。
2、图形平移的距离是指对应点或对应线段之间的距离,而不是指两个图形之间的距离。
二年级上册数学教案整理与复习图形的变化北师大版教案:整理与复习图形的变化一、教学内容本节课主要复习二年级上册数学教材中关于图形的变化的相关内容。
具体包括:1. 图形的认识:正方形、长方形、圆形、三角形等基本图形的特征和性质。
2. 图形的变换:平移、旋转、轴对称等图形的变换方法及其性质。
二、教学目标1. 让学生掌握基本图形的特征和性质,能够识别和描述各种图形。
2. 让学生理解图形变换的性质和方法,能够运用图形变换解决实际问题。
3. 培养学生的空间观念和逻辑思维能力,提高学生的解决问题的能力。
三、教学难点与重点1. 教学难点:图形变换的方法和性质,如何运用图形变换解决实际问题。
2. 教学重点:图形变换的性质和方法,基本图形的特征和性质。
四、教具与学具准备1. 教具:黑板、粉笔、几何图形卡片、课件等。
2. 学具:学生用书、练习本、几何图形卡片等。
五、教学过程1. 情景引入:通过展示一些生活中的实际问题,引出本节课的主题——整理与复习图形的变化。
2. 知识回顾:引导学生回顾教材中关于图形的变化的相关内容,包括图形的认识和图形的变换。
3. 知识讲解:通过讲解和示范,让学生掌握基本图形的特征和性质,以及图形变换的性质和方法。
4. 例题讲解:通过讲解一些典型的例题,让学生学会如何运用图形变换解决实际问题。
5. 随堂练习:让学生运用所学知识解决一些实际问题,巩固所学知识。
六、板书设计1. 图形的认识:正方形、长方形、圆形、三角形等基本图形的特征和性质。
2. 图形的变换:平移、旋转、轴对称等图形的变换方法及其性质。
七、作业设计1. 请列举生活中你见过的图形变换的例子,并描述其变换方法。
答案:略(1) 一个正方形,如果每条边都扩大2倍,那么它的面积扩大了多少倍?答案:扩大了4倍。
(2) 一个圆形,如果半径扩大3倍,那么它的面积扩大了多少倍?答案:扩大了9倍。
八、课后反思及拓展延伸本节课通过整理与复习图形的变化,使学生对基本图形的特征和性质有了更深入的理解,对图形变换的性质和方法有了更全面的掌握。