初一数学下册平方差公式专项练习 (10)
- 格式:doc
- 大小:33.50 KB
- 文档页数:20
七年级数学下册平方差公式练习题及答案【打印版】(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b) C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2A.1个 B.2个 C.3个 D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是___________。
23 三、计算题9.利用平方差公式计算:2023×1913.10.计算:(a+2)(a 2+4)(a 4+16)(a -2).B 卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.4②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=______________________.②(a-b)(a2+ab+b2)=__________________.③(a-b)(a3+a2b+ab2+b3)=_____________________.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.5参考答案A卷一、1.D2.C 点拨:一个算式能否用平方差公式计算,•关键要看这个算式是不是两个数的和与这两个数的差相乘的形式,选项A,B,D都不符合平方差公式的结构特征,•只有选项C可以用平方差公式计算,故选C.3.D 点拨:①(3a+4)(3a-4)=(3a)2-42=9a2-16,②(2a2-b)(2a2+b)=(2a2)2-b2=4a4-b2,③(3-x)(x+3)=32-x2=9-x2,④(-x+y)(x+y)=-(x-y)(x+y)=-(x2-y2)=-x2+y2,故选D.4.C 点拨:因为(x+y)(x-y)=x2-y2,又x2-y2=30,x-y=-5,所以-5(x+y)=30,x+y=-6,•故选C.二、5.4x2-y2点拨:(-2x+y)(-2x-y)=(-2x)2-y2=4x2-y2.6.-3x2-2y2点拨:因为(-3x2+2y2)(-3x2-2y2)=(-3x2)2-(2y2)2=9x4-4y4,所以本题应填写-3x2-2y2.7.a;b-1点拨:把a+b-1转化为a+(b-1),把a-b+1转化为a-(b-1),可得(a+b-1)(a-b+1)=[a+(b-1)][a-(b-1)]=a2-(b-1)2.8.10 点拨:设较大的正方形的边长为a,较小的正方形的边长为b,则a+b=5,•a-b=2,所求的面积差为a2-b2,而(a+b)(a-b)=a2-b2,故a2-b2=10.67三、9.解:2023×1913=(20+23)×(20-23)=202-(23)2=400-49=39959. 点拨:先把两个因数分别转化成两数的和与这两个数的差,再利用平方差公式计算.10.解:(a+2)(a 2+4)(a 4+16)(a -2)=(a -2)(a+2)(a 2+4)·(a 4+16)=(a 2-4)(a 2+4)(a 4+16)=(a 4-16)(a 4+16)=a 8-162=a 8-256. 点拨:根据题中因式的结构特征,•依次运用平方差公式进行计算.B 卷一、1.解:(1)(2+1)(22+1)(24+1)…(22n +1)+1=(2-1)(2+1)(22+1)(24+1)…(22n +1)+1=(22-1)(22+1)(24+1)…(22n +1)+1=(24-1)(24+1)…(22n +1)+1=…=[(22n )2-1]+1=24n -1+1=24n ;(2)(3+1)(32+1)(34+1)…(32008+1)-401632=12(3-1)(3+1)(32+1)(34+1)…(32008+1)-401632=12(32-1)(32+1)·(34+1)…(32008+1)-401632=…=12(34-1)(34+1)…(32008+1)-401632=…=12(34016-1)-401632=401632-12-401632=-12.2.解:2009×2007-20082=(2008+1)×(2008-1)-20082=20082-1-20082=-1.(1)22007200720082006-⨯=220072007(20071)(20071)-+⨯-=2220072007(20071)--=2007(2)22007200820061⨯+=22007(20071)(20071)1+⨯-+=222007200711-+=2220072007=1.点拨:把式子中乘积部分的运算通过变形转化为平方差公式的结构形式,然后运用平方差公式化繁为简.二、3.解:x(x+2)+(2x+1)(2x-1)=5(x2+3),x2+2x+4x2-1=5x2+15,x2+4x2-5x2+2x=15+1,2x=16,x=8.三、4.解:(2a+3)(2a-3)=(2a)2-32=4a2-9(平方米).答:改造后的长方形草坪的面积是(4a2-9)平方米.四、5.D 点拨:A选项a3+a3=2a3;B选项(-a)3·(-a)5=a8;C选项(-2a2b)·4a=-8a3b;D选项正确,故选D.6.a2-1C卷1.(1)1-x n+1(2)①-63;②2n+1-2;③x100-1(3)①a2-b2②a3-b3③a4-b48点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题①中利用观察到的规律可知,原式=1-26=1-64=-63;②中原式=2(1+2+22+…+2n-1)=-2(1-2)(1+2+22+…+2n-1)=-2(1-2n)=-2+2·2n=2n+1-2;③中原式=-(1-x)(1+x+x2+…+x97+x98+x99)=-(1-x100)=x100-1.2.解:(m+2n)(m-2n)=m2-4n2.点拨:本题答案不唯一,只要符合要求即可.3.解:题图1中的阴影部分(四个等腰梯形)的面积为a2-b2,题图2•中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(a-b),故它的面积为(a+b)(a-b),•由此可验证:(a+b)(a-b)=a2-b2.图1 图29。
初中数学平方差完全平方公式练习题(附答案)初中数学平方差完全平方公式练题一、单选题1.下列各式添括号正确的是(。
)A.x y(y x)B.x y(x y)C.10m5(2m)D.32a(2a3)2.(1y)(1y)(。
)A.1+y2B.1y2C.1y2D.1y23.下列计算结果为2ab a2b2的是(。
)A.(a b)2B.(a b)2C.(a b)2D.(a b)24.5a24b2=()25a416b4,括号内应填(。
)A.5a24b2B.5a24b2C.5a24b2D.5a24b25.下列计算正确的是(。
)A.(x y)2x22xy y2B.(m2n)2m24n2C.(3x y)2=9x2-6xy+y2D.x5x25x25/46.多项式15m3n25m2n20m2n3各项的公因式是(。
)A.5mnB.5m2n2C.5m2nD.5mn27.下列多项式中,能用平方差公式分解因式的是(。
)A.a2b 2B.5m220mnC.x2y2D.x298.化简(x3)2x(x6)的结果为(。
)A.6x9B.12x9C.9D.3x99.下列多项式能用完全平方公式分解的是(。
)A.x2x 1B.12x x2C.a2a1/2D.a2b22ab10.计算(3a bc)(bc3a)的结果是(。
)A.b2c29a2B.b2c23a2C.b2c29a2D.9a2b2c211.如果x2(m1)x9是一个完全平方式,那么m的值是(。
)A.7B.7C.5或7D.5或512.若a,b,c是三角形的三边之长,则代数式a22bc c2b2的值(。
)A.小于0B.大于0C.等于0D.以上三种情况均有可能二、解答题13.计算:1)-3x2-5y/(x2-5y);2)9x2+1(1-3x)(-3x-1)。
解:(1)-3x2-5y/(x2-5y)= -3x2/(x2-5y) - 5y/(x2-5y) = -3 - 5y/(x2-5y)。
2)9x2+1(1-3x)(-3x-1) = 9x2+1(9x2+3x-x-1) = (3x+1)(3x-1)。
2022-2023学年北师大版七年级数学下册《1.5平方差公式》同步练习题(附答案)一.选择题1.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=()A.128B.32C.64D.162.下列多项式乘以多项式能用平方差公式计算的是()A.(a+b)(﹣b﹣a)B.(﹣a+b)(﹣b﹣a)C.(a+b)(b+a)D.(﹣a+b)(b﹣a)3.下列各式,不能用平方差公式计算的是()A.(a+b﹣1)(a﹣b+1)B.(﹣a﹣b)(﹣a+b)C.(a+b2)(b2﹣a)D.(2x+y)(x﹣y)4.当n为正整数时,代数式(2n+1)2﹣(2n﹣1)2一定是下面哪个数的倍数()A.3B.5C.7D.85.若a+b=6,a2﹣b2=30,则a﹣b=()A.5B.6C.10D.156.若m2﹣n2=24,且m﹣n=4,则m+n等于()A.7B.6C.5D.87.(3+2)×(32+22)×(34+24)×(38+28)计算结果等于()A.1B.316﹣216C.332+232D.332﹣232 8.运用乘法公式计算(4+x)(x﹣4)的结果是()A.x2﹣16B.x2+16C.16﹣x2D.﹣x2﹣16 9.计算(2m﹣3n)(﹣2m﹣3n)的结果是()A.﹣4m2+9n2B.﹣4m2﹣9n2C.4m2﹣9n2D.4m2+9n2 10.计算20212﹣2022×2020的结果是()A.2B.﹣2C.﹣1D.1二.填空题11.已知x,y满足方程组,则x2﹣y2的值为.12.已知m﹣n=3,则m2﹣n2﹣6n的值.13.若(2m+5)(2m﹣5)=15,则m2=.14.(a+2b)()=a2﹣4b2.15.已知x2﹣y2=21,x﹣y=3,则x+y=.三.解答题16.计算(直接写出运算结果)(1)(4×103)×(5×102)=;(2)(﹣5x2y3)•(﹣4y2z)=;(3)20212﹣2020×2022=;(4)522﹣482=.17.利用乘法公式有时能进行简便计算.例:102×98=(100+2)(100﹣2)=1002﹣22=10000﹣4=9996.请参考给出的例题,通过简便方法计算:(1)31×29;(2)195×205.18.(x﹣y)(2x+y)﹣(x+y)(x﹣y).19.如图1所示,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表达).(2)应用公式计算:.(3)应用公式计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1.20.观察下列各式:1﹣=1﹣==×;1﹣=1﹣==×;1﹣=1﹣==×;1﹣=1﹣==×;…(1)用你发现的规律填空:1﹣=×,1﹣=×;(2)用你发现的规律进行计算:(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣).参考答案一.选择题1.解:∵x=(1+2)(1+22)(1+24)(1+28)…(1+2n)=(2﹣1)(2+1)(1+22)(1+24)(1+28)…(1+2n)=(22﹣1)(1+22)(1+24)(1+28)…(1+2n)=…=22n﹣1,又∵x+1=2128,∴22n﹣1+1=2128,∴n=64,故选:C.2.解:能用平方差公式计算的是(﹣a+b)(﹣b﹣a),其它的不能用平方差公式计算.故选:B.3.解:A、(a+b﹣1)(a﹣b+1)=[a+(b﹣1)][a﹣(b﹣1)],两数和乘以这两个数的差,能用平方差公式进行计算,故此选项不符合题意;B、(﹣a﹣b)(﹣a+b)=(﹣a+b)(﹣a﹣b),两数和乘以这两个数的差,能用平方差公式进行计算,故此选项不符合题意;C、(a+b2)(b2﹣a)=(b2+a)(b2﹣a),两数和乘以这两个数的差,能用平方差公式进行计算,故此选项不符合题意;D、(2x+y)(x﹣y),两数和乘以的不是这两个数的差,不能用平方差公式进行计算,故此选项符合题意;故选:D.4.解:(2n+1)2﹣(2n﹣1)2=[(2n+1)﹣(2n﹣1)][(2n+1)+(2n﹣1)]=8n,故当n是正整数时,(2n+1)2﹣(2n﹣1)2是8的倍数.故选:D.5.解:∵a+b=6,a2﹣b2=30,∴(a+b)(a﹣b)=30,∴a﹣b=30÷6=5,故选:A.6.解:因为m2﹣n2=24,m﹣n=4,(m+n)(m﹣n)=m2﹣n2,所以4(m+n)=24,所以m+n=6.故选:B.7.解:(3+2)×(32+22)×(34+24)×(38+28)=(3﹣2)(3+2)×(32+22)×(34+24)×(38+28)=(32﹣22)×(32+22)×(34+24)×(38+28)=(34﹣24)×(34+24)×(38+28)=(38﹣28)×(38+28)=316﹣216.故选:B.8.解:(4+x)(x﹣4)=(x+4)(x﹣4)=x2﹣42=x2﹣16,故选:A.9.解:(2m﹣3n)(﹣2m﹣3n)=(﹣3n)2﹣(2m)2=﹣4m2+9n2,故选:A.10.解:20212﹣2022×2020=20212﹣(2021+1)(2021﹣1)=20212﹣(20212﹣1)=20212﹣20212+1=1.故选:D.二.填空题11.解:因为,所以x2﹣y2=(x+y)(x﹣y)=5×3=15.故答案为:15.12.解:∵m﹣n=3,∴原式=(m﹣n)(m+n)﹣6n=3(m+n)﹣6n=3m﹣3n=3(m﹣n)=9..故答案为:9.13.解:由(2m+5)(2m﹣5)=15,得4m2﹣25=15.解得m2=10.故答案是:10.14.解:根据平方差公式得:(a+2b)(a﹣2b)=a2﹣(2b)2=a2﹣4b2,故答案为:a﹣2b.15.解:因为x2﹣y2=(x﹣y)(x+y)=21,x﹣y=3,所以x+y==7.故答案为:7.三.解答题16.解:(1)(4×103)×(5×102)=20×105=2×106;(2)(﹣5x2y3)•(﹣4y2z)=﹣5×(﹣4)x2y3y2z=20x2y5z;(3)20212﹣2020×2022=20212﹣(2021﹣1)×(2021+1)=20212﹣(20212﹣1)=20212﹣20212+1=1;(4)522﹣482=(52+48)×(52﹣48)=100×4=400.17.解:(1)31×29=(30+1)×(30﹣1)=302﹣12=900﹣1=899;(2)195×205=(200﹣5)×(200+5)=2002﹣52=40000﹣25=39975;18.解:原式=2x2﹣xy﹣y2﹣x2+y2=x2﹣xy.19.解:(1)图1中阴影部分的面积为大正方形与小正方形的面积差,即a2﹣b2,图2中阴影部分是长为(a+b),宽为(a﹣b)的长方形,因此面积为(a+b)(a﹣b),由图1和图2中阴影部分的面积相等可得,a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(2)原式====;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)(216+1)(232+1)+1=(24﹣1)(24+1)(28+1)(216+1)(232+1)+1=(28﹣1)(28+1)(216+1)(232+1)+1=(216﹣1)(216+1)(232+1)+1=(232﹣1)(232+1)+1=264﹣1+1=264.20.解:(1)1﹣=(1﹣)×(1+)=,1﹣=(1﹣)×(1+)=,故答案为:,,,;(2)原式=××××××…××××=×=.。
2017-2018学年(新课标)沪科版七年级数学下册《完全平方公式与平方差公式》一、填空1、若a 2+b 2-2a+2b+2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a+3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.4、要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________.5、(4a m+1-6a m )÷2a m -1=________.6、29×31×(302+1)=________.7、已知x 2-5x+1=0,则x 2+21x =________.8、已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.二、选择9、.若x 2-x -m=(x -m )(x+1)且x ≠0,则m 等于( )A.-1B.0C.1D.210、(x+q )与(x+51)的积不含x 的一次项,猜测q 应是( ) A.5 B.51 C.-51 D.-5 11、下列四个算式:①4x 2y 4÷41xy=xy 3 ;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y=3x 5y④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m+2,其中正确的有( )A.0个B.1个C.2个D.3个12、设(x m -1y n+2)·(x 5m y -2)=x 5y 3,则m n 的值为( )A.1B.-1C.3D.-313、计算[(a 2-b 2)(a 2+b 2)]2等于( )A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814、已知(a+b )2=11,ab=2,则(a -b )2的值是( )A.11B.3C.5D.1915、若x 2-7xy+M 是一个完全平方式,那么M 是( ) A.27y 2 B.249y 2 C.449y 2 D.49y 216、若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是( )A.x n 、y n 一定是互为相反数B.(x1)n 、(y1)n 一定是互为相反数C.x2n、y2n一定是互为相反数D.x2n-1、-y2n-1一定相等三、综合17、计算(1)(a-2b+3c)2-(a+2b-3c)2;1b2)](-3a2b3);(2)[ab(3-b)-2a(b-2(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x+2y)(x-2y)+4(x-y)2-6x]÷6x.18、解方程x(9x-5)-(3x-1)(3x+1)=5.四、生活中的数学19、如果运载人造星球的火箭的速度超过11.2 km/s(俗称第二宇宙速度),则人造星球将会挣脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×106 m/h,请你推算一下第二宇宙速度是飞机速度的多少倍?五、探究拓展与应用20、计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1) =(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值.1.已知m 2+n 2-6m+10n+34=0,求m+n 的值.2.已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值.3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值4.已知()5,3a b ab -==求2()a b +与223()a b +的值.5.已知6,4a b a b +=-=求ab 与22a b +的值.6.已知224,4a b a b +=+=求22a b 与2()a b -的值.7.已知(a+b)2=60,(a-b)2=80,求a 2+b 2及ab 的值.8.已知6,4a b ab +==,求22223a b a b ab ++的值.9.已知222450x y x y +--+=,求21(1)2x xy --的值. 10.已知16x x -=,求221x x+的值.11.已知012=-+a a ,求2007223++a a 的值.12.试说明不论x ,y 取何值,代数式226415x y x y ++-+的值总是正数.。
平方差公式练习题(打印版)# 平方差公式练习题(打印版)## 一、基础练习题1. 计算下列平方差:- \( a^2 - b^2 \)- \( (x + 2)^2 - (x - 2)^2 \)2. 利用平方差公式,简化以下表达式:- \( (3x + 1)^2 - (3x - 1)^2 \)- \( (2y + 3)^2 - (2y - 3)^2 \)3. 计算下列多项式的差,并用平方差公式简化:- \( (x + y)^2 - (x - y)^2 \)- \( (a + b)^2 - (a - b)^2 \)## 二、进阶练习题4. 若 \( x^2 - 4 = 0 \),求 \( x^4 - 16 \) 的值。
5. 已知 \( a^2 - b^2 = 20 \),求 \( (3a + 3b)^2 - (3a - 3b)^2 \)。
6. 利用平方差公式证明:- \( (x + y + z)^2 - (x - y - z)^2 = 4xy + 4xz + 4yz \)## 三、应用题7. 一个长方形的长是宽的两倍,若长和宽都增加2米,面积增加了40平方米。
求原长方形的长和宽。
8. 在一个正方形的四个角上各剪去一个边长为1米的正方形,求剩下的图形面积。
9. 一个数的平方减去另一个数的平方等于这个数的两倍,求这个数。
## 四、探索题10. 探索并证明:\( (a + b + c)^2 - (a - b + c)^2 = 4ab \)。
11. 给定 \( a^2 - b^2 = 25 \) 和 \( c^2 - d^2 = 36 \),求\( (a + b + c + d)^2 - (a - b + c - d)^2 \)。
12. 证明:对于任意实数 \( x \) 和 \( y \),都有 \( (x^2 +y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2 \)。
## 答案提示:- 对于基础练习题,可以直接应用平方差公式 \( (a + b)(a - b) =a^2 - b^2 \) 进行计算。
《平方差公式》典型例题例1 下列两个多项式相乘,哪些可用平方差公式,哪些不能?(1))23)(32(m n n m --; (2))54)(45(xz y z xy --+-;(3)))((c b a a c b ---+; (4))831)(318(3223x y x xy x +-. (5)))((z y x z y x ++-+-例2 计算:(1))32)(32(y x y x -+;(2))53)(53(b a b a ---;(3)))((2332x y y x ---;(4))543)(534(z y x z x y +--+.例3 计算)3)(3(y xy xy y +---.例4 利用平方差公式计算 :(1)1999×2001; (2)31393240⨯. 例5 计算:(a -2b )(2a -b )-(2a -b )(b +2a )例6 计算:(1))32)(311()32)(23(2)2)(2(y x y x x y y x x y y x -------+-(2)))()(()()(2222y x y x y x y x y x ++---+例7 计算:(x 2+4)(x -2)(x +2)例8 填空(1)(a+d)·( )=d 2-a 2(2)(-xy-1)·( )=x 2y 2-1例9 计算)12()12)(12)(12(242++++n参考答案例1 分析:两个多项式相乘,只有当这两个多项式各分为两部分之后,它们的一部分完全相同,而另一部分只有符号不同,才能够运用平方差公式.解:(1)两个二项式的两项分别是m 2,n 3-和m 2-,.3n 两部分的符号都不相同,没有完全相同的项,所以不能用平方差公式.(2)这两个二项式的两项分别是xy 5-,z 4和xz 5-,y 4,所含字母不相同,没有完全相同的项,所以不能用平方差公式.(3)b 与b -,a -与a ,c 与c -,没有完全相同的项,不能用平方差公式.(4)两个二项式中,38x 完全相同,但231xy -与y x 231-除去符号不同外,相同字母的指数不同,所以不能用平方差公式.(5)x 与x -,y 与y -,只有符号不同,z 完全相同,所以可以用平方差公式.可用平方差公式.例2 分析:在应用乘法公式进行实际问题的计算时,多项式的系数、指数、符号、相对位置不一定符合公式的标准形式,但只要对题目的结构特征进行认真观察,就可以发现这几个题目都可以应用平方差公式进行计算.解: (1)原式22)3()2(y x -=2294y x -=(2)原式)53)](53([b a b a -+-=222222925)259(])5()3[(a b b a b a -=--=--=或原式)35)(35(a b a b --+-=22)3()5(a b --=22925a b -= (3)原式))((3232y x y x --+-=642322)()(y x y x -=--=(4)原式)]54(3)][54(3[z y x z y x ---+=22222222540169)254016(9)54)(54()3(z yz y x z yz y x z y z y x -+-=+--=---=说明:1)乘法公式中的字母b a ,,可以表示数,也可以表示字母,还可以表示一个单项式或多项式;2)适当添加括号,将有利于应用乘法公式,添加括号的方法不同,一题可用多种解法,得出相同的结果;3)一定要认真仔细地对题目进行观察研究,把不符合公式标准形式的题目,加以调整,使它变化为符合公式标准的形式.例3 分析:本题有四种思路,①它属于多项式乘法可以直接用法则计算.②若将原式整理为)3)](3([xy y xy y -+-可用平方差公式计算.③观察两因式中,都有xy 3-,又有互为相反数的两项,y 和y -,也可以直接用平方差公式计算,可得22)3(y xy --.④可变形为)]3)[(3(xy y xy y +----,得])3([22xy y --.解: )3)(3(y xy xy y +---)3)](3([xy y xy y -+-=])3([22xy y --=2229y x y +-=或)3)(3(y xy xy y +---])3][()3[(y xy y xy +---=22)3(y xy --=2229y y x -=说明:根据平方差公式的特征,一般常见的变形有位置变化,如))((a b b a +-+.符号变化,系数变化,还有一些较复杂的变形,如))((d b c a d c b a ++---+-,两因式中都有c b -,并且d a --与d a +互为相反数,因此,可以凑成平方差公式的结构特征,即)]())][(()[(d a c b d a c b ++-+--.例4 分析:运用平方差公式可使与例2类似的计算题变得十分简便.运用平方差公式计算两个有理数的积时,关键是要将其写成平方差法:(1)观察法.如第(1)题适合此法;(2)平均数法.如第(2)题中,.40280231393240==+=a 解:(1)1999×2001=2212000)12000)(12000(-=+-(2)31393240⨯)3240)(3240(-+= .951599941600)32(4022=-=-= 说明:在进行有理数运算时适当运用平方差公式会使运算简便.例5 分析:前两个相乘的多项式不符合平方差公式特征,只能用“多项式乘多项式”;后两个多项式相乘可以用平方差公式,算出的结果一定要打上括号,再进行下面的计算.解:(a -2b )(2a -b )-(2a -b )(b +2a )=2a 2-ab -4ab +2b 2-[(2a )2-b 2] 打括号=2a 2-5ab +2b 2-(4a 2-b 2)=2a 2-5ab +2b 2-4a 2+b 2=-2a 2-5ab +3b 2说明:当进行计算时,用平方差公式计算出的结果一定要打上括号再与其他项进行加、减、乘、除等运算!例6 分析:(1)中的)32)(23(),2)(2(x y y x x y y x ---+-都可以利用平方差公式计算,)32)(311(y x y x --可以利用多项式乘法法则计算.(2)中的22)()(y x y x -+可以逆用幂的运算法则,写成2)])([(y x y x -+再计算.解:(1)原式)93922()23()23(2)]2)(2[(22y xy x y x y x y x y x +---⋅++-+= xy y y xy x y x y x 39189392281842222222+-=-+--+-=(2)原式))(()])([(22222y x y x y x y x +---+=224444222244422224422222)())(()()(y x y yx y y x y x x y x y x y x y x y x -=+-+--=----=---=说明:(1)平方差公式积适用于))((b a b a -+类型的多项式乘法,其中a 、b 可以是数,也可以是单项式或多项式.(2)逆用幂的运算法则,222)])([()()(y x y x y x y x -+=-+是常用的解题技巧.(3)此题中的第(1)题先利用乘法的交换律及结合律合理变形后,可连续运用平方差公式;第(2)题先利用加法结合律,把两个因式变为“两数的和与这两数的差”的形式,进而利用平方差公式计算.这些都是常用的解题技巧.例7 分析:由于运用平方差公式可简化运算,因此可以利用乘法结合律先将可用平方差公式进行计算的部分先计算,而且平方差公式可以连用.解:(x 2+4)(x -2)(x +2)=(x 2+4)[(x -2)(x +2)]=(x 2+4) (x 2-4) 用公式计算后的结果要打括号=(x 2)2-42=x 4-16例8 分析:根据平方差公式右边a 2-b 2中被减数中的a 代表相同的项,而减数中的b 在等式左边中应是互为相反数的两项.(1)中d 2-a 2中的d 在两个二项式中皆为正,而a 在第一个多项式中为正,则在第二个多项式中应为负.(2)中含xy 的项为a ,即相同的项,而含1的项为b ,即互为相反的项.解:(1)2~2~~~~~)()(a d a d d a -=-⋅+====== (2)~~22~~~~~~~~~~1)1()1(-=+-⋅--================y x xy xy 例9 分析:在式子前面添上)12(-,便可反复运用平方差公式,以达到简化运算的目的.解:原式242(21)(21)(21)(21)(21)n=-++++L224222222(21)(21)(21)(21)(2)12141.n n n n ⨯=-+++=-=-=-L 说明:添加)12(-极富技巧性,这是一个典型解法,领会好本题将会在今后解决类似问题时受益.。
初一数学完全平方公式题40道和平方差公式20道完全平方公式题40道:1. 已知a=3,b=4,则(a+b)² = (3+4)² = 492. 计算(5-2)² = 93. 已知x=2,y=5,则(x+y)² = (2+5)² = 494. 计算(10+3)² = 1695. 已知a=7,b=9,则(a+b)² = (7+9)² = 2566. 计算(8-3)² = 257. 已知x=3,y=4,则(x+y)² = (3+4)² = 498. 计算(6+2)² = 649. 已知a=5,b=6,则(a+b)² = (5+6)² = 12110. 计算(12-5)² = 4911. 已知x=6,y=7,则(x+y)² = (6+7)² = 16912. 计算(9+1)² = 10013. 已知a=4,b=8,则(a+b)² = (4+8)² = 14414. 计算(7-4)² = 915. 已知x=1,y=9,则(x+y)² = (1+9)² = 10016. 计算(8-6)² = 417. 已知a=2,b=5,则(a+b)² = (2+5)² = 4918. 计算(11+7)² = 32419. 已知x=8,y=9,则(x+y)² = (8+9)² = 28920. 计算(6-1)² = 2521. 已知a=6,b=10,则(a+b)² = (6+10)² = 25622. 计算(9+4)² = 16923. 已知x=5,y=6,则(x+y)² = (5+6)² = 12124. 计算(7-2)² = 2525. 已知a=3,b=7,则(a+b)² = (3+7)² = 10026. 计算(5+3)² = 6427. 已知x=4,y=8,则(x+y)² = (4+8)² = 14428. 计算(9-6)² = 929. 已知a=8,b=10,则(a+b)² = (8+10)² = 32430. 计算(12+3)² = 22531. 已知x=2,y=8,则(x+y)² = (2+8)² = 10032. 计算(6-2)² = 1633. 已知a=5,b=9,则(a+b)² = (5+9)² = 19634. 计算(7+3)² = 10035. 已知x=7,y=10,则(x+y)² = (7+10)² = 28936. 计算(5-3)² = 437. 已知a=4,b=8,则(a+b)² = (4+8)² = 14438. 计算(10-6)² = 1639. 已知x=3,y=7,则(x+y)² = (3+7)² = 10040. 计算(9+5)² = 196平方差公式20道:1. 计算16²-9² = 1752. 已知a=3,b=4,则a²-b² = 3²-4² = -73. 计算25²-16² = 3694. 已知x=2,y=5,则x²-y² = 2²-5² = -215. 计算9²-4² = 656. 已知a=7,b=9,则a²-b² = 7²-9² = -327. 计算15²-9² = 1448. 已知x=3,y=4,则x²-y² = 3²-4² = -79. 计算12²-5² = 11910. 已知a=5,b=6,则a²-b² = 5²-6² = -1111. 计算11²-7² = 4812. 已知x=6,y=7,则x²-y² = 6²-7² = -1313. 计算14²-12² = 4014. 已知a=4,b=8,则a²-b² = 4²-8² = -4815. 计算10²-3² = 9116. 已知x=1,y=9,则x²-y² = 1²-9² = -8017. 计算8²-5² = 3918. 已知a=6,b=10,则a²-b² = 6²-10² = -6419. 计算17²-15² = 6420. 已知x=8,y=9,则x²-y² = 8²-9² = -17。
平方差公式练习题精选(含答案)平方差公式是一种用于计算两个数的平方差的公式,可以用于简化计算。
下面给出了一些例子:1.(m+2)(m-2) = m^2 - 42.(1+3a)(1-3a) = 1 - 9a^23.(x+5y)(x-5y) = x^2 - 25y^24.(y+3z)(y-3z) = y^2 - 9z^2利用平方差公式,可以简化计算,例如:1.(5+6x)(5-6x) = 25 - 36x^22.(x-2y)(x+2y) = x^2 - 4y^23.(-m+n)(-m-n) = m^2 - n^2有些多项式的乘法可以用平方差公式计算,例如:7.B。
(-a+b)(a-b)有些计算中存在错误,例如:8.②(2a2-b)(2a2+b)=4a4-b2完全平方公式是一种用于计算两个数的平方和的公式,可以用于简化计算。
下面给出了一些例子:1.(x+y)^2 = x^2 + 2xy + y^22.(-2m+5n)^2 = 4m^2 - 20mn + 25n^23.(2a+5b)^2 = 4a^2 + 20ab + 25b^24.(4p-2q)^2 = 16p^2 - 16pq + 4q^2利用完全平方公式,可以简化计算,例如:1.(x-y^2)^2 = x^2 - 2xy^2 + y^42.(1.2m-3n)^2 = 1.44m^2 - 7.2mn + 9n^23.(-a+5b)^2 = a^2 - 10ab + 25b^24.(-x-y)^2 = x^2 + 2xy + y^2最后,我们可以用完全平方公式计算一些复杂的表达式,例如:14.(a+2)(a^2+4)(a^4+16)(a-2) = (a^6 - 4a^5 - 24a^4 - 64a^3+ 16a^2 + 128a + 128)完全平方公式还可以用于解方程,例如:9.x+y = -310.4x^2 - y^211.(3x^2+2y^2)^2 = 9x^4 - 4y^412.(a+b)^2 - (a-b+1)^2 = 4ab - 2a + 2b13.31.下列运算中,正确的是()A.(a+3)(a-3)=a2-9B.(3b+2)(3b-2)=9b2-4C.(3m-2n)(-2n-3m)=-12mnD.(x+2)(x-3)=x2-x-62.在下列多项式的乘法中,可以用平方差公式计算的是()C.(-a+b)(a-b)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()B.64.若(x-5)2=x2+kx+25,则k=()D.-105.9.8×10.2=100.366.a2+b2=(a+b)2-2ab=(a-b)2+2ab7.(x-y+z)(x+y+z)=x2+y2+z2+2xy+2xz+2yz8.(a+b+c)2=a2+b2+c2+2ab+2ac+2bc9.(x+3)2-(x-3)2=12x+1810.1) 4a2-9b22) p4-q23) x2-4xy+4y24) 4x2+4xy+y211.1) 4a4-b22) 4xy(x+y)12.剩余的空地面积为(m-2n)2-n2(m-2n)2-n2,验证了平方差公式:(a-b)(a+b)=a2-b2.13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k 的值为()D.±214.已知a+=3,则a2+2,则a+的值是()B.715.若 $a-b=2$,$a-c=1$,则 $(2a-b-c)^2+(c-a)^2$ 的值为()答案:B。
第06讲平方差公式和完全平方公式(10类热点题型讲练)1.理解并掌握平方差公式和完全平方公式的推导和应用;2.理解平方差公式和完全平方公式的结构特征,并能运用公式进行简单的运算;3.会用几何图形说明公式的意义,体会数形结合的思想方法.知识点01平方差公式平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.即(a+b)(a-b)=a²-b²公式的几种变化:①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a²-b²;(-a-b)(a-b)=(-b-a)(-b+a)=(-b+a)(-b-a)=(-b)²-a²=b²-a²②系数变化:(2a+3b)(2a-3b)=(2a)²-(3b)²=4a²-9b²a b-③指数变化:(a²+b²)(a²-b²)=(a²)²-(b²)²=44④增项变化:(a-b-c)(a-b+c)=(a-b)²-c²a b-⑤连用公式变化:(a+b)(a-b)(a²+b²)=(a²-b²)(a²+b²)=(a²)²-(b²)²=44⑥公式逆运算:a²-b²=(a+b)(a-b)知识点02完全平方公式完全平方公式:两数和(差)的平方,等于它们的平方和,加(减)它们积的2倍.即完全平方和(a +b )²=a ²+2ab +b ²完全平方差(a -b )²=a ²-2ab +b ²(1)公式的特征:前平方,后平方,中间是乘积的2倍(2)公式的变化:①a ²+b ²=(a +b )²-2ab ;②a ²+b ²=(a -b )²+2ab ;③(a +b )²=(a -b )²+4ab ;④(a -b )²=(a +b )²-4ab ⑤(a +b )²-(a -b )²=4ab知识点03平方差和完全平方差区别平方差公式:(a +b )(a -b )=a ²-b ²完全平方差公式:(a -b )²=a ²-2ab +b ²平方差公式和完全平方差公式易混淆,切记完全平方差中间有乘积的2倍题型01判断是否可用平方差公式运算.【例题】下列各式中不能用平方差公式计算的是()1.下列能使用平方差公式的是()A .()()33x x ++B .()()x y x y -+-C .()()55m n m n +--D .()()33m n m n +-2.下列各式中,不能用平方差公式计算的是()A .()()22x y x y -+B .()()x y x y -+-C .()()b a b a -+D .()()x y y x ---题型02运用平方差公式进行运算.【变式训练】题型03利用平方差公式进行简便运算.【例题】(2023上·吉林长春·八年级校考阶段练习)用简便方法计算:(1)498502⨯(2)2202220232021-⨯【变式训练】题型04平方差公式与几何图形.【例题】(2023上·江苏泰州·七年级靖江市靖城中学校联考期中)图1、图2分别由两个长方形拼成.(1)图1中图形的面积为22a b -,图2中图形的面积为(2)由(1)可以得到等式:.(3)根据你得到的等式解决下列问题:①计算:2268.531.5-.②若42m n +=,求()()()222212121m m n n --+++-【变式训练】(2)请写出图①、图②、图③验证的乘法公式为:______;【应用探究】(3)利用(2)中验证的公式简便计算:4995011⨯+;(4)计算:22222111111111123420232024⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.(1)上述操作能验证的公式是______(请选择正确的一个).A .()2a ab a a b +=+B .()()22a b a b a b -=-+C .()2222a ab b a b -+=-(2)请应用上面的公式完成下列各题:①已知22424a b -=,26a b +=,则2a b -=______;②计算:222222229897.1.....43009921-+-++-+-;③计算:()()()()()2222222221212.....4321223n n n n n -+-+-+----+≥题型05运用完全平方公式进行运算【例题】(2023上·河南信阳·八年级校考阶段练习)用乘法公式计算(1)2()x y z ++(2)()()2323x y x y -+-+【变式训练】1.(2023上·八年级课时练习)计算:(1)()27x y +;(2)()245a b -+;(3)()22m n --;(4)()()2323x y x y +--.2.(2023上·八年级课时练习)计算:(1)()()22x y z x y z +--+;(2)()2523a b c +-;(3)()()532536a b c a b c +--+.题型06利用完全平方公式进行简便运算【变式训练】1.用简便算法计算(1)2201720162018-⨯(2)2220220219698⨯++题型07通过对完全平方公式变形求值【例题】(2023上·四川宜宾·八年级校考阶段练习)已知:3a b +=-,2ab =,求下列各式的值:(1)22a b +;(2)2()a b -.【变式训练】1.已知4m n -=-,2mn =,求下列代数式的值.(1)22m n +(2)()()11m n +-题型08求完全平方式中的字母系数题型09完全平方式在几何图形中的应用【例题】(2023上·江苏·九年级专题练习)我们已经学习了乘法公式()2222a b a ab b ±=±+的多种运用,可以运用所学知识解答:求代数式245x x ++的最小值.解答如下:解:()2224544121x x x x x ++=+++=++,()220x +≥,∴当2x =-时,()22x +的值最小,最小值是0,∴()2211x ++≥,∴当()220x +=时,()221x ++的值最小,最小值是1,∴245x x ++的最小值是1.请你根据上述方法,解答下列各题.(1)知识再现:当x =______时,代数式2415x x -+的最小值是______;(2)知识运用:若2615y x x =-+-,当x =______时,y 有最______值(填“大”或“小”),这个值是______;(3)知识拓展:若25100x x y -+++=,求y x +的最小值.【变式训练】1.例:求代数式245x x +-的最小值.解: ()22245444529x x x x x +-=++--=+-,()220x +≥,∴()2299x +-≥-,∴当2x =-时,代数式245x x +-有最小值9-,(1)代数式241-+有最(填大或小)值,这个值x x(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为计一个尽可能大的花圃,如图设长方形一边长度为①用含x的式子表示花圃的面积;题型10完全平方公式在几何图形中的应用【例题】现有长与宽分别为a、b的小长方形若干个,用两个这样的小长方形,拼成如图1的图形,用四个相同的小长方形拼成图2的图形,请认真观察图形,解答下列问题:【变式训练】2.如图①,正方形ABCD是由两个长为一、单选题A .12B .11C .10D .9二、填空题9.(2023上·黑龙江牡丹江·八年级统考阶段练习)设四个推断:①**a b b a =;②()222**a b a b =;③(-的序号是.10.(2023上·甘肃兰州·七年级兰州市第五十五中学校考开学考试)对于任意的代数式定一种新运算:a a c db b dc =-.根据这一规定,计算三、解答题11.(2023上·江苏南通·八年级校联考期中)计算:(1)()243x y -;(2)()()11x y x y +++-;(3)()()()22322x y x y x y +-+-;(4)()()325x y xy -⋅.12.(2023上·河南南阳·八年级校考阶段练习)利用乘法公式计算下列各题(1)()()22m n m n ---(2)()23x y -+(3)2210397+16.(2023上·安徽阜阳·八年级统考阶段练习)如图,图1为边长为a 的大正方形中有一个边长为b 的小正方形,图2是由图1中的阴影部分拼成的一个长方形.(1)设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ,则1S =______,2S =______(请用含a ,b 的代数式表示,只需表示,不必化简).(2)以上结果可以验证哪个乘法公式?这个乘法公式是______(3)运用(2)中得到的公式,计算:()()()()24821212121+⨯+⨯+⨯+.17.(2023上·甘肃武威·八年级校考期末)数学活动课上,老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b 、宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)观察图2,请你写出下列三个代数式:2()a b +,22a b +,ab 之间的等量关系;(2)若要拼出一个面积为()()2a b a b ++的矩形,则需要A 号卡片多少张,B 号卡片多少张,C 号卡片多少张.(3)根据(1)题中的等量关系,解决如下问题:①已知:5a b +=,2211a b +=,求ab 的值;②已知22(2021)(2023)20x x -+-=,求2022x -的值.18.(2023上·河南周口·八年级校考期中)若x 满足()()604020x x --=,求()()226040x x +--的值.解:设60x a -=,40x b -=,则20ab =,604020a b x x +=-+-=.∴()()226040x x +--22a b =+。
初一平方差计算题50道一、基础型(20道)1. 计算:(a + 3)(a - 3)- 解析:根据平方差公式(x + y)(x - y)=x^2-y^2,这里x = a,y = 3,所以(a + 3)(a - 3)=a^2-3^2=a^2-9。
2. 计算:(2 + b)(2 - b)- 解析:根据平方差公式,x = 2,y=b,则(2 + b)(2 - b)=2^2-b^2=4 - b^2。
3. 计算:(5x+1)(5x - 1)- 解析:令x = 5x,y = 1,根据平方差公式可得(5x+1)(5x - 1)=(5x)^2-1^2=25x^2-1。
4. 计算:(3m - 2n)(3m + 2n)- 解析:这里x = 3m,y = 2n,根据平方差公式(3m - 2n)(3m + 2n)=(3m)^2-(2n)^2=9m^2-4n^2。
5. 计算:(x+2y)(x - 2y)- 解析:设x=x,y = 2y,由平方差公式得(x + 2y)(x - 2y)=x^2-(2y)^2=x^2-4y^2。
6. 计算:(4a+3b)(4a - 3b)- 解析:令x = 4a,y = 3b,根据平方差公式(4a+3b)(4a - 3b)=(4a)^2-(3b)^2=16a^2-9b^2。
7. 计算:(-x + 5)(-x - 5)- 解析:这里x=-x,y = 5,根据平方差公式(-x + 5)(-x - 5)=(-x)^2-5^2=x^2-25。
8. 计算:(-2m+3n)(-2m - 3n)- 解析:设x=-2m,y = 3n,由平方差公式得(-2m + 3n)(-2m - 3n)=(-2m)^2-(3n)^2=4m^2-9n^2。
9. 计算:((1)/(2)x+(1)/(3)y)((1)/(2)x-(1)/(3)y)- 解析:令x=(1)/(2)x,y=(1)/(3)y,根据平方差公式((1)/(2)x+(1)/(3)y)((1)/(2)x-(1)/(3)y)=((1)/(2)x)^2-((1)/(3)y)^2=(1)/(4)x^2-(1)/(9)y^2。