北京海淀区七年级上期末数学试卷及答案解析
- 格式:docx
- 大小:205.83 KB
- 文档页数:22
北京市海淀区七年级上学期期末考试数学试卷(一)一、选择题1、的相反数为()A、2B、﹣C、D、﹣22、石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A、300×104B、3×105C、3×106D、30000003、下列各式结果为负数的是()A、﹣(﹣1)B、(﹣1)4C、﹣|﹣1|D、|1﹣2|4、下列计算正确的是()A、a+a=a2B、6a3﹣5a2=aC、3a2+2a3=5a5D、3a2b﹣4ba2=﹣a2b5、用四舍五入法对0.02015(精确到千分位)取近似数是()A、0.02B、0.020C、0.0201D、0.02026、如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A、1B、2C、3D、47、若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A、﹣1B、1C、﹣D、﹣8、一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x元,那么根据题意,所列方程正确的是()A、0.8(1+0.5)x=x+28B、0.8(1+0.5)x=x﹣28C、0.8(1+0.5x)=x﹣28D、0.8(1+0.5x)=x+289、在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A、b+c<0B、|b|<|c|C、|a|>|b|D、abc<010、已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能经过的点是()A、MB、NC、SD、T二、填空题11、在“1,﹣0.3,+ ,0,﹣3.3”这五个数中,非负有理数是________.(写出所有符合题意的数)12、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为________°.13、计算:180°﹣20°40′=________.14、某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x件,那么这4名工人此月实际人均工作量为________件.(用含x的式子表示)15、|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是________;若|x|=2,则x的值是________.16、某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为________.17、如图所示,AB+CD________AC+BD.(填“<”,“>”或“=”)18、已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A 向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做xn.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=________;②若|x+x1+x2+x3+…+x20|的值最小,则x3=________.三、解答题(一)19、计算:(1)3﹣6× ;(2)﹣42÷(﹣2)3﹣× .20、如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为________(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是________;对于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是________.21、解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.四、解答题(二)22、先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.23、如图所示,点A在线段CB上,AC= ,点D是线段BC的中点.若CD=3,求线段AD的长.24、列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?五、解答题(三)25、一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.26、如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1, OA2, OA3, OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1, OA2, OA3, OA4, OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2, OA3,其中∠A3OA2的度数是________;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2, OA3, OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是________(4)(选做题)当OAi 所在的射线是∠AiOAk(i,j,k是正整数,且OAj与OAk不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.答案解析部分一、<b >选择题</b>1、【答案】B【考点】相反数【解析】【解答】解:的相反数为﹣,故选:B.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.2、【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:300万用科学记数法表示为3×106.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3、【答案】C【考点】正数和负数【解析】【解答】解:A、﹣(﹣1)=1是正数,故A错误;B、(﹣1)4=1是正数,故B错误;C、﹣|﹣1|=﹣1是负数,故C正确;D、|1﹣2|=1,故D错误;故选:C.【分析】根据小于零的数是负数,可得答案.4、【答案】D【考点】同类项、合并同类项【解析】【解答】解:A、合并同类项是解题关键,故A错误;B、不是同类项不能合并,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【分析】根据合并同类项系数相加字母及指数不变,可得答案.5、【答案】B【考点】近似数【解析】【解答】解:0.02015≈0.020(精确到千分位).故选B.【分析】把万分位上的数字1进行四舍五入即可.6、【答案】B【考点】余角和补角【解析】【解答】解:∵∠ACB=90°,∴∠A+∠B=90°,∵∠CDB=90°,∴∠A+∠ACD=90°,∴∠A互余的角的个数是2.故选:B.【分析】根据图形和余角的概念解答即可.7、【答案】D【考点】一元一次方程的应用【解析】【解答】解:解2x+1=﹣1,得x=﹣1.把x=﹣1代入1﹣2(x﹣a)=2,得1﹣2(﹣1﹣a)=2.解得a=﹣,故选:D.【分析】根据解方程,可得x的值,根据同解方程,可得关于a的方程,根据解方程,可得答案.8、【答案】A【考点】一元一次方程的应用【解析】【解答】解:设这件夹克衫的成本价是x元,由题意得,0.8(1+50%)x﹣x=28,即0.8(1+0.5)x=28+x.故选A.【分析】设这件夹克衫的成本价是x元,根据题意可得,利润=标价×80%﹣成本价,据此列出方程.9、【答案】C【考点】数轴【解析】【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0,则|b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选C.【分析】根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.10、【答案】B【考点】几何体的展开图,线段的性质:两点之间线段最短,平面展开-最短路径问题【解析】【解答】解:如图所示:根据圆锥侧面展开图,此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能经过的点是N,,故选B.【分析】根据圆锥画出侧面展开图,根据两点之间线段最短可得它最有可能经过的点是N.二、<b >填空题</b>11、【答案】1,+ ,0【考点】有理数的意义【解析】【解答】解:非负有理数是1,+ ,0.故答案为:1,+ ,0.【分析】根据大于或等于零的有理数是非负有理数,可得答案.12、【答案】120【考点】余角和补角【解析】【解答】解:由题意,可得∠AOB=60°,则∠AOB的补角的大小为:180°﹣∠AOB=120°.故答案为120.【分析】先根据图形得出∠AOB=60°,再根据和为180度的两个角互为补角即可求解.13、【答案】159°20′【考点】度分秒的换算【解析】【解答】解:180°﹣20°40′=179°60′﹣20°40′=159°20°.故答案为:159°20′.【分析】先变形得出179°60′﹣20°40′,再度、分分别相减即可.14、【答案】【考点】列代数式【解析】【解答】解:(4x+15)÷4= (件).答:这4名工人此月实际人均工作量为件.故答案为:.【分析】根据4名工人3月份完成的总工作量比此月人均定额的4倍多15件得到总工作量是(4x+15)件,再把总工作量除以4可得这4名工人此月实际人均工作量.15、【答案】数轴上表示﹣2的点与原点的距离①±2【考点】数轴,绝对值【解析】【解答】解:|﹣2|的含义是数轴上表示﹣2的点与原点的距离;|x|=2,则x的值是:±2.故答案为:数轴上表示﹣2的点与原点的距离;±2.【分析】直接利用绝对值的定义得出|﹣2|的含义以及求出x的值.16、【答案】+ =1【考点】一元一次方程的应用【解析】【解答】解:设该小组共有x名同学,由题意得,+ =1.故答案为:+ =1.【分析】设该小组共有x名同学,根据题意可得,全体同学整理8小时完成的任务+(x﹣2)名同学整理4小时完成的任务=1,据此列方程.17、【答案】<【考点】线段的性质:两点之间线段最短【解析】【解答】解:如图所示:由两点之间线段最短可知AE+BE>AB.同理:CE+DE>DC.∴AE+BE+CE+DE>AB+DC.∴AC+BD>AB+DC,即AB+DC<AC+BD.故答案为:<.【分析】AC与BD的交点为E,由两点之间线段最短可知AE+BE>AB,同理得到CE+DE>DC,从而得到AB+CD<AC+BD.18、【答案】7①-3【考点】探索数与式的规律【解析】【解答】解:①由题意:x 1=2,x 2=3,x 3=4,x 4=5,x 5=6,x 6=7,x 7=4,x 8=,5,x 9=6,x 10=7,x 11=4,x 12=5,x 13=6,x 14=7.故答案为x 14=7.②由题意当x=﹣6时,x 1=﹣5,x 2=﹣4,x 3=﹣3,x 4=﹣2,x 5=﹣1,x 6=0,x 7=1,x 8=2,x 9=3,x 10=4,x 11=5,x 12=6,x 13=7,x 14=4,x 15=5,x 16=6, x 17=7,x 18=4,x 19=5,x 20=6,|x+x 1+x 2+x 3+…+x 20|=50最小, ∴x 3=﹣3.故答案为﹣3.【分析】(1)按照规律写出x 14即可.(2)当x=﹣6时,|x+x 1+x 2+x 3+…+x 20|的值最小,由此可以解决问题. 三、<b >解答题(一)</b> 19、 【答案】 (1)解:3﹣6×=3﹣6× =3﹣1 =2(2)解:﹣42÷(﹣2)3﹣ ×=﹣16÷(﹣8)﹣=2﹣1 =1【考点】有理数的混合运算【解析】【分析】(1)根据有理数的乘法和减法进行计算即可;(2)根据有理数的乘方、除法、乘法和减法进行计算即可. 20、 【答案】(1)解:如图所示:直线DC 即为所求(2)90°(3)BC=AC①BC′=AC′【考点】作图—复杂作图【解析】【解答】(2)90°(只要相差不大都给分).故答案为:90°;(3)BC=AC,BC′=AC′,(若(2)中测得的角不等于90°,则相应地得出线段的不等关系(注意:要分类讨论),同样给分.)【分析】(1)利用线段垂直平分线的作法得出D点位置,进而得出答案;(2)利用量角器得出∠ADC的大小;(3)利用线段垂直平分线的性质得出线段BC,AC的大小关系以及线段BC′与AC′的大小关系.21、【答案】(1)解:去括号得:3x+6﹣2=x+2,移项合并得:2x=﹣2,解得:x=﹣1(2)解:去分母得:2(7﹣5y)=12﹣3(3y﹣1),去括号得:14﹣10y=12﹣9y+3,移项合并得:﹣y=1,解得:y=﹣1【考点】解一元一次方程【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.四、<b >解答题(二)</b>22、【答案】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4【考点】整式的加减【解析】【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23、【答案】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC= ,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1【考点】两点间的距离【解析】【分析】根据点A在线段CB上,AC= ,点D是线段BC的中点,CD=3,可以求得BC的长,从而可以求得CA的长,从而得到AD的长.24、【答案】解:设②号小球运动了x米,由题意可得方程:= ,解方程得:x=2答:从造型一到造型二,②号小球运动了2米【考点】一元一次方程的应用【解析】【分析】设②号小球运动了x米,根据图中的造型和“②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒”列出方程并解答.五、<b >解答题(三)</b>25、【答案】(1)解:∵(1,b)是“相伴数对”,∴ + = ,解得:b=﹣(2)解:(2,﹣)(答案不唯一)(3)解:由(m,n)是“相伴数对”可得:+ = ,即= ,即9m+4n=0,则原式=m﹣n﹣4m+6n﹣2=﹣n﹣3m﹣2=﹣﹣2=﹣2【考点】代数式求值,整式的加减【解析】【分析】(1)利用“相伴数对”的定义化简,计算即可求出b的值;(2)写出一个“相伴数对”即可;(3)利用“相伴数对”定义得到9m+4n=0,原式去括号整理后代入计算即可求出值.26、【答案】(1)45°(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+ =4α,解得:(3),,(4)解:对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OAi 是∠AiOAK是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OAi 是∠AiOAK是的角平分线这种情况,旋转不会停止【考点】角的计算【解析】【解答】解:(1)解:如图所示.aφ=45°,【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OAi 是∠AiOAK是的角平分线,但当a=120度时,只有两条射线,不会出现OAi 是∠AiOAK是的角平分线,所以旋转会中止.北京市海淀区七年级上学期期末考试数学试卷(二)一、选择题1、在实数- ,0,,π,中,无理数有()个.A、1B、2C、3D、42、下列各式中正确的是()A、=±4B、=﹣4C、D、=﹣43、在平面直角坐标系中,点P(﹣2,1)在()A、第一象限B、第二象限C、第三象限D、第四象限4、P(m+1,5)在y轴上,则m的值为()A、﹣5B、0C、1D、﹣15、在平面直角坐标系中,点P(﹣2,3)向右平移3个单位长度后的坐标为()A、(3,6)B、(1,3)C、(1,6)D、(6,6)6、若m>n,则下列各式中错误的是()A、6m>6nB、﹣5m<﹣5nC、m+1>n+1D、﹣2m>﹣2n7、如图,直线a∥b,∠1=70°,那么∠2的度数是()A、50°B、60°C、70°D、80°8、如图,下列条件中,不能判断直线a∥b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°9、已知如图,AD∥CE,则∠A+∠B+∠C=()A、180°B、270°C、360°D、540°10、下列命题①过一点有且只有一条直线平行已知直线;②过一点有且只有一条直线与已知直线垂直;③平行同一直线的两条直线互相平行;④平方根等于本身的数是0或1;⑤如果一个数有立方根,那么它一定有平方根,其中假命题的个数为()A、2个B、3个C、4个D、5个二、填空题11、计算:2 ﹣=________.12、不等式组的解集是________.13、把命题“对顶角相等”写成“如果…,那么…”的形式为:如果________,那么________.14、中,x的取值范围是________.15、点P(2,6)到x轴的距离为________个单位长度.16、已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.17、如图,∠1=15°,AO⊥OC,点B、O、D在同一直线上,则∠2=________°.18、如图,AB∥CD∥EF,∠B=70°,∠E=140°,则∠BCD=________°.19、已知,点P坐标为(﹣2,3),点Q坐标为Q(m,3),且PQ=6,则m=________.20、如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P=________.三、解答题21、解方程组和不等式(1)解方程组(2)解不等式5x+15>4x+13并在数轴上表示它的解集.22、如图,三角形ABC的顶点坐标分别为A(2,4)、B(1,1)、C(4,1).BC 上的一点P的坐标为P(3,1),将三角形ABC向左平移4个单位,再向上平移1个单位,得到三角形A1B1C1,其中点A、B、C、P分别对应点A1、B1、C1、P1.(1)在图中画出三角形A1B1C1;(2)直接写出点P1的坐标:P1(________,________).23、为了推动课堂教学改革,打造高效课堂,某中学对七年级部分学生就一学期以来“小组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的七年级学生的人数,(2)并补全条形统计图2(3)该校七年级级学生共有720人,请你你估计该校七年级有多少名学生支持“小组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?24、完成下面的推理过程,并在括号内填上依据.如图,E为DF上的一点,B为AC上的一点,∠1=∠2,∠C=∠D,求证:AC∥DF 证明:∵∠1=∠2(________)∠1=∠3(对角线相等)∴∠2=∠3(________)∴________∥________(________)∴∠C=∠ABD(________)又∵∠C=∠D(已知)∴∠D=∠ABD(________)∴AC∥DF(________)25、学校决定购买A、B两种型号电脑,若购买A型电脑3台,B型电脑8台共需40000元;若购买A型电脑14台,B型电脑4台共需80000元.(1)A、B两种型号电脑每台多少元?(2)若用不超过160000元去购买A、B两种型号电脑共45台,则最多可购买A型电脑多少台?26、如图所示,将△ABC沿直线BC方向平移△DEF的位置,G是DE上一点,连接AG,过点A、D作直线MN.(1)求证:∠AGE=∠GAD+∠ABC;(2)若EDF=∠DAG,∠CAG+∠CEG=180°,判断AG与DE的位置关系,并证明你的结论.27、已知,在平面直角坐标系中,直线AB与Y轴正半轴、X轴正半轴分别交于A、B两点,点A坐标为A(0,m),点B坐标为B(n,0),且满足(m﹣3)1+=0,(1)分别求出点A,点B的坐标(2)若点E在直线AB上,且满足三角形AOE的面积等于三角形AOB的面积的三分之一,求点E的坐标.(3)平移线段BAZ至DC,B与O是对应点,A与C是对应点,连接AC,E为BA腐乳延长线上一点,连接OE,OF平分∠COE,AF平分∠EAC,OF交AF于F点,若∠ABO+∠OEB=α.请在图2中将图形补充完整,并求∠F(用含α的式子表示)答案解析部分一、<b >选择题</b>1、【答案】B【考点】无理数【解析】【解答】解:=2,所给数据中无理数有:,π,共2个.故选B.【分析】根据无理数的三种形式进行判断即可.2、【答案】C【考点】平方根,算术平方根【解析】【解答】解:A、=4,故A错误;B、=4,故B错误;C、± =±4,故C正确;D、负数没有算术平方根,故D错误.故选:C.【分析】依据算术平方根和平方根的定义求解即可.3、【答案】B【考点】点的坐标【解析】【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,1)在第二象限,故选B.【分析】点P的横坐标为负,在y轴的左侧,纵坐标为正,在x轴上方,那么可得此点所在的象限.4、【答案】D【考点】点的坐标【解析】【解答】解:∵P(m+1,5)在y轴上,∴m+1=0,∴m=﹣1.故选D.【分析】根据y轴上点的横坐标为0得到m+1=0,然后解方程即可.5、【答案】B【考点】坐标与图形变化-平移【解析】【解答】解:平移后的横坐标为﹣2+3=1,纵坐标为3,∴点P(﹣2,3)向右平移3个单位长度后的坐标为(1,3),故选B.【分析】让横坐标加3,纵坐标不变即可得到所求的坐标.6、【答案】D【考点】不等式的性质【解析】【解答】解:A、∵m>n,∴6m>6n,故本选项正确;B、∵m>n,∴﹣m<﹣n,∴﹣5m<﹣5n,故本选项正确;C、∵m>n,∴m+1>n+1,故本选项正确;D、∵m>n,∴﹣2m<﹣2n,故本选项错误.故选D.【分析】根据不等式的基本性质对各选项进行逐一分析即可.7、【答案】C【考点】平行线的性质【解析】【解答】解:∵a∥b,∴∠1=∠2(两直线平行,同位角相等)∵∠1=70°,∴∠2=70°.故选C.【分析】根据两角的位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果.8、【答案】B【考点】平行线的判定【解析】【解答】解:当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故选B.【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行对各选项进行判断.9、【答案】C【考点】平行线的性质【解析】【解答】解:过B作BF∥AD,∵AD∥CE,∴AD∥BF∥CE,∴∠A+∠ABF=180°,∠C+∠CBF=180°,∴∠A+∠ABF+∠C+∠CBF=360°,即∠A+∠ABC+∠C=360°.故选C.【分析】过B作BF∥AD,推出AD∥BF∥CE,得出∠A+∠ABF=180°,∠C+∠CBF=180°,相加即可得出答案.10、【答案】C【考点】命题与定理【解析】【解答】解:①过直线外一点有且只有一条直线与已知直线平行;故①是假命题;②过一点有且只有一条直线与已知直线垂直;故②是真命题;③在同一平面内,平行同一直线的两条直线互相平行;故③是假命题;④平方根等于本身的数是0;故④是假命题;⑤如果一个数有立方根,那么它不定有平方根;故⑤是假命题;其中假命题的个数有4个,故选:C.【分析】分别根据平行线的性质、垂线的性质、平方根和立方根的性质对各小题进行逐一判断即可.二、<b >填空题</b>11、【答案】﹣2【考点】二次根式的加减法【解析】【解答】解:原式=2 ﹣4=﹣2 .故答案为:﹣2 .【分析】先化简,然后合并同类二次根式.12、【答案】x<2【考点】不等式的解集【解析】【解答】解:依据同小取小可知不等式组的解集为:x<2.故答案为:x<2.【分析】依据同小取小即可得出结论.13、【答案】两个角是对顶角①这两个角相等【考点】命题与定理【解析】【解答】解:原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.【分析】先找到命题的题设和结论,再写成“如果…,那么…”的形式.14、【答案】x≥0【考点】二次根式有意义的条件【解析】【解答】解:由题意得:x≥0,故答案为:x≥0.【分析】根据二次根式有意义的条件可得x≥0.15、【答案】6【考点】点的坐标【解析】【解答】解:∵点P到x轴的距离为其纵坐标的绝对值即|6|=6,∴点P到x轴的距离为6.故答案为:6.【分析】求得6的绝对值即为点P到x轴的距离.16、【答案】2【考点】平方根【解析】【解答】解:∵一个正数的两个平方根是x﹣7和3x﹣1,∴x﹣7+3x﹣1=0.解得:x=2.故答案为:2.【分析】依据平方根的性质可得到关于x的方程,从而可求得x的值.17、【答案】105【考点】垂线【解析】【解答】解:∵OA⊥OC,∴∠AOC=90°,∴∠BOC=90°﹣∠1=90°﹣15°=75°,∴∠2=180°﹣∠BOC=180°﹣75°=105°,故答案为:105.【分析】由OA⊥OC可得∠AOC=90°,易得∠BOC,再由邻补角的定义可得∠2.18、【答案】30【考点】平行线的性质【解析】【解答】解:∵AB∥CD,∴∠BCD=∠B=70°,∵CD∥EF,∴∠ECD=180°﹣∠E=40°,∴∠BCD=∠BCD﹣∠ECD=30°,故答案为:30.【分析】根据平行线的性质得到∠BCD=∠B=70°,∠ECD=180°﹣∠E=40°,由角的和差即可得到结论.19、【答案】4或﹣8【考点】点的坐标【解析】【解答】解:∵点P坐标为(﹣2,3),点Q坐标为Q(m,3),∴点P、Q的纵坐标相等,PQ∥x轴,∵PQ=6,∴|﹣2﹣m|=6,∴﹣2﹣m=6或﹣2﹣m=﹣6,解得m=﹣8或m=4.故答案为:4或﹣8.【分析】根据点的纵坐标相等,两点间的距离等于横坐标的差的绝对值列方程求解即可.20、【答案】45°【考点】坐标与图形性质,三角形内角和定理,三角形的外角性质【解析】【解答】解:∵OA⊥OB,∴∠OAB+∠ABO=90°,∠AOB=90°.∵PA平分∠MAO,∴∠PAO= ∠OA M= (180°﹣∠OAB).∵PB平分∠ABO,∴∠ABP= ∠ABO,∴∠P=180°﹣∠PAO﹣∠OAB﹣∠ABP=180°﹣(180°﹣∠OAB)﹣∠OAB﹣∠ABO=90°﹣(∠OAB+∠ABO)=45°.【分析】由OA⊥OB即可得出∠OAB+∠ABO=90°、∠AOB=90°,再根据角平分线的定义以及三角形内角和定理即可求出∠P的度数.三、<b >解答题</b>21、【答案】(1)解:①+②得:4x=12,解得:x=3,把x=3代入①得:3+2y=1,解得:y=﹣1,所以原方程组的解为:(2)解:5x+15>4x+13,5x﹣4x>13﹣15,x>﹣2,在数轴上表示为:【考点】解二元一次方程组,在数轴上表示不等式的解集,解一元一次不等式【解析】【分析】(1)①+②得出4x=12,求出x,把x的值代入①求出y即可;(2)移项,合并同类项,求出不等式的解集,最后在数轴上表示出来即可.22、【答案】(1)解:所作图形如图所示:(2)-1①2【考点】作图-平移变换(﹣1,2).【解析】【解答】解:(2)P1故答案为:﹣1,2.【分析】(1)分别将点A、B、C向左平移4个单位,再向上平移1个单位,然的坐标.后顺次连接;(2)根据平移的性质,结合图形写出点P123、【答案】(1)解:由题意可得,18÷ =54(人),即本次被调查的七年级学生有54人(2)解:由题意可得,非常喜欢的人数为:54× =30,故补全的条形统计图,如右图所示(3)解:由题意可得,720× =640(人),即该校七年级有640名学生支持“小组合作学习”方式【考点】用样本估计总体,扇形统计图,条形统计图【解析】【分析】(1)根据统计图中的数据可以求得本次被调查的七年级学生的人数;(2)根据(1)中的答案可以求得非常喜欢的人数,从而可以补全条形统计图;(3)根据统计图中的数据可以求得该校七年级有多少名学生支持“小组合作学习”方式.24、【答案】已知①等量代换②BD③CE④同位角相等,两直线平行⑤两直线平行,同位角相等⑥等量代换⑦内错角相等,两直线平行【考点】平行线的判定【解析】【解答】证明:∵∠1=∠2(已知)∠1=∠3(对角线相等)∴∠2=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行).故答案为:已知,等量代换,BD,CE,同位角相等,两直线平行,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.【分析】推出∠2=∠3,根据平行线判定推出BD∥CE,推出∠C=∠ABD,推出AC∥DF,即可得出答案.25、【答案】(1)解:设A型电脑x元/台,B型电脑y元/台.根据题意得:,解得:答:A型电脑4800元/台,B型电脑3200元/台(2)解:设购买a台A型电脑,(45﹣a)台B型电脑.根据题意得:4800a+3200(45﹣a)≤160000,解得:a≤10答:最多购买10台A型电脑【考点】二元一次方程组的应用,一元一次不等式的应用【解析】【分析】(1)设A型电脑x元/台,B型电脑y元/台.然后根据购买A 型电脑3台,B型电脑8台共需40000元;若购买A型电脑14台,B型电脑4台共需80000元列方程组求解即可;(2)设购买a台A型电脑,(45﹣a)台B型电脑.然后根据总费用不超过160000元列不等式求解即可.26、【答案】(1)解:由平移的性质得:△ABC≌△DEF,∴AB=DE,AB∥DE,∴四边形ABED为平行四边形,∴AD∥BF,∠ADG=∠ABC,∴∠ADG=∠DEF,∴∠ABC=∠DEF=∠ADG,∵∠AGE为△ADG的外角,∴∠AGE=∠DAG+∠ADG=∠GAD+∠ABC(2)解:AG⊥DE,理由为:由平移的性质得到∠EDF=∠BAC,∵∠EDF=∠DAG,∴∠BAC=∠DAG,∵AB∥DE,∴∠ABC+∠BEG=180°,∵∠CAG+∠CEG=180°,∴∠ABC=∠CAG,∵MN∥BC,∴∠ABC=∠MAB,∴∠MAB=∠CAG,∵∠MAB+∠BAC+∠CAG+∠DAG=180°,∴∠CAG+∠BAC=90°,即∠BAG=90°,∵AB∥DE,∴∠BAG+∠AGD=90°,则AG⊥DE.【考点】平行线的判定与性质,多边形内角与外角【解析】【分析】(1)利用平移的性质得到AB与DE平行且相等,得到四边形ABED为平行四边形,利用平行四边形的性质得到对角相等,利用外角性质即可得证;(2)AG垂直与DE,理由为:由平移的性质得到∠EDF=∠BAC,根据∠EDF=∠DAG,等量代换得到∠BAC=∠DAG,由AB与DE平行,利用两直线平行同旁内角互补得到一对角互补,等量代换得到∠ABC=∠CAG,利用等式的性质及平行线的性质即可得证.27、【答案】(1)解:由非负数的性质得,m﹣3=0,n﹣4=0,解得m=3,n=4,所以,A(0,3)B(4,0)(2)解:设点E的横坐标为a,。
七年级练习数学参考答案一、选择题二、填空题11. 1− 12. 答案不唯一,m 为负数即可 13. 两点之间,线段最短 14. 318422x x +=−15. >16. 4;1说明:第14题写出方程的解也给3分;第16题第一空1分,第二空2分.三、解答题17. 解:(1)()()3258⨯−−−+658=−++ ········································································2分 7=········································································3分(2)()21126|3|2⎛⎫⨯−+−÷− ⎪⎝⎭()1=12634⨯+−÷········································································2分 ()=32+−········································································3分 =1········································································4分18. 解:(1)原方程可化为:733x x +=− ········································································1分 102x = ········································································2分 5x =········································································3分(2)原方程可化为:2(1)512x x −=−− ········································································1分 22512x x −=−− ········································································2分 35x =− ········································································3分 53x =−········································································4分19. 解: 3()4418a b a b −+−+3()4()18a b a b =−+−+7()18a b =−+ ········································································2分因为3a b −=,········································································3分所以7()18211839a b −+=+=. ········································································4分即3()441839a b a b −+−+=.20. 解:(1)作图如图所示:作出点B (保留作图痕迹); ········································································1分作出符合条件的射线OP ; ········································································2分作出点C ,并连接CA ,CB ; ········································································3分 (2)<········································································4分21. 解:因为∠AOD 与∠BOC 互为补角, 所以∠AOD +∠BOC =180°.········································································1分因为∠AOD = ∠AOC+∠COD ,∠BOC = ∠BOD+∠COD , 所以∠AOC+∠COD+∠BOD+∠COD=180°. ················································2分因为∠AOC =20°,∠BOD =2∠COD , 所以20°+4∠COD=180°. ········································································3分 所以∠COD=40°.········································································4分答:∠COD 的度数为40°.CAP BMN O22.解:(1)由图可知AB=AC+CB .因为AB =12,AC =2,所以12210CB AB AC =−=−=. ··································································1分因为D 为线段BC 的中点, 所以1110522CD CB ==⨯=.········································································2分(2)当E 在点A 右侧时, 如图①.因为5AE CD ==,且AB =12,所以1257EB AB AE =−=−=. ········································································3分当E 在点A 左侧时, 如图②.因为5AE CD ==,且AB =12, 所以12517EB EA AB =+=+=. ····························································4分综上所述,EB 的长为7或17.23. 解:设还需要增加x 名文物修复师才能按时完成修复工作. ······························1分依题意列方程,得10×16720+20(16+x)720=1. ··········································3分解得 x =12.··································································4分答:还需要增加12名文物修复师才能按时完成修复工作.························5分24. 解:(1)132. ·················································································1分因为17−<,所以()1131&7722−=−+=.(2)若2x >,2&1x x =+,于是5213x x ++=,解得12x =,舍; ·····················2分 若2x =,2&2x x =+,于是5223x x ++=,解得2x =,成立; ·····················3分 若2x <,2&22xx =+,于是52223x x ++=,解得87x =,成立·····················4分所以x 的值为2或87. 图①ACED B图②ACD BE(3)32. ·················································································5分 25.解:(1)①15;·················································································1分②∠MON =∠BOC ;·····································································2分(2)解:0120 1.α︒<<︒当时,如图 因为 2AOB BOC αα∠=∠=,,所以3.22AOC AOB BOC ααα∠=∠++=∠=因为OM 平分∠AOC , 所以.1234MOC AOC α∠=∠=因为ON 平分∠BOC , 所以.1214NOC BOC α∠=∠=(说明:两次角平分线用对一次可给1分)所以311.442MON MOC NOC ααα∠−∠==∠−= ·············································4分120180 2.α︒<<︒当时,如图因为2AOB BOC αα∠=∠=,,所以360()3603.2AOC AOB BOC α∠=︒−∠+∠=︒−因为OM 平分∠AOC ,所以83.14102MOC AOC α∠=∠=︒−因为ON 平分∠BOC , 所以.1214NOC BOC α∠=∠=(说明:两次角平分线用对一次可给1分) 所以11.820MON MOC NOC α∠=∠+∠=︒− 综上所述,1801.2MON MON αα∠=∠=︒−或·············································6分26. (1)212x −=−;是. ·············································2分(2)因为点 A 和点B 分别表示的数为a ,b , 所以线段AB 的中点表示的数为2a bc +=. 图 1图 2因为a=0.5,所以0.52b c+ =.因为线段AB的美好点恰好是线段AB的中点,所以代入方程ax b ab+=得:0.5+0.50.52bb b⨯+=.·································3分解得:16 b=−.所以0.5126bc+==. ·······························································4分(3)46. ·················································································6分。
海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学2014.1一、选择题(本题共36分,每题3分) 1、—6的相反数是 A 、—6B 、6C 、61-D 、61 2、下列四个数中,最小的数是 A 、|—6| B 、—2C 、0D 、21-3、右图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是A B C D4、据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,把数3 120 000用科学记数法表示为A 、51012.3⨯ B 、710312.0⨯ C 、5102.31⨯ D 、61012.3⨯5、若53=x 是关于x 的方程05=-m x 的解,则m 的值为 A 、3 B 、31 C 、-3 D 、31-6、如图,下列说法中不正确...的是 (A )直线AC 经过点A(B )射线DE 与直线AC 有公共点 (C )点B 在直线AC 上(D )直线AC 与线段BD 相交于点A 7、下列运算正确的是A 、42633=-a a B 、532532b b b =+ C 、b a ba b a 22245=- D 、ab b a =+8、将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是A B C D9、若α∠与β∠互为补角, β∠是α∠的2倍,则α∠为A 、30°B 、40°C 、60°D 、120°10、如图,直线AB 与CD 相交于点O ,OE 平分AOC ∠,且︒=∠140BOE ,则BOC ∠为 A 、140° B 、100° C 、80° D 、40°11、如图,从边长(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形ABCD (不重叠无缝隙),则AD 、AB 的长分别是 A 、3、2a+5 B 、5、2a+8 C 、5、2a+3 D 、3、2a+212、在三角形ABC 中,AB=8,AC=9,BC=10.o P 为BC 边上的一点,在边AC 上取点1P ,使得01CP CP =。
2020-2021学年北京海淀区七年级上期末数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)如图,能用∠1、∠ABC、∠B三种方法表示同一个角的是()A.B.
C.D.
解:A、∠1、∠ABC、∠B三种方法表示的是同一个角,故此选项正确;
B、∠1、∠AB
C、∠B三种方法表示的不一定是同一个角,故此选项错误;
C、∠1、∠ABC、∠B三种方法表示的不一定是同一个角,故此选项错误;
D、∠1、∠ABC、∠B三种方法表示的不一定是同一个角,故此选项错误;
故选:A.
2.(3分)“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为()
A.1.02×106B.1.02×105C.10.2×105D.102×104
解:1020000=1.02×106.
故选:A.
3.(3分)如表是四个城市今年一月份某一星期的平均气温;其中,平均气温最低的城市是()
城市吐鲁番乌鲁木齐喀什阿勒泰气温(℃)﹣9﹣16﹣7﹣25 A.阿勒泰B.喀什C.吐鲁番D.乌鲁木齐
解:所给的数的大小顺序为﹣7>﹣9>﹣16>﹣25,
∴阿勒泰的气温最低,
故选:A.
第1 页共15 页。
七年级第一学期期末调研数学一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个.1. 5-的相反数是()A .15B .15- C .5 D .5-2. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站关注.据统计,关键词“十九大”在1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应 为()A .517.410⨯B .51.7410⨯C .417.410⨯D .60.17410⨯ 3. 下列各式中,不相等...的是()A .(-3)2和-32B .(-3)2和32C .(-2)3和-23D .32-和32- 4. 下列是一元一次方程的是()A .2230x x --=B .25x y +=C .112x x+= D .10x += 5. 如图,下列结论正确的是()A. c a b >>B.11b c>C. ||||a b <D. 0abc >6. 下列等式变形正确的是()A. 若35x -=,则35x =-B. 若1132x x -+=,则23(1)1x x +-= C. 若5628x x -=+,则5286x x +=+ D. 若3(1)21x x +-=,则3321x x +-= 7. 下列结论正确的是()A. 23ab -和2b a 是同类项B.π2不是单项式 C. 比大D. 2是方程214x +=的解8. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是()A. B. C. D.9. 已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是()A. 点A 在线段BC 上B. 点B 在线段AC 上C. 点C 在线段AB 上D. 点A 在线段CB 的延长线上10. 由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是()A. 6B. 5C. 4D. 3二、填空题(每小题2分,共16分)11. 计算:48°37'+53°35'=__________.12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费元.(用含a ,b 的代数式表示) 13.已知,则=.14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A ,B ,C 分别表示天安门、北京西站、北京南站, 经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC =°.若2是关于的一元15.一次方程的解则a = ________. 16. 规定图形表示运算a b c --,图形表示运算x z y w --+.则 + =________________(直接写出答案).17. 线段AB =6,点C 在直线AB 上,BC =4,则AC 的长度为.18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,称为第一次2|2|(3)0a b -++=ab 从正面看从上面看BC变化,再对图(2)的每个边做相同的变化, 得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花 图案.如不断发展下去到第n 次变化时,图 形的面积是否会变化,________(填写“会” 或者“不会”),图形的周长为.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分) 19.计算:(1)()()21862⎛⎫-⨯-+- ⎪⎝⎭;(2)()411293⎛⎫-+-÷--- ⎪⎝⎭.20.解方程:(1)3(21)15x -=;(2)71132x x-+-=. 21.已知37=3a b --,求代数式2(21)5(4)3a b a b b +-+--的值. 22. 作图题:如图,已知点A ,点B,直线l 及l 上一点M .(1)连接MA ,并在直线l 上作出一点N ,使得点N 在点M 的左边, 且满足MN =MA ;(2)请在直线l 上确定一点O ,使点O 到点A 与点O 到点B 的距离之和最短,并写出画图的依据.23. 几何计算:如图,已知∠AOB =40°,∠BOC =3∠AOB ,OD 平分∠AOC ,求∠COD 的度数. 解:因为∠BOC =3∠AOB ,∠AOB =40°所以∠BOC =__________°所以∠AOC =__________ + _________ =__________° + __________° =__________° 因为OD 平分∠AOC 所以∠COD =12__________=__________°24. 如图1, 线段AB =10,点C , E , F 在线段AB 上.(1)如图2, 当点E, 点F是线段AC和线段BC的中点时,求线段EF的长;(2)当点E, 点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.25. 先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。
七年级第一学期期末调研数学参考答案 2019.1一、选择题(本大题共30分,每小题3分)二、填空题(本大题共16分,每小题2分) 11. <12. 2, 58 (答56,57,59,60均算正确)13. 答案不唯一,如:32x ﻩﻩ 14. 42b a - 15. COD ∠ ,EOF ∠(写对1个得1分,全对得2分) 16. (2700)5900x x -+=17. -2或18(写对1个得1分,全对得2分)18. (1) -2; (2) 2(每空1分)三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.(每小题4分)解:(1)原式=59(3)-÷- …………………………………………………………………2分=53+=8………………………………………………………………………………4分(2)原式=15(8)(8)1(8)24-⨯+-⨯--⨯=4810--+ ………………………………………………………………………3分 =2-…………………………………………………………………………………4分 (若是先做括号,则括号内加减法正确得3分,最后一步也正确,得4分)20. (每小题4分) 解:(1)5812x x +=-5218x x +=- ……………………………………………………………………2分77x =- ……………………………………………………………………3分 1x =- ……………………………………………………………………4分(2)12323x x+-=解:3(1)2(23)x x +=- ……………………………………………………………………1分3346x x +=- ……………………………………………………………………2分91x = ……………………………………………………………………………3分 19x = ……………………………………………………………………………4分21.(本小题4分)解:原式22612364ab a b ab a b =-+-++ …………………………………………2分84a b =-+ ……………………………………………………………………3分∵22a b -=-,∴原式844(2)4(2)8a b a b =-+=--=-⨯-=.……………………………………4分EA C22.(本小题4分)(1)-(3)如图所示:正确画出OD ,O E……………………1分正确画出点F …………………………2分正确画出点P …………………………3分(4) 两点之间,线段最短 . …………………………4分四.解答题(本大题共11分,23题6分,24题5分)23.(本小题6分)(1)解:方法一:∵8AC =,2CB =,∴10AB AC CB =+=,…………………………………………………………………1分 ∵点M 为线段AB 的中点, ∴152BM AB ==. .………….………………………………………………………2分 ∴523CM BM CB =-=-=..…………….…………………………………………3分 或者∴853CM AC AM =-=-=.…………….……………………………………………3分(2)解:点M 是线段CD 的中点,理由如下:方法一:∵8BD AC ==,…………………………………………………………………………4分 ∴由(1)可知,853DM DB MB =-=-=. ……………………………………………5分∴3DM MC ==,∴由图可知,点M 是线段CD 的中点. ……………………………………………6分方法二:∵AC BD =,∴AC DC BD DC -=-,∴AD CB =. ………………………………………………………………………………4分∵点M 为线段AB 的中点,∴AM MB =,………………………………………………………………………………5分 ∴AM AD MB CB -=-,∴DM MC =∴由图可知,点M 是线段CD 的中点. …………………………………………………6分24.(本小题5分)解:(1)15S =. ………………………………………………………………………………2分(2)由计算知:123...945++++=, ………………………………………………3分依题意可列方程:415345x ⨯-=, ……………………………………………4分 解得:5x =. ……………………………………………………………………5分(注:过程中体现出45,得第3分.)25.(本小题6分)解:(1)2x =. ……………………………………………………………………………1分(2)答案不唯一,如:1k =,3b =.(只需满足3b k =即可) …………………2分(3)方法一:依题意:40k b +=, …………………………………………………………3分∵0k ≠, ∴4b k =-. ………………………………………………………………………4分解关于y 的方程:32b y k+=, ∴324y +=-. …………………………………………………………………5分 解得:2y =-. …………………………………………………………………6分方法二:依题意:40k b +=, …………………………………………………………3分 ∴4b k =-.解关于y 的方程:(32)(4)0k y k +--=,……………………………………4分360ky k +=,∵0k ≠,∴360y +=. …………………………………………………………5分 解得:2y =-. …………………………………………………………6分 ﻬ62.(本小题6分)解:(1)50BOD ∠=︒ ………………………………………………………1分(2)①补全图形如下:……………………………………………………2分 45AON α∠=+︒….…………………………………………………………………3分 ②情形一:点D 在BOC ∠内.此时,45AON α︒∠=+,90COD ︒∠=,依题意可得:4590180α︒︒++=︒,解得:45α︒=. ……………………………………………………………………………4分 情形二:点D 在BOC ∠外.在0°α<≤45°的条件下,补全图形如下: 此时,45AON ︒∠=,…………………………………………………………………5分 90+2COD α︒∠=,依题意可得:B AB A45902180α︒︒++=︒解得:22.5α︒=.………………………………………………………………………6分 综上,α的取值为45︒或22.5︒.27.(本小题7分)解:(1)2;………………………………………………………………………… 1分1,2,3 …………………………………………………………………………2分 (注:只答1,2不扣分)(2)①是; …………………………………………………………………………3分②∵122*=,∴21(12)1*=**∵()a b c a c **=*∴(12)111**=*∵aa=a∴111*=∴211*=. …………………5分(3) 不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的,,a b c 有:()()a c a b c b a c b c *=**=**=*,这说明数阵每一列的数均相同.∵111*=,222*=,333*=,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴12=2*,21=1*,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵. ……………………………………7分 方法二:由条件二可知,a b *只能取1,2或3,由此可以考虑a b *取值的不同情形.*:例如考虑12*=.情形一:121*=,若满足交换律,则211*可知:再次计算12*=**=*=,矛盾;12(21)2222*=情形二:122*=,由(2)可知, 211*≠*,不满足交换律,矛盾;1221*=情形三:123*=,若满足交换律,即213*可知:再次计算22*=**=*=**=*=,22(21)232(12)2123*=矛盾.与222综上,不存在满足交换律的“有趣的”数阵. ……………………………………7分。
海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 2017.1学校 班级 姓名 成绩 一、选择题本题共36分;每小题3分在下列各题的四个备选答案中;只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1.根据国家旅游局数据中心综合测算;今年国庆期间全国累计旅游收入4 822亿元;用科学记数法表示4 822亿正确的是A .8482210⨯ B . 114.82210⨯ C . 1048.2210⨯ D . 120.482210⨯ 2.从正面观察如图的两个立体图形;得到的平面图形是 3.若30a +=;则a 的相反数是 A .3 B .13 C .13-D .3- 4.将下列平面图形绕轴旋转一周;可得到图中所示的立体图形的是 5.下列运算结果正确的是A. 55=-x xB. 532422x x x =+ C. b b b 34-=+- D. 022=-ab b a 6.西山隧道段是上庄路南延工程的一部分;将穿越西山山脉;隧道全长约4km .隧道贯通后;往来海淀山前山后地区较之前路程有望缩短一半;其主要依据是A .两点确定一条直线B .两点之间;线段最短C .直线比曲线短D .两条直线相交于一点7.已知线段10AB =cm ;点C 在直线AB 上;且2AC =cm ;则线段BC 的长为 A .12 cm B .8 cm C .12 cm 或8 cm D .以上均不对 8.若关于x 的方程042=-+a x 的解是2=x ;则a 的值等于 A . 8- B .0 C .2 D .89.下表为某用户银行存折中2015年11月到2016年5月间代扣水费的相关数据;其中扣缴水费最多的一次的金额为A .738.53元B .125.45元C .136.02元D .477.58元 10.如图所示;数轴上点A 、B 对应的有理数分别为a 、b ;下列说法正确的是A .0ab >B .0a b +>C .0a b -< D .0a b -<11.已知点A 、B 、C 、D 、E 的位置如图所示;下列结论中正确的是A .=130AOB ∠︒ B .AOB ∠=DOE ∠C .DOC ∠与BOE ∠互补D .AOB ∠与COD ∠互余12. 小博表演扑克牌游戏;她将两副牌分别交给观众A 和观众B ;然后背过脸去;请他们各自按照她的口令操作:a .在桌上摆3堆牌;每堆牌的张数要相等;每堆多于10张;但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数;从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌;我就能告诉你们最初的每堆牌数.”观众A 说5张;观众B 说8张;小博猜两人最初每一堆里放的牌数分别为 A .14;17 B .14;18 C .13;16 D .12;16 二、填空题本题共24分;每小题3分13. 用四舍五入法;精确到百分位;对2.017取近似数是 . 14. 请写出一个只含有字母m 、n ;且次数为3的单项式 . 15.已知()2120x y ++-=;则yx 的值是 .16.已知2=-b a ;则多项式233--b a 的值是 .17. 若一个角比它的补角大3648'︒;则这个角为 ︒ '. 18.下面的框图表示解方程320425x x +=-的流程.第1步的依据是日期 摘要 币种 存/取款金额 余额 操作员 备注151101 北京水费 RMB 钞 -125.45 874.55 010005B25 折 160101 北京水费 RMB 钞 -136.02 738.53 010005Y03折160301 北京水费 RMB 钞 -132.36 606.17 010005D05 折 160501北京水费RMB 钞-128.59477.5801000K19折.19.如图;在正方形网格中;点O 、A 、B 、C 、D 均是格点.若OE 平分∠BOC ;则∠DOE 的度数为︒.20.下面是一道尚未编完的应用题;请你补充完整;使列出的方程为24(35)94x x +-=.七年级一班组织了“我爱阅读”读书心得汇报评比活动;为了倡导同学们多读书;读好书;老师为所有参加比赛的同学都准备了奖品;. 三、解答题本题共40分;第21题8分;每小题各4分;第22-26题;每小题5分;第27题7分 21.计算:1111()12462+-⨯. 21031(1)2()162-÷+-⨯. 22.解方程:12324x x+--=. 23.设11324()()2323A x x y x y =---+-+.1当1,13x y =-=时;求A 的值;2若使求得的A 的值与1中的结果相同;则给出的x 、y 的条件还可以是 . 24.如图;平面上有四个点A ;B ;C ;D . 1根据下列语句画图: ①射线BA ;②直线AD ;BC 相交于点E ;③在线段DC 的延长线上取一点F ;使CF=BC ;连接EF . 2图中以E 为顶点的角中;小于平角的角共有 个.25.以下两个问题;任选其一作答;问题一答对得4分;问题二答对得5分. 如图;OD 是∠AOC 的平分线;OE 是∠BOC 的平分线. 问题一:若∠AOC =36°;∠BOC =136°;求∠DOE 的度数. 问题二:若∠AOB =100°;求∠DOE 的度数.26.如图1;由于保管不善;长为40米的拔河比赛专用绳AB 左右两端各有一段AC 和BD 磨损了;磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀剪刀只用于剪断麻绳就可以得到一条长20米的拔河比赛专用绳EF .请你按照要求完成下列任务:1在图1中标出点E 、点F 的位置;并简述画图方法; 2说明1中所标EF 符合要求.A图1 图227.在数轴上;把表示数1的点称为基准点;记作点O •. 对于两个不同的点M 和N ;若点M 、点N 到点O •的距离相等;则称点M 与点N 互为基准变换点. 例如:图1中;点M 表示数1-;点N 表示数3;它们与基准点O •的距离都是2个单位长度;点M 与点N 互为基准变换点.图11已知点A 表示数a ;点B 表示数b ;点A 与点B 互为基准变换点.① 若a =0;则b = ;若4a =;则b = ; ② 用含a 的式子表示b ;则b = ; 2对点A 进行如下操作:先把点A 表示的数乘以52;再把所得数表示的点沿着数轴向左移动3个单位长度得到点B . 若点A 与点B 互为基准变换点;则点A 表示的数是 ;3点P 在点Q 的左边;点P 与点Q 之间的距离为8个单位长度.对P 、Q 两点做如下操作:点P 沿数轴向右移动kk >0个单位长度得到1P ;2P 为1P 的基准变换点;点2P 沿数轴向右移动k 个单位长度得到3P ;4P 为3P 的基准变换点;……;依此顺序不断地重复;得到5P ;6P ;…;n P . 1Q 为Q 的基准变换点;将数轴沿原点对折后1Q 的落点为2Q ;3Q 为2Q 的基准变换点; 将数轴沿原点对折后3Q 的落点为4Q ;……;依此顺序不断地重复;得到5Q ;6Q ;…;n Q .若无论k 为何值;n P 与n Q 两点间的距离都是4;则n = .海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案 2017.1一、选择题本题共36分;每小题3分二、填空题本题共24分;每小题3分13.2.02 ; 14. 22m n -答案不唯一; 15.1; 16. 4; 17.108 ;24; 18.等式两边加或减同一个数或式子;结果仍相等;19.22.5 ; 20.奖品为两种书签;共35份;单价分别为2元和4元;共花费94元;则两种书签各多少份.答案不唯一三、解答题本题共40分;第21题8分;每小题各4分;第22-26题;每小题5分;第27题7分 21.1解:原式326=+- ----------------------3分 1=-. ----------------------4分 2解:原式11()1628=+-⨯ --------------------2分 122=- --------------------3分 32=-. ----------------------4分 22.解:()2+1122x x -=- . ---------------------2分2+2122x x -=-. ----------------------3分 312x =. ---------------------- 4分4x =. ---------------------- 5分 23.解:1143242323A x x y x y =--+-+ ---------------------2分 62x y =-+ . ---------------------3分当1,13x y =-=时;=4.∴A 的值是4. ----------------4分 232x y -+= .答案不唯一 ---------------5分 24.1---------------4分28. ---------------5分 25.解:问题一:∵ OD 平分AOC ∠;36AOC ∠=︒;∴ 1182DOC AOC ∠=∠=︒. …………………2分 ∵ OE 平分BOC ∠;136BOC ∠=︒; ∴ 1682EOC BOC ∠=∠=︒. …………………3分 ∴ 50DOE EOC DOC ∠=∠-∠=︒. ……………… 4分 问题二:∵ OD 平分AOC ∠; ∴ 12DOC AOC ∠=∠. …………………1分 ∵ OE 平分BOC ∠; ∴ 12EOC BOC ∠=∠. …………………2分 ∴ DOE EOC DOC ∠=∠-∠12AOB =∠. ……………… 4分 ∵ 100AOB ∠=︒;∴ 50DOE ∠=︒. ……………… 5分 注:无推理过程;若答案正确给2分 26.解:1解法不唯一……………… 2分如图;在CD 上取一点M ;使CM =CA ; F 为BM 的中点;点 E 与点C 重合. …3分 2∵F 为BM 的中点; ∴MF =BF .∵AB =AC +CM +MF +BF ;CM =CA ; ∴AB =2CM +2MF =2CM +MF =2EF . ∵AB =40m ;∴EF =20m .……………… 4分∵20AC BD +<m;40AB AC BD CD =++=m; ∴CD >20m.∵点E与点C重合;20EF=m;∴20CF=m.∴点F落在线段CD上.∴EF符合要求.……………… 5分27.解:1①2;-2;……………… 2分②2a-;……………… 4分2107;……………… 5分34或12.……………… 7分。
2022北京海淀初一(上)期末数 学-一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的。
请将正确选项前的字母填在表格中相应的位置。
1.(3分)2022年北京冬奥会计划于2月4日开幕.作为2022年北京冬奥会雪上项目的主要举办地,张家口市崇礼区建成7家大型滑雪场,拥有169条雪道,共162000米.数字162000用科学记数法表示为( ) A .316210⨯B .416.210⨯C .51.6210⨯D .60.16210⨯2.(3分)如果a 的相反数是1,则2a 的值为( ) A .1B .2C .1−D .2−3.(3分)下列等式变形正确的是( ) A .若27x =,则27x =B .若10x −=,则1x =C .若322x x +=,则322x x +=D .若132x −=,则13x −= 4.(3分)关于x 的整式2(ax bx c a ++,b ,c 均为常数)的常数项为1,则( ) A .1a =B .1b =C .1c =D .1a b c ++=5.(3分)某地居民生活用水收费标准:每月用水量不超过20立方米,每立方米a 元;超过部分每立方米(2)a +元.该地区某家庭上月用水量为25立方米,则应缴水费( ) A .25a 元B .(2510)a +元C .(2550)a +元D .(2010)a +元6.(3分)已知点A ,B ,C ,D 在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位长度.若点A ,B ,C ,D 分别表示数a ,b ,c ,d ,且满足0a d +=,则b 的值为( )A .1−B .12−C .12D .17.(3分)中国有悠久的金石文化,印信是金石文化的代表之一,南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印.它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体.从正面看该几何体得到的平面图形是( )A .B .C .D .8.(3分)几个人一起去购买物品,如果每人出8元,那么剩余3元;如果每人出7元,那么差4元.若设有x 人,则下列方程中,符合题意的是( ) A .8374x x −=+B .8374x x +=−C .3487x x −+=D .3487x x ++=9.(3分)关于x 的方程32kx x −=的解是整数,则整数k 的可能值有( ) A .1个B .2个C .3个D .4个10.(3分)如图,三角尺COD 的顶点O 在直线AB 上,90COD ∠=︒.现将三角尺COD 绕点O 旋转,若旋转过程中顶点C 始终在直线AB 的上方,设AOC α∠=,BOD β∠=,则下列说法中,正确的是( )A .若10α=︒,则70β=︒B .α与β一定互余C .α与β有可能互补D .若α增大,则β一定减小二、填空题(本题共16分,每小题2分) 11.(2分)计算:1(1)3−−−= .12.(2分)关于x 的方程2ax =的解是2x =,则a 的值是 .13.(2分)如图所示的网格是正方形网格,ABC ∠ DEF ∠(填“>”,“ =”或“<” )14.(2分)已知32x y =−,则整式245x y +−的值为 .15.(2分)某有理数满足它的绝对值等于它的相反数,写出一个符合该条件的数 .16.(2分)如图,已知点C 是线段AB 的中点,点D 是线段AB 上的一点,若1AD =,2CD =,则AB 的长度为 .17.(2分)如图,一艘货轮B 在沿某小岛O 北偏东60︒方向航行中,发现了一座灯塔A .某一时刻,灯塔A 与货轮B 分别到小岛O 的距离恰好相等,用量角器度量得到此时ABO ∠的度数是 ︒(精确到度).18.(2分)如图,若一个表格的行数代表关于x的整式的次数,列数代表关于x的整式的项数(规定单项式的项数为1),那么每个关于x的整式均会对应表格中的某个小方格.若关于x的整式A是三次二项式,则A对应表格中标★的小方格.已知B也是关于x的整式,下列说法正确的有.(写出所有正确的序号)①若B对应的小方格行数是4,则A B+对应的小方格行数一定是4;②若A B+对应的小方格列数是5,则B对应的小方格列数一定是3;③若B对应的小方格列数是3,且A B+对应的小方格列数是5,则B对应的小方格行数不可能是3.三、解答题(本题共54分,第19题6分,第20题8分,第21题6分,第22-23题,每小题6分,第24题6分,第25题5分,第26题6分,第27题7分)19.(6分)计算:(1)21 2525()32÷−⨯−;(2)215(3)()|4|26−⨯−+−.20.(8分)解方程:(1)5(1)333x x−+=−;(2)11 52x x−+=.21.(6分)如图,已知平面上四个点A,B,C,D,请按要求完成下列问题:(1)画直线AB,射线BD,连接AC;(2)在线段AC上求作点P,使得CP AC AB=−;(保留作图痕迹)(3)请在直线AB上确定一点Q,使点Q到点P与点D的距离之和最短,并写出画图的依据.22.(5分)先化简,再求值:222232(2)mn m n mn m n +−−,其中1m =,2n =−.23.(5分)如图,点O 在直线AB 上,90COD ∠=︒,BOC α∠=,OE 是BOD ∠的平分线. (1)若20α=︒,求AOD ∠的度数; (2)若OC 为BOE ∠的平分线,求α的值.24.(6分)某校初一(3)班组织生活小常识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了其中4个参赛者的得分情况.(2)补全表格,并写出你的研究过程.25.(5分)如果两个方程的解相差1,则称解较大的方程为另一个方程的“后移方程”.例如:方程20x −=是方程10x −=的后移方程.(1)判断方程210x +=是否为方程230x +=的后移方程 (填“是”或“否” ); (2)若关于x 的方程30x m n ++=是关于x 的方程30x m +=的后移方程,求n 的值.(3)当0a ≠时,如果方程0ax b +=是方程0ax c +=的后移方程,用等式表达a ,b ,c 满足的数量关系 . 26.(6分)在科幻世界里有各种造型奇特的小山.如图1是一座三棱锥小山,侧面展开图如图2所示,每个侧面完全相同.一只小狐狸在半山腰点M 处()MD MA =想饱览四周风景,它沿路径“M N K A −−− ”绕小山一周最终以最短路径到达山脚A 处,当小狐狸沿侧面的路径运动时,若MA NB ,则称MN 这段路为“上坡路”;若MA NB >,则称MN 这段路为“下坡路”;若NB KC ,则称NK 这段路为“上坡路”;若NB KC >,则称NK 这段路为“下坡路”. (1)当45ADB ∠=︒时,在图2中画出从点M 沿侧面环绕一周到达山脚点A 处的最短路径,并判断在侧面DAB 、侧面DBC 上走的是上坡路还是下坡路?(2)如果改变小山侧面顶角的大小,(1)中的结论是否发生变化呢?请利用量角器,刻度尺等工具画图探究,并把你的结论填入下表:为 .27.(7分)在数轴上,把原点记作点O ,表示数1的点记作点A .对于数轴上任意一点P (不与点O ,点A 重合),将线段PO 与线段PA 的长度之比定义为点P 的特征值,记作ˆP,即ˆPO P PA =,例如:当点P 是线段OA 的中点时,因为PO PA =,所以ˆ1P=. (1)如图,点1P ,2P ,3P 为数轴上三个点,点1P 表示的数是14−,点2P 与1P 关于原点对称.①2P = ;②比较1P ,2P ,3P 的大小 (用“<”连接); (2)数轴上的点M 满足13OM OA =,求ˆM; (3)数轴上的点P 表示有理数p ,已知ˆ100P<且ˆP 为整数,则所有满足条件的p 的倒数之和为 .参考答案一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的。
北京市海淀区2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 如图,点O 在直线AB 上,若乙BOC=89°50X 则"OC 的大小是()A. 90。
50‘B. 90°10'C. 90°D. 89°10z 2. 北京时间2019年4月10 0 21点整,全球新闻发布会宣布首次直接拍摄到黑洞的照片,这颗黑 洞距离地球5300万光年之遥,其中5300万这个数据可以用科学记数法表示为()A. 5.3 X 108B. 5.3 X 107C. 5.3 X 103D. 53 X 1023.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是() A. 一3 °CB. 15 °C 4. 下列计算正确的是()A. 2a + 3a = 5a 2若关于x 的方程2x + a - 4 = 0的解是尤=1,则a 的值等于(C ・由{= 2,得兀=| 8.下而图形中,射线OP 是表示北偏东60。
方向的是()C. 一 10 °C D ・ 一1 °C B. 5a 2b — 3ab 2 = 2ab C. 3x 2 - 2x 2 = x 2D. 6m 2 - 5m 2 = 15. 6. 7. A. 2 B. -2 实数",b 在数轴上的位置如图所示, A.大于0B.小于0 F 列四组等式变形中,正确的是(A.由5% + 7 = 0,得5咒=-7 C. 6 则茫的值()・C.等于0 B.由 2咒—3 = 0,D. —6D.为非负数 得2咒-3+3 = 0以长为&7旅6cm. \0crn.牡加的四条线段中的三条线段为边,可以画出三角形的个数为()A.1个B.2个C.3个D.4个 如图,点A 和点B 分别是棱长为20“?的正方体盒子上相邻而的两个中心.一只蚂蚁在盒子表而由A 处向B 处爬行,所走的最短路程是()A. 40<?加B. 20忑cmC. 20c/?/D. 10\/2cm填空题(本大题共8小题,共16.0分) 7筐西红柿,每筐以12仪为标准,超过或不足的千克数分别用正数、负数表示,称重记录如下(单位:kg ): -1> +1.5, 2, -0.5, -1.5, 1.5, 1 •则这7筐西红柿的总质量为 ______ .单项式一3ab 次数是 __ ・ 90。
北京市海淀区2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图,点O在直线AB上,若∠BOC=89°50′,则∠AOC的大小是()A. 90°50′B. 90°10′C. 90°D. 89°10′2.北京时间2019年4月10日21点整,全球新闻发布会宣布首次直接拍摄到黑洞的照片,这颗黑洞距离地球5300万光年之遥,其中5300万这个数据可以用科学记数法表示为()A. 5.3×108B. 5.3×107C. 5.3×103D. 53×1023.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是()A. −3℃B. 15℃C. −10℃D. −1℃4.下列计算正确的是()A. 2a+3a=5a2B. 5a2b−3ab2=2abC. 3x2−2x2=x2D. 6m2−5m2=15.若关于x的方程2x+a−4=0的解是x=1,则a的值等于()A. 2B. −2C. 6D. −66.实数a,b在数轴上的位置如图所示,则a−ba+b的值().A. 大于0B. 小于0C. 等于0D. 为非负数7.下列四组等式变形中,正确的是()A. 由5x+7=0,得5x=−7B. 由2x−3=0,得2x−3+3=0C. 由x6=2,得x=13D. 由5x=7.得x=578.下面图形中,射线OP是表示北偏东60°方向的是()A. B.C. D.9.以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数为()A. 1个B. 2个C. 3个D. 4个10.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A. 40cmB. 20√2cmC. 20cmD. 10√2cm二、填空题(本大题共8小题,共16.0分)11.7筐西红柿,每筐以12kg为标准,超过或不足的千克数分别用正数、负数表示,称重记录如下(单位:kg):−1,+1.5,2,−0.5,−1.5,1.5,1.则这7筐西红柿的总质量为______.12.单项式−3ab次数是______.13.90°−39°32′=______ .14.若三角形的两边长分别为3和5,且周长为奇数,则第三边可以是______(只填符合条件的一个即可).15.已知长方形的长是a,面积是s,用含a、s的代数式表示长方形的宽是______.16.如图,点M是线段AB的中点,AC:CB=1:2,CM=2.则AB=______.17.如果多项式−2a+3b+8的值为5,则多项式9b−6a+2的值等于______.18.由于提倡环保节能,自行车已成为市民日常出行的主要工具之一,据某自行车经销店4至6月份统计,某品牌自行车4月份销售200辆,6月份销售338辆.该品牌自行车销售量的月平均增长率为____________.三、计算题(本大题共1小题,共8.0分))]×[−10+(−3)2]19.[−12−(1−0.5×13四、解答题(本大题共8小题,共46.0分)20.解方程:(1)5(2−x)=−(2x−7);(2)x+36=1−3−2x4.21.先化简,再求值:3x2−[6xy+2(x2−y2)]−3(y2−2xy),其中x=−2,y=3.22.如图,已知点A、B、C,根据下列语句画图:(尺规作图,要保留作图痕迹.)(1)画出直线AB;(2)画出射线AC;(3)在线段AB的延长线上截取线段BD,使得AD=AB+BC;(4)画出线段CD.23.如图是一个数值转换机的示意图,若输入的x的值为6,y的值为−4,求输出的结果.24.在某年全军足球甲级A组的前11场比赛中,某队保持连续不败,共积23分.按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?25.在数轴上,有理数m,n的位置如图所示:(1)试在数轴上标出有理数−m,−n的大致位置;(2)试将m,n,−m,−n用“<”连接起来.26.如图,∠AOM与∠BOM互余,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.27.从2开始,连续的偶数相加,它们的和的情况如下表:加数m的个数和(S)1-----------→2=1×22--------→2+4=6=2×33------→2+4+6=12=3×44----→2+4+6+8=20=4×55--→2+4+6+8+10=30=5×6(1)按这个规律,当m=6时,和为______;(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:______;(3)应用上述公式计算:①2+4+6+⋯+200②202+204+206+⋯+300.-------- 答案与解析 --------1.答案:B解析:本题考查的是角的计算有关知识,根据点O在直线AB上,∠BOC=89°50′,即可得出∠AOC的度数.解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=89°50′,∴∠AOC=90°10′.故选B.2.答案:B解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,据此即可解答.解:5300万=53000000,53000000=5.3×107.故选B.3.答案:C解析:本题考查了有理数大小的比较,属于基础题.先比较大小,再判断结果即可.解:因为−10℃<−3℃<−1℃<15℃,所以平均气温最低的是−10℃.故选C.4.答案:C解析:解:A、2a+3a=5a,故本选项错误;B、5a2b−3ab2不能合并同类项,故本选项错误;C、正确;D、6m2−5m2=m2,故本选项错误;故选:C.根据合并同类项是把同类项系数相加减而字母和字母的指数不变,由此计算即可.本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.5.答案:A解析:把x=1代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.解:把x=1代入方程得:2+a−4=0,解得:a=2,故选:A.6.答案:B解析:本题考查了实数与数轴,根据数轴得出−1<a<0,b>2,可判断出a−b<0,a+b>0,进而可得答案.解:根据数轴可知:−1<a<0,b>2,所以a−b<0,a+b>0,<0.所以a−ba+b7.答案:A解析:解:A、由5x+7=0,得5x=−7,故正确;B、由2x−3=0,得2x−3+3=0+3,故错误;=2,得x=12,故错误;C、由x6D、由5x=7.得x=7,故错误;5故选A.根据等式的性质进行选择即可.本题考查了等式的性质,掌握等式的性质是解题的关键.8.答案:C解析:本题考查的是方向角的概念,熟知方向角的表示方法是解答此题的关键.根据方向角的概念进行解答即可.解:∵方向角是以正北,正南方向为基准,来描述物体所处的方向,∴射线OP是表示北偏东60°方向可表示为如图.故选C.9.答案:C解析:解:分成四种情况:①4cm,6cm,8cm;②4cm,6cm,10cm;③4cm,8cm,10cm;④6cm,8cm,10cm,∵4+6=10,∴②不能够成三角形,故可以画出三角形的个数为3个.故选:C.此题分成四种情况,再利用三角形的三边关系讨论即可.此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.答案:C解析:本题考查了两点之间线段最短在实际问题中的应用,熟练掌握两点之间线段最短这一性质是解决本题的关键.根据两点之间线段最短这一性质,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.解:如图,根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.11.答案:87kg解析:解:−1+1.5+2−0.5−1.5+1.5+1=3(kg),3+12×7=87(kg).即这7筐西红柿的总质量为87kg.故答案为:87kg.先求出7筐西红柿称重记录的和,再加上7筐西红柿标准质量的和,即可求解.本题考查了正负数在实际生活中的应用,利用有理数的加法运算是解题关键.12.答案:2解析:解:单项式−3ab次数是:2.故答案为:2.直接利用单项式的次数确定方法分析得出答案.此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.答案:50°28′解析:解:90°−39°32′=50°28′.故答案为:50°28′.根据度、分、秒是60进制进行计算即可得解.本题考查了度、分、秒的换算,关键在于度分秒是60进制.14.答案:3或5或7(其中一个即可)解析:解:根据三角形的三边关系,得第三边应大于5−3=2,而小于5+3=8.又三角形的两边长分别为3和5,且周长为奇数,所以第三边应是奇数,则第三边是3或5或7(任意填其中一个即可).根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围;再根据已知的两边和是8,即为偶数,结合周长为奇数,则第三边应是奇数,即可求解.考查了三角形的三边关系,关键是结合已知的两边和周长,分析出第三边应满足的条件.15.答案:sa解析:解:由题意可得:,长方形的宽是:sa.故答案为:sa根据题意可以用含a、s的代数式表示长方形的宽.本题考查列代数式,解答本题的关键是根据面积公式找出a,s和宽之间的关系式,列出相应的代数式.16.答案:12解析:解:∵点M是线段AB的中点,AC:CB=1:2,∴AM=12AB,AC=13AB,∴CM=12AB−13AB=16AB,∵CM=2.∴AB=12.故答案为:12.由中点的定义、线段的倍分关系可求AM=12AB,AC=13AB,根据线段的和差关系和已知条件可求AB即可.考查了两点间的距离,解题的关键是由中点的定义、线段的倍分关系得到AM=12AB,AC=13AB.17.答案:−7解析:解:∵−2a+3b+8=5,∴−2a+3b=−3,则原式=3(−2a+3b)+2=3×(−3)+2=−9+2=−7,故答案为:−7.根据−2a+3b+8=5可得−2a+3b=−3,将其代入到由原式变形所得多项式3(−2a+3b)+2,计算可得.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.答案:30%解析:本题考主要查了一元二次方程的应用.判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.设该品牌自行车销售量的月均增长率为x.等量关系为:4月份的销售量×(1+增长率)2=6月份的销售量,把相关数值代入求解即可.解:设该品牌自行车销售量的月均增长率为x,根据题意列方程:200(1+x)2=338,解得x1=−2.3(不合题意,舍去),x2=30%.答:该品牌自行车销售量的月均增长率30%.故答案为30%.19.答案:解:[−12−(1−0.5×13)]×[−10+(−3)2]=[−1−(1−12×13)]×[−10+9]=[−1−(1−16)]×(−1)=[−1−56]×(−1)=−11×(−1)=116.解析:本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法:先算乘方,后算乘除,最后算加减,有括号的先算括号里面的.根据有理数混合运算的运算法则可以解答本题.20.答案:解:(1)去括号,可得:10−5x=7−2x,移项,合并同类项,可得:3x=3,解得x=1.(2)去分母,可得:2(x+3)=12−3(3−2x),去括号,可得:2x+6=12−9+6x,移项,合并同类项,可得:4x=3,解得x=0.75.解析:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求解即可.此题主要考查了解一元一次方程的方法,要熟练掌握,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.21.答案:解:3x2−[6xy+2(x2−y2)]−3(y2−2xy)=3x2−(6xy+2x2−2y2)−3y2+6xy=3x2−6xy−2x2+2y2−3y2+6xy=x2−y2,当x=−2,y=3时,原式=(−2)2−32=4−9=−5.解析:此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.22.答案:解:如图所示:(1)直线AB即为所求;(2)射线AC即为所求;(3)D点即为所求;(4)线段CD即为所求.解析:此题主要考查了直线、射线、线段的定义,正确把握相关定义是解题关键.直接利用直线、射线、线段的定义分别得出答案.23.答案:解:根据题意得,[2x+(y)2]÷4=(2x+y2)÷4,把x=6,y=−4代入得,(12+16)÷4=7.即输出的结果为7.解析:本题考查的是有理数的混合运算,求代数式的值,解题关键是理解题意,依据图示把x,y的值代入所给程序计算即可.24.答案:解:设设该队共胜了x场,根据题意得:3x+(11−x)=23,解得x=6.故该队共胜了6场.解析:可设该队共胜了x场,根据“11场比赛保持连续不败”,那么该队平场的场数为11−x,由题意可得出:3x+(11−x)=23,解方程求解.此题考查了一元一次方程的应用,列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.25.答案:解:(1)如图,(2)m<−n<n<−m.解析:根据有理数的大小比较,即可解答.本题考查了有理数的大小比较,解决本题的关键是熟记有理数的大小比较.26.答案:解:∵∠AOM与∠BOM互余,∴∠AOM+∠BOM=90°,即∠AOB=90°.∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC−∠NOC=12∠AOC−12∠BOC=12(∠AOC−∠BOC)=12∠AOB=12×90°=45°.解析:此题考查角平分线定义,互余的定义.根据题意得出∠MON=12∠AOB是解题的关键.先由∠AOM与∠BOM互余,得出∠AOB=90°,再根据角平分线定义得出∠MOC=12∠AOC,∠NOC=12∠BOC,那么∠MON=∠MOC−∠NOC=12∠AOB=45°.27.答案:(1)42;(2)2+4+6+⋯+2m=m(m+1);(3)①2+4+6+⋯+200=100×101,=10100;②∵2+4+6+⋯+300=150×151=22650,∴202+204+206+⋯+300.=22650−10100,=12550.解析:解:(1)∵2+2=2×2,2+4=6=2×3=2×(2+1),2+4+6=12=3×4=3×(3+1),2+4+6+8=20=4×5=4×(4+1),∴m=6时,和为:6×7=42;(2)∴和S与m之间的关系,用公式表示出来:2+4+6+⋯+2m=m(m+1);(3)①2+4+6+⋯+200=100×101,=10100;②∵2+4+6+⋯+300=150×151=22650,∴202+204+206+⋯+300.=22650−10100,=12550.(1)仔细观察给出的等式可发现从2开始连续两个偶数和1×2,连续3个偶数和是2×3,连续4个,5个偶数和为3×4,4×5,从而推出当m=6时,和的值;(2)根据分析得出当有m个连续的偶数相加是,式子就应该表示成:2+4+6+⋯+2m=m(m+1).(3)根据已知规律进行计算,得出答案即可.此题主要考查了数字规律,要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值是解题关键.。
2020-2021学年北京海淀区七年级上期末数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)如图,能用∠1、∠ABC、∠B三种方法表示同一个角的是()A.B.
C.D.
2.(3分)“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为()
A.1.02×106B.1.02×105C.10.2×105D.102×104 3.(3分)如表是四个城市今年一月份某一星期的平均气温;其中,平均气温最低的城市是()
城市吐鲁番乌鲁木齐喀什阿勒泰气温(℃)﹣9﹣16﹣7﹣25 A.阿勒泰B.喀什C.吐鲁番D.乌鲁木齐4.(3分)下列运算中,正确的是()
A.2a+3b=5ab B.2a2+3a2=5a2
C.3a2﹣2a2=1D.2a2b﹣2ab2=0
5.(3分)若x=1是方程2x+a=0的解,则a=()
A.1B.2C.﹣1D.﹣2
6.(3分)实数a,b在数轴上表示的位置如图所示,则()
A.a>0B.a>b C.a<b D.|a|<|b|
7.(3分)设x、y、c是有理数,则下列判断错误的是()
第1 页共22 页。