九年级数学第二次月考试题
- 格式:doc
- 大小:116.90 KB
- 文档页数:2
桂江一中初三上学期第二次质量检测本试卷共4页,23小题,满分120分.考试用时120分钟.一、选择题(每题3分,共30分)1.一个矩形木框在太阳光的照射下,在地面上的投影不可能是( )A .B .C .D .2.方程2104x x -+=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根3.矩形、菱形都具有的性质是( )A .对角线互相平分B .对角线互相垂直且相等C .对角线相等D .对角线互相垂直4.如图,两个菱形,两个等边三角形,两个矩形,两个等腰直角三角形各成一组.每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,则两个图形对应边不成比例的一组是( )A .B .C .D .5.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x+6.如图所示,电路连接完好,且各元件工作正常.随机闭合开关123,,S S S 中的两个,能让两个小灯泡同时发光的概率是( )A .13B .23C .12D .07.如图在ABC V 中,90ACB Ð=°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE BF =,为了使四边形BECF 是正方形.可以添加一个条件( )A .CE CF =B .DE DF =C .45A Ð=°D .E 为AB 的中点8.下列关系中,两个变量之间为反比例函数关系的是( )A .圆的周长C 与圆的半径r B .在等腰三角形中,顶角y 与底角x 之间的关系C .正方形的面积为S ,边长为aD .菱形的面积为20,对角线的长分别为x 、y9.如图,在ABCD Y 中,E 为边AB 上一点,连结DE 、AC 交于点.F 若14AF CF =,则下列说法错误的是()A .14AE CD =B .AEF △与CDF V 的周长比为1:4C .AEF △与CDF V 的面积比为1:4D .ADF △与CDF V 的面积比为1:410.如图,在直角坐标系中,点()22P ,是一个光源.木杆AB 两端的坐标分别为()01,、()31, .则木杆AB 在x 轴上的投影长为( )A .3B .5C .6D .7二、填空题(每题3分,共15分)11.已知()304a cb d b d ==+¹,则a cb d ++的值为 .12.池塘中放养了鲤鱼8000条,鲢鱼若干.在几次随机捕捞中,共抓到鲤鱼320条,鲢鱼400条.估计池塘中原来放养了鲢鱼 条.13.如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC AD 、于点E 、F ,若3,5BE AF ==,则矩形ABCD 的周长为 .14.已知两个连续整数的积为132,则这两个数是 .15.在平面直角坐标系xOy 中,过点()1,4P 的一次函数()0y kx b k =+>的图象与x 轴、y 轴分别交于A 、B 点,若2PA AB =,则k 的值为 .三.解答题一(每小题7分,共21分)16.计算:()22930x x --=17.如图,小明在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB 的影长不全落在水平地面上,有一部分落在楼房的墙上,他测得落在地面上影长为9.6BD =米,留在墙上的影长2CD =米,求旗杆的高度.18.在平面直角坐标系中,ABC V 的位置如图所示,每个小正方形的边长为1.(1)在图(1)的第一象限内,对ABC V 进行位似变换,以原点O 为位似中心画出DEF V (点A ,B ,C 分别应点D ,E ,F ),且ABC V 与DEF V 的相似比为2:1,线段AC 上一点()5,3G 经过变换后对应的点的坐标为______.(2)在图(2)画出一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件:①与ABC V 有公共角;②与ABC V 相似但不全等.四、解答题二(每小题9分,共27分)19.为落实中小学生五项管理中的手机管理,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A 表示“一等奖”,B 表示“二等奖”,C 表示“三等奖”,D 表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m =______;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.AD=,20.社区利用一块矩形空地ABCD建了一个小型停车场,其布局如图所示.已知52m AB=,阴影部分设计为停车位,要铺花砖,其余部分均为宽度为x米的道路.已知铺28m花砖的面积为2640m.(1)求道路的宽是多少米?(2)该停车场共有车位50个,据调查分析,当每个车位的月租金为200元时;可全部租出;若每个车位的月租金每上涨5元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为10125元21.在数学活动课中,老师组织学生开展“如何通过折,剪、叠得到一个菱形”的探究活动.【动手操作】第一小组:如图,将一张矩形的纸片对折,再对折,然后沿着虚线剪下,打开,即可得一个菱形.、剪下两个三角形,第二小组:如图,把矩形纸片ABCD沿着对角线AC折叠,沿着边AB CD展开后得四边形AECF.第三小组:如图,将两块矩形纸片叠在一起,其中重叠的部分为菱形.【过程思考】(1)第一小组得到的四边形是菱形的理由是____________;(2)第二小组经过上述的操作,认为四边形AECF即为菱形,请你判断第二小组的结论是否正确,并说明理由;【拓展探究】(3)第三小组通过操作还发现,将两张矩形纸片沿着对角线按如图2的方式叠放,得到的菱形面积最大,已知矩形卡片的长为8,宽为6,请求出此时菱形的面积.五.解答题三(第22题13分,第23题14分)22.综合与实践问题背景数学小组发现国旗上五角星的五个角都是顶角为36°的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现如图1,在ABC V 中,36A Ð=°,AB AC =.(1)操作发现:将ABC V 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则BDE Ð=_______°,设1AC =,BC x =,那么AE =______(用含x 的式子表示);(2)进一步探究发现:BC AC =底腰1)的条件下试证明:BC AC =底腰 拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的ABC V 是黄金三角形.如图2,在菱形ABCD 中,72BAD Ð=°,1AB =.求这个菱形较长对角线的长.23.已知菱形ABCD 中ADC 60Ð=o ,点F 是射线DC 上一动点(不与C 、D 重合),连接AF 并延长交直线BC 于点E ,交BD 于H ,连接CH .(1)若点F 在边CD 上,且12CF CD <,过点C 按如图所示作60HCG Ð=o 并交AE 于点.G ①证明:DAH DCH Ð=Ð;②猜想GEC V 的形状并说明理由.(2)若菱形ABCD 边长为4,当BC H V 为等腰三角形时,求BE 的长.1.B【分析】根据平行投影的性质求解可得.【详解】解:一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:B .【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.2.B【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=¹,若240b ac D =->,则方程有两个不相等的实数根,若240b ac D =-=,则方程有两个相等的实数根,若240b ac D =-<,则方程没有实数根,据此求解即可.【详解】解:由题意得,()211411104D =--´´=-=,∴原方程有两个相等的实数根,故选:B .3.A【分析】本题考查了矩形的性质,菱形的性质.由矩形的性质和菱形的性质可直接求解.【详解】解:∵菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,∴矩形、菱形都具有的性质是对角线互相平分,故选:A .4.D【分析】本题主要考查了相似多边形的性质及判定,根据相似多边形的性质及判定:对应角相等,对应边成比例,即可判断.【详解】解:由题意得,B 、C 中三角形对应角相等,对应边成比例,两三角形相似;A 中菱形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而D 中矩形四个角相等,但对应边不一定成比例,所以D 中矩形不是相似多边形故选:D .5.A【分析】由主视图和左视图的宽为x ,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S 主=x 2+2x =x (x +2),S 左=x 2+x =x (x +1),∴俯视图的长为x +2,宽为x +1,则俯视图的面积S 俯=(x +2)(x +1)=x 2+3x +2.故选A .【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.6.A【分析】画树状图,共有6种等可能的结果,能让两个小灯泡同时发光的结果有2种,再由概率公式求解即可.【详解】解:把开关1S ,2S ,3S 分别记为A 、B 、C ,画树状图如图:共有6种等可能的结果,能让两个小灯泡同时发光的结果有2种,\能让两个小灯泡同时发光的概率为2163=.故选:A .【点睛】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.C【分析】根据菱形的判定定理,正方形的判定定理解答即可.本题考查了菱形的判定,正方形的判定,熟练掌握判定定理是解题的关键.【详解】解:∵BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,∴BD DC =,EF BC ^,,EB EC FB FC ==,∵CE CF =,∴BE BF EC FC ===,∴四边形BECF 是菱形,故A 不符合题意;当添加DE DF =时,则四边形BECF 是平行四边形,∵BE BF =,∴四边形BECF 是菱形,故B 不符合题意;当45A Ð=°时,∵90ACB Ð=°,∴45ABC ECB Ð=Ð=°,∴90BEC Ð=°,∴菱形BECF 是正方形,故C 符合题意;当E 为AB 的中点时,得到BE CE=无法判定菱形BECF 是正方形,故D 不符合题意;故选:C .8.D【分析】本题主要考查了反比例关系的识别,等边对等角,三角形内角和定理,菱形的性质,若两个量的乘积一定,那么这两个量成反比例关系,据此求解即可.【详解】解:A 、圆的周长等于半径的2倍乘以圆周率,则圆的周长C 与圆的半径r 的乘积不一定,二者不成反比例关系,不符合题意;B 、等腰三角形中,顶角的度数等于180度减去底角度数的2倍,则顶角y 与底角x 之间不成比例,不符合题意;C 、正方形的面积等于边长的平方,则正方形的面积S 与边长a 不成反比例关系,不符合题意;D 、菱形的面积等于其对角线乘积的一半,当菱形的面积为20,两条对角线的长的乘积一定,二者成反比例关系,符合题意;故选:D .9.C【分析】通过证明AEF CDF ∽△△,由相似三角形的性质依次判断可求解.【详解】解:14AF CF =Q ,ADF \V 与CDF V 的面积比为1:4,Q 四边形ABCD 是平行四边形,AB CD \∥,AEF CDF \V V ∽,14AF AE CF CD \==,211416AEF AEF CDF CDF C S AF AF C CF S CF æö\====ç÷èø,V V V V ,故选:C .【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,证明三角形相似是解题的关键.10.C【分析】本题考查了相似三角形的判定与性质、中心投影;利用中心投影,延长PA 、PB 分别交x 轴于A B ¢¢,,作PE x ^轴于E ,交AB 于D ,如图,证明PAB PA B ¢¢∽V V ,然后利用相似比可求出A B ¢¢的长.【详解】解:延长PA PB 、 分别交x 轴于A B ¢¢, ,作PE x ^ 轴于E ,交AB 于D ,如图∵()()()2,20,13,1P A B ,, .∴1PD =,2PE =,3AB =,∵AB A B ¢¢∥ ,∴PAB PA B ¢¢∽V V ,∴AB AD A B AE =¢¢,即312A B =¢¢∴6A B ¢¢=,故选:C .11.34##0.75【分析】本题主要考查了比例的性质,设()34340a m b m c n d n mn ====¹,,,,再把a 、b 、c 、d代入所求式子中求解即可得到答案.【详解】解:∵34a cb d ==,∴可设()34340a m b mc nd n mn ====¹,,,,∴333444a c m nb d m n ++==++,故答案为:34.12.10000【分析】本题考查利用样本估计总体,设鲢鱼x 条,根据抓到鲤鱼320条,鲢鱼400条,列出比例式,进行求解即可.【详解】解:设鲢鱼x 条,则8000:320:400x =,解之得,10000x =.故答案为10000.13.24【分析】本题主要考查了矩形的性质,勾股定理,全等三角形的性质与判定,线段垂直平分线的性质,连接CF ,根据线段垂直平分线的性质得到5CF AF OA OC ===,,再证明()AAS AOF COE V V ≌得到5CE AF ==,进而可求出AD DF ,的长,再利用勾股定理求出CD 的长即可得到答案.【详解】解:如图所示,连接CF ,∵四边形ABCD 是矩形,∴90D AB CD AD BC AF CE =°==∠,,,∥,∴OAF OCE OFA OEC ==∠∠,∠∠,∵对角线AC 的垂直平分线EF 分别交BC AD 、于点E 、F ,∴5CF AF OA OC ===,,∴()AAS AOF COE V V ≌,∴5CE AF ==,∴8AD BC CE BF ==+=,∴3DF =,∴4CD ==,∴矩形ABCD 的周长为884424AD CD AB BC +++=+++=,故答案为:24.14.12-和11-或11和12【分析】本题考查用一元二次方程解决数字问题,正确表示两个连续整数并列出方程是解题的关键.设较小的整数为x ,则较大的整数为1x +,根据积为132建立一元二次方程,求解即可.【详解】解:设较小的整数为x ,依题意有(1)132x x +=,解得:112x =-,或211x =.当12x =-时,111x +=-;当11x =时,112x +=;.故这两个数是12-和11-或11和12.故答案为:12-和11-或11和12.15.2或6##6或2【分析】此题考查一次函数及其图象的综合应用,相似三角形的判定与性质,解此题的关键是分类讨论各种情形.先确定4k b +=,考虑直线的位置两种情形画图解答即可.【详解】解:∵y kx b =+图象过点()1,4P ,∴4k b +=,如图,∵2PA AB =,∴B 为AP 的中点,∴2b =,∴422k =-=,如图,过P 作PQ x ^轴于Q ,则PQ y ∥轴,∴PAQ BAO V V ∽,而2PA AB =,∴2QP PA OB AB==,而()1,4P ,∴2OB =,∴2b =-,∴()426k =--=;综上分析可知:k 的值为2或6.故答案为:2或6.16.123324x x =-=,【分析】本题主要考查了解一元二次方程,把方程左边利用平方差公式分解因式,再解方程即可得到答案.【详解】解:∵()22930x x --=,∴()()33330x x x x +--+=,∴430x -=或230x +=,解得123324x x =-=,.17.旗杆的高度为10米【分析】此题考查相似三角形的应用;根据三个角是直角的四边形是矩形,可得四边形BDCE 为矩形,利用矩形的对边相等,可得9.6CE BD ==米,2BE CD ==米,利用“在同一时刻物高与影长的比相等”,可得11.2AE CE =,从而求出AE 的长,继而求出AB 的长.【详解】解:如图,过点C 作CE AB ^于点E ,可得四边形BDCE 为矩形,9.6CE BD \==米,2BE CD ==米,由题意可得:11.2AE CE =,8(AE \=米),8210(AB AE BE \=+=+=米) .答:旗杆的高度为10米.18.(1)图见解析,53,22æöç÷èø(2)见解析【分析】本题主要考查了画位似图形,相似三角形的判定,勾股定理,:(1)把A 、B 、C 的横纵坐标分别除以2得到其对应点D ,E ,F 的坐标,描出D ,E ,F ,再顺次连接D ,E ,F 即可;把G 的横纵坐标都除以2,即可得到其对应点坐标;(2)取格点D ,则ABD △即为所求.【详解】(1)解:如图所示,DEF V 即为所求;线段AC 上一点()5,3G 经过变换后对应的点的坐标为53,22æöç÷èø;(2)解:如图所示,ABD △即为所求;可证明AB AC AD AB==,再由BAD CAB Ð=Ð,可证明BAD CAB ∽△△.19.(1)40;30;(2)见解析(3)12【分析】(1)用“二等奖”人数除以它所占的百分比得到获奖总人数,然后计算“三等奖”人数所占的百分比得到m 的值;(2)求出获“三等奖”人数为12人,补全条形统计图即可;(3)画树状图,共有12种等可能的结果,其中抽取同学中恰有一名男生和一名女生的结果为6种,然后根据概率公式求解即可.【详解】(1)解:)获奖总人数为820%40¸=(人).404816%100%30%40m ---=´=,即30m =;故答案为40;30;(2)解:“三等奖”人数为40481612---=(人),条形统计图补充为:(3)解:画树状图为:共有12种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为6,所以抽取同学中恰有一名男生和一名女生的概率61122==.【点睛】本题考查了条形统计图和扇形统计图、及用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率一所求情况数与总情况数之比.牢固掌握画树状图列出所以可能结果是解题的关键.20.(1)道路的宽为6米(2)每个车位的月租金上涨25元时,停车场的月租金收入为10125元【分析】本题考查了一元二次方程的应用,读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程是解题关键.(1)由题意知,道路的宽为x 米,根据矩形的面积公式列出方程并解答即可;(2)设车位的月租金上涨a 元,则租出的车位数量是505a æö-ç÷èø个,根据:月租金=每个车位的月租金´车位数,列出方程并解答即可;【详解】(1)解:根据道路的宽为x 米,(522)(282)640x x --=,整理得:2402040x x -+=,解得:134x =(舍去),26x =,答:道路的宽为6米.(2)解:设月租金上涨a 元,停车场月租金收入为10125元,根据题意得:()200(50a +-5a )10125=,整理得:2506250a a -+=,解得25a =,答:每个车位的月租金上涨25元时,停车场的月租金收入为10125元.21.(1)四条边都相等的四边形是菱形;(2)正确,见解析;(3)37.5ANCM S =菱形【分析】本题考查了菱形的判定与性质,全等三角形的判定与性质,勾股定理解三角形,熟练掌握知识点是解题的关键.(1)裁剪后展开可知四边相等,故理由为四条边都相等的四边形是菱形;(2)先证明AED CEB V V ≌,则AE CE =,在图③中,由折叠重合可得,,AE AF CE CF ==,故AE AF CE CF ===,因此四边形AECF 是菱形;(3)由四边形AMCN 是菱形,可设AN CN x ==, 在Rt CBN V 中, 由勾股定理得2226(8)x x +-=,解得 6.25x =,则 6.25637.5ANCM S AN BC =×=´=菱形.【详解】解:(1)四条边都相等的四边形是菱形,故答案为:四条边都相等的四边形是菱形;(2)证明:如图:Q 四边形ABCD 是矩形,90,D B AD BC \Ð=Ð=°=,又∵AED CEB Ð=Ð,()AAS AED CEB \V V ≌AE CE \=,在图③中,由折叠重合可得,,AE AF CE CF ==,AE AF CE CF \===,\四边形AECF 是菱形.(3)如图:Q 四边形AMCN 是菱形,AN CN \=,设AN CN x ==,则8BN x =-,在Rt CBN V 中,222CB BN CN +=,2226(8)x x \+-=,解得 6.25x =,6.25637.5ANCM S AN BC \=×=´=菱形.22.(1)72,1x °-(2【分析】(1)利用等边对等角求出,ABC ACB ÐÐ的长,翻折得到12ABD CBD ABC Ð=Ð=Ð,,BDC BDE BC BE Ð=Ð=,利用三角形内角和定理求出,BDC Ð,AE AB BE AB BC =-=-,表示出AE 即可;(2)证明BDC ABC V V ∽,利用相似比进行求解即可得出BC AC =底腰拓展应用:连接AC ,延长AD 至点E ,使AE AC =,连接CE ,得到ACE △为黄金三角形,进而得到CE AC =AC 的长即可.【详解】解:(1)∵36A Ð=°,AB AC =,∴()180236721ABC C Ð=Ð=°-°=°,∵将ABC V 折叠,使边BC 落在边BA 上,∴1362ABD CBD ABC Ð=Ð=Ð=°,,BDC BDE BC BE x Ð=Ð==,∴18072BDC BDE CBD C Ð=Ð=°-Ð-Ð=°,1AE AB BE AB BC x =-=-=-;故答案为:72,1x °-;(2)证明:∵72BDC C Ð=°=Ð,∴BD BC x ==,∵36,A CBD C C Ð=Ð=°Ð=Ð,∴BDC ABC V V ∽,∴BC CD AC BC=,∵36ABD CBD A Ð=Ð=Ð=°,∴AD BD BC x ===,∴1CD x =-,∴11x x x-=,整理,得:210x x +-=,解得:x ;经检验x∴BC AC =底腰拓展应用:如图,连接AC ,延长AD 至点E ,使AE AC =,连接CE ,∵在菱形ABCD 中,72BAD Ð=°,1AB =,∴36,1CAD ACD CD AD Ð=Ð=°==,∴()172,180722EDC DAC ACD ACE AEC DAC Ð=Ð+Ð=°Ð=Ð=°-Ð=°,∴EDC AEC Ð=Ð,∴1CE CD ==,∴ACE △∴CE AC =∴AC ==.【点睛】本题考查等腰三角形的判定和性质,菱形的性质,相似三角形的判定和性质.解题的关键是理解并掌握黄金三角形的定义,利用相似三角形的判定和性质,得到黄金三角形的23.(1)①见解析;②等腰三角形,理由见解析(2)2或2【分析】(1)①根据SAS 证明ADH CDH △≌△可得结论;②证明E DAH DCH ECG Ð=Ð=Ð=Ð,可知:GEC V 是等腰三角形;(2)分两种情况:①如图1,4BC BH ==,过点H 作HM BC ^于M ,则90BMH EMH Ð=Ð=°;②如图2,BH CH =,根据等腰三角形的性质和勾股定理可解答.【详解】(1)①证明:Q 四边形ABCD 是菱形,AD CD \=,ADH CDH Ð=Ð,DH DH =Q ,\(SAS)ADH CDH V V ≌,DAH DCH \Ð=Ð;②解:GEC V 是等腰三角形,理由如下:Q 四边形ABCD 是菱形,AD BC \∥,DAH E \Ð=Ð,60ADC DCE Ð=Ð=°,60DCG ECG \Ð+Ð=°,60HCG DCH DCG Ð=Ð+Ð=°Q ,ECG DCH \Ð=Ð,由①知:DAH DCH Ð=Ð,ECG E \Ð=Ð,CG EG \=,\GEC V 是等腰三角形;(2)解:分两种情况:①如图1,当4BC BH ==时,过点H 作HM BC ^于M ,则90BMH EMH Ð=Ð=°,Q 四边形ABCD 是菱形,60ADC Ð=°,1302CBD ABC \Ð=Ð=°,BC BH =Q ,75BCH BHC \Ð=Ð=°,60DCE Ð=°Q ,180756045DCH DAH E \Ð=Ð=Ð=°-°-°=°,HM EM \=,Rt BHM △中,30CBH Ð=°,122HM BH EM \===,BM \==2BE BM EM \=+=+;②如图2,当BH CH =时,∵Q 四边形ABCD 是菱形,60ADC Ð=°,∴1302ABH CBH ADC Ð=Ð=Ð=°,AB BC =,∵BH CH =,30CBH HCB \Ð=Ð=°,∵BH BH =,AB BC =,ABH CBH Ð=Ð,∴()SAS ABH CBH V V ≌,30BAH BCH \Ð=Ð=°,60ABC Ð=°Q ,90AEB \Ð=°,114222BE AB \==´=;综上,BE 的长为2+或2.【点睛】本题是四边形综合题,考查了菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,含30°角的直角三角形的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
初三数学第二次月考试题一、仔细选一选(每小题3分,共30分)1、如图1,圆.和圆.的位置关系是 ( )(A)外离. (B)相切. (C)相交. (D)内含.2.如图2,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =20,CD =16,那么线段OE 的长为 ( )(A)10. (B)8. (C)6. (D)4.3.下列说法正确的是 ( )(A)正五边形的中心角是108°. (B)正十边形的每个外角是18°.(C)正五边形是中心对称图形. (D)正五边形的每个外角是72°.A.①②B. ②③C. ①③D. ①②③5. ⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D.无法确定6.已知两圆的半径是方程01272=+-x x 两实数根,圆心距为8,那么这两个圆的位置关系是( ) A.内切 B.相交 C.外离 D.外切7. 两个圆是同心圆,大、小圆的半径分别为9和 5,如果⊙P 与这两个圆都相切,则⊙P 的半径为( )A.2B.7C.2或7D.2或4.58.化简)22(28+-得( ) A .—2 B .22- C .2 D . 224-9. 下面是李明同学在一次测验中解答的填空题,其中答对的是( ).A.若x 2=4,则x =2B.方程x (2x -1)=2x -1的解为x =1C.若x 2-5xy-6y 2=0(xy ≠),则y x =6或y x =-1。
D.若分式1232-+-x x x 值为零,则x =1,210. 下列图形中,不是旋转图形的是 ( )二、 认真填一填(每小题3分,共24分)11、如图4,⊙O 的半径OD 为5cm,直线l ⊥OD ,垂足为O ,则直线l 沿射线OD 方向平移______cm 时与⊙O 相切. 12、如图5,∠C 是⊙O 的圆周角,∠C =38°,∠OAB =______度. 13、两圆的半径分别为3cm 和4cm,圆心距为5cm,则两圆的位置关系为______. 14、如图6,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于______时,AC 才能成为⊙O 的切线. 15、如图,⊙O 内切于ABC △,切点分别为D E F ,,. 已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于 16、如图,△ABC 内接于⊙O ,∠BAC =120°, AB =AC ,BD 为 ⊙O 的直径,AD =6,则BC = 。
九年级第二次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 若−(−2)表示一个数的相反数,则这个数是( )A.12B.−12C.2D.−22. 2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为( )A.3×105B.3×106C.3×107D.3×1083. 某几何体由一些大小相同的小正方体组成,如图是它的俯视图和主视图,那么组成该几何体的小正方体的个数最少为( )A.4个B.5个C.6个D.7个4. 下列运算正确的是( )A.(a +3)2=a 2+9B.a 8÷a 2=a 4C.a 2+a 2=2a 2D.a 2⋅a 3=a 65. 如图,AB//CD ,∠B =85∘,∠E =27∘,则∠D 的度数为( )−(−2)12−122−22021515718333×1053×1063×1073×1084567(a +3)2+9a 2÷a 8a 24+a 2a 22a 2⋅a 2a 3a 6∘∘A.45∘B.48∘C.50∘D.58∘6. 若某一样本的方差为s 2=15[(5−7)2+(7−7)2+(8−7)2+(x −7)2+(y −7)2],样本容量为5,则下列说法:①当x =9时,y =6;②该样本的平均数为7;③x ,y 的平均数是7;④该样本的方差与x ,y 的值无关.其中不正确的是( )A.①②B.②④C.①③D.③④7. 关于x 的一元二次方程x 2+4x +c =0没有实数根,则c 应满足的条件是( )A.c ≤4B.c ≥4C.c <4D.c >48. 某工程队承接了80万平方米的荒山绿化任务,为了迎接汛期的到来,实际工作时每天的工作效率比原计划提高了20%,结果提前25天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下列方程中正确的是()A.80x −80(1+20%)x =25B.80(1+20%)x −80x =25C.80×(1+20%)x −80x =25D.80x −80×(1+20%)x =25 9. 心理学家发现:课堂上,学生对概念的接受能力s 与提出概念的时间t (单位:min )之间近似满足函数关系s =at 2+bt +c(a ≠0),s 值越大,表示接受能力越强.如图记录了学生学习某概念时t 与s 的45∘48∘50∘58∘=[s 215(5−7)2+(7−7)2+(8−7)2+(x−7)2+](y−7)25x =9y =67x y 7x y x +4x+c =0x 2cc ≤4c ≥4c <4c >48020%25x −=2580x 80(1+20%)x −=2580(1+20%)x 80x −=2580×(1+20%)x 80x −=2580x 80×(1+20%)xs t minA.8minB.13minC.20minD.25min10. 在△ABC 中,AB =AC ,若∠A =60∘,则△ABC 为( )A.钝角三角形B.直角三角形C.等边三角形D.等腰不等边三角形二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 已知一次函数y =kx −b ,请你补充一个条件________,使y 随x 的增大而减小.12. 不等式组{2x <5,x −1<0的解集是________.13. 有不同的两把锁和三把钥匙,其中两把钥匙能分别打开这两把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是________.14. 如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分的面积为________.15. 如图,在直角坐标系中,直线y =−√3x +3分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且∠BAO =30∘, AO=2 .将△ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为________.8min13min20min25min △ABC AB =AC ∠A =60∘△ABC ()y =kx−b y x {2x <5,x−1<0B C △DEF AB =10,DO =46y =−x+33–√x y M N A B y x ∠BAO =30∘AO =2△ABO O AB MN A16. 计算:(1)(3√2)2−|−4|−(−13)−2+(−4−2)0;(2)(1−xx +3)÷x 2−9x 2+6x +9 . 17. 某年级共有300名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .A 课程成绩的频数分布直方图如下(数据分成6组:40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100)b .A 课程成绩在70≤x <80这一组的是:70 71 71 71 76 76 77 7878.5 78.5 79 79 79 79.5c .A ,B 两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A 75.8m 84.5B 72.27083根据以上信息,回答下列问题:(1)直接写出表中m 的值________(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A“或“B“),理由是________;(3)假设该年级学生都参加此次测试,估计A 课程成绩超过75.8分的人数. 18. 某数学兴趣小组想测量商丘电视台电视塔的高度,如图,该小组在商丘电视塔BC 前一座楼房楼顶A 处所观测到电视塔最高点B 的仰角为65∘,电视塔最低点C 的仰角为30∘,楼顶A 与电视塔的水平距离AD 为90米,求商丘电视塔BC 的高度.(结果精确到1米,参考数据√2≈1.41,√3≈1.73,sin65∘≈0.91,cos65∘≈0.42,tan65∘≈2.14)19. 如图,在平面直角坐标系中,已知矩形ABCD ,AB//y 轴,反比例函数y =kx (x >0)的图象过矩形的两个顶点A ,C .(1)若AB =4,A(1,6),①求反比例函数的解析式及点C 的坐标;②求证:点D 在直线OB 上;(1)−|−4|−+(3)2–√2(−)13−2(−4−2)0(2)(1−)÷x x+3−9x 2+6x+9x 2300A B 60a A 640≤x <5050≤x <6060≤x <7070≤x <8080≤x <9090≤x ≤100b A 70≤x <80707171717676777878.578.579797979.5c A B A 75.8m 84.5B 72.27083(1)m(2)A 76B 71A B(3)A 75.8BC A B 65∘C 30∘A AD 90BC 1≈1.412–√≈1.733–√sin ≈0.9165∘cos ≈0.4265∘tan ≈2.1465∘ABCD AB//y y =(x >0)k x A C(1)AB =4A(1,6)C D OB甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,且超出5件的部分可按原价的六折进行优惠;设需要租用x 件服装,选择甲店则需要y 1元,选择乙店则需要y 2元,请分别求出y 1,y 关于x 的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同? 21. 已知二次函数y =2(x −1)(x −m−3)(m 为常数).(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点;(2)当m 取什么值时,该函数的图象与y 轴的交点在x 轴的上方? 22. 如图,在△ABC 中,AB =AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD ,(1)求证:点E 是^BD 的中点;(2)当BC =12,且AD:CD =1:2时,求⊙O 的半径.23.【问题发现】(1)如图(1),在等腰直角三角形ABC 中,∠BAC =90∘,点M 为BC 边上异于B ,C 的一点,以AM 为边在其右侧作等腰直角三角形AMN ,∠MAN =90∘,连接CN.①CNBM =________;②CN 与BM 的位置关系是________.【深入探究】(2)如图(2),在△ABC 中,∠BAC =90∘,∠ABC =30∘,点M 为BC 边上异于B ,C 的一点,以AM 为边在其右侧作Rt △AMN ,使∠AMN =∠ABC ,∠MAN =∠BAC ,连接CN .(1)中的①②结论是否仍然成立?请说明理由.【拓展延伸】(3)如图(3),在正方形ADBC 中,点M 为BC 边上异于B ,C 的一点,以AM 为边在其右侧作正方形AMEF ,点N 为正方形AMEF 的中心,连接CN ,若BC =8,CN =2,请直接写出正方形AMEF 的面积.23280426055x y 1y 2y 1y x5y =2(x−1)(x−m−3)m (1)m x(2)m y x △ABC AB =AC AB AC BC D E BDE BDˆBC =12AD :CD =1:2⊙O(1)(1)ABC ∠BAC =90∘M BC B C AM AMN ∠MAN =90∘CN =CN BM CN BM(2)(2)△ABC ∠BAC =90∘∠ABC =30∘M BC B C AM Rt △AMN ∠AMN =∠ABC ∠MAN =∠BAC CN (1)(3)(3)ADBC M BC B C AM AMEFN AMEF CN BC =8,CN =2AMEF参考答案与试题解析九年级第二次月考 (数学)试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】D【考点】相反数【解析】此题暂无解析【解答】解:−(−2)=2,2为−2的相反数.故选D.2.【答案】D【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】此题暂无解答3.【答案】C【考点】由三视图判断几何体简单组合体的三视图【解析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最少个数,相加即可.【解答】4.【答案】C【考点】同底数幂的乘法同底数幂的除法完全平方公式合并同类项【解析】此题暂无解析【解答】此题暂无解答5.【答案】D【考点】三角形的外角性质平行线的性质【解析】根据平行线的性质以及三角形的外角的性质解答即可.【解答】解:如图,因为AB//CD,所以∠1=∠B=85∘.因为∠E=27∘,所以∠D=85∘−27∘=55∘.故选D.6.【答案】D【考点】算术平均数【解析】先根据方差的定义及其计算公式得出:这组数据为5、7、8、α、y 且这组数据的平均数为7,继而知x +y =15,再逐一判断即可.【解答】解:s 2=15[(5−7)2+(7−7)2+(8−7)2+(x −7)2+(y −7)2]∴这组数据为5、7、8、x 、y ,且这组数据的平均数为7,∴5+7+8+x +y =35,∴x +y =15,①当x =9时,y =6,此说法正确;②这组数据的平均数为7,故此说法正确;③x 、y 的平均数为152=7.5,故此说法错误;④该样本的方差与x ,y 的值有关,故此说法错误;故选D .7.【答案】D【考点】根的判别式【解析】根据根的判别式即可求解.【解答】解:根据题意,可得:Δ=42−4c <0,解得:c >4.故选D.8.【答案】C【考点】由实际问题抽象为分式方程【解析】设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为x1+20%万平方米,根据工作时间=工作总量÷工作效率结合实际比原计划提前25天完成了这一任务,即可得出关于x 的分式方程,此题得解.【解答】解:设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为x1+20%万平方米,依题意,得:80x1+20%−80x =25,即80(1+20%)x −80x =25.故选C .9.B【考点】二次函数的应用二次函数的最值【解析】此题暂无解析【解答】解:由题意得:函数过点(0,43)、(20,55)、(30,31),把以上三点坐标代入s =at 2+bt +c(a ≠0)得:{43=c,55=202a +20b +c,31=302a +30b +c,,解得{a =−110,b =135,c =43;,则函数的表达式为:s =−110t 2+135t +43,∵a =−110<0,则函数有最大值,当t =−b2a =13时,s 有最大值,即学生接受能力最强.故选B .10.【答案】C 【考点】等边三角形的性质【解析】先根据△ABC 中,AB =AC 得出∠B =∠C ,再根据三角形内角和定理即可得出∠B 的度数,进而得出结论.【解答】解:在△ABC 中,AB =AC ,故△ABC 是等腰三角形,又∠A =60∘,所以△ABC 是等边三角形.故选C .二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】k <0【考点】一次函数的性质此题暂无解析【解答】解:根据一次函数的基本性质可知,在一次函数y=kx−b中,当k<0时,y随x的增大而减小.故答案为:k<0.12.【答案】x<1【考点】解一元一次不等式组【解析】分别解出两个不等式,再求不等式组的解集.【解答】解:由{2x<5①,x−1<0②,可得①x<52;②x<1.综合①②可得其解集为x<1.故答案为:x<1 .13.【答案】13【考点】概率公式列表法与树状图法【解析】画树状图(两把钥匙能分别打开这两把锁表示为A、a和B、b,第三把钥匙表示为c)展示所有6种等可能的结果数,找出任意取出一把钥匙去开任意的一把锁,一次打开锁的结果数,然后根据概率公式求解.【解答】解:画树状图为:(两把锁分别表示为A,B,对应的两把钥匙分别表示为a,b,第三把钥匙表示为c),共有6种等可能的结果数,其中任意取出一把钥匙去开任意的一把锁,∴任意取出一把钥匙去开任意的一把锁,一次打开锁的概率=26=13.故答案为:13.14.【答案】48求阴影部分的面积三角形的面积扇形面积的计算【解析】此题暂无解析【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE−DO=10−4=6,∴S四边形ODFC=S梯形ABEO=12(AB+OE)⋅BE=12(10+6)×6=48,故答案为:48.15.【答案】(1,√3)或(−1,−√3).【考点】一次函数图象上点的坐标特点坐标与图形变化-旋转勾股定理含30度角的直角三角形【解析】计算出OM=√3,ON=3,即可确定∠NMO=60∘,然后利用AB与直线MN垂直画出图形,直线AB交y轴交于点C,作AD⊥x轴于D,则∠OCB=60∘,再解直角三角形求AD、OD,从而确定A点坐标.【解答】解:当x=0时,y=−√3x+3=3,则N(0,3),(√3,0),当y=0时,−√3x+3=0,解得x=√3,则M在Rt△OMN中,√ON2+OM2=2√3,由勾股定理得MN=∴∠NMO=60∘,在Rt△ABO中,∵∠BAO=30∘,AO=2,∴∠OBA=60∘,∴OB=2√33,∵AB与直线MN垂直,∴直线AB与x轴的夹角为30∘,如图1,直线AB交y轴于点C,交MN于G,作AD⊥x轴于D,GH⊥x轴于H,∴∠MGH=30∘,∴∠BGH=60∘∴∠OCB=60∘,∵∠OBA=60∘,∴△OBC是等边三角形,∴∠BOC=60∘,∴∠AOC=30∘,∴∠AOD=60∘,在Rt△OAD中,OD=12OA=1,AD=√3,∴A点坐标为(1,√3);如图2,直线AB交y轴于点C,作AD⊥x轴于D,同理:∠OCB=60∘,∵∠ABO=60∘,∴∠COB=60∘,∴∠AOC=30∘,∴∠AOD=60∘,在Rt△OAD中,OD=12OA=1,AD=√3,∴A点坐标为(−1,−√3).综上所述,A点坐标为(1,√3)或(−1,−√3).故答案为:(1,√3)或(−1,−√3).三、解答题(本题共计 8 小题,每题 5 分,共计40分)16.【答案】解:(1)原式=18−4−9+1=6.2−9x2+6x+9(2)原式=3x+3÷x2+6x+9x2−9=3x+3⋅x【考点】实数的运算分式的化简求值【解析】【解答】解:(1)原式=18−4−9+1=6.2−9x2+6x+9(2)原式=3x+3÷x2+6x+9x2−9=3x+3⋅x2(x+3)(x−3)=3x+3⋅(x+3)=3x−3 .17.【答案】78.75B,该学生的成绩小于A课程的中位数,而大于B课程的中位数(3)300×10+18+860=180(人)答:A课程成绩超过75.8分的人数约为180人.【考点】中位数频数(率)分布直方图用样本估计总体【解析】此题暂无解析【解答】解:(1)共60个数,中位数为从小到大排序后第30个数与第31个数的平均数,第30和31个数分别为78.5和79,所以中位数为78.75,即m=78.75.故答案为:78.75.(2) 76<78.75,71>70 ,该学生的成绩小于A课程的中位数,而大于B课程的中位数,故B课程名次更靠前.故答案为:B;该学生的成绩小于A课程的中位数,而大于B课程的中位数.(3)300×10+18+860=180(人)答:A课程成绩超过75.8分的人数约为180人.18.【答案】在Rt△ADB中,∵∠BAD=65∘,AD=90m,∘∴CD=AD⋅tan30∘=90×√33≈51.96(m).∴BC=BD+CD=192.6+51.96=244.56米.【考点】解直角三角形的应用-仰角俯角问题【解析】在Rt△ADB中,由锐角三角函数的定义可求出BD的长,同理在Rt△ADC中由锐角三角函数的定义可求出CD的长,进而解答即可.【解答】在Rt△ADB中,∵∠BAD=65∘,AD=90m,∴DB=AD⋅tan65∘≈90×2.14=192.6,同理,在Rt△ADC中,∵∠DAC=30∘,AD=90m,∴CD=AD⋅tan30∘=90×√33≈51.96(m).∴BC=BD+CD=192.6+51.96=244.56米.19.【答案】(1)①解:把点A(1,6)代入y=kx,得6=k1,解得k=6,∴反比例函数的解析式为y=6x.②证明:∵AB=4,A(1,6),∴点B的坐标为B(1,2),∴点C的纵坐标为2,将点C的纵坐标代入y=6x,得2=6x,解得x=3,∴点C的坐标为C(3,2),∴点D的坐标为D(3,6),设直线OB 的解析式为y=kx,将点B(1,2)代入y=kx,得2=k×1,解得k=2,∴直线OB的解析式为y=2x,当x=3时,y=2×3=6,∴点D在直线OB上.(2)证明:设点B的坐标为B(a,b),则点A的坐标为A(a,ka),点C的坐标为C(kb,b),∴AC的中点M的坐标为M(ab+k2b,ab+k2a).设直线OB的解析式为y=kx,则b=ak,解得k=ba,∴直线OB的解析式为y=ba x,当x=ab+k2b时,y=ba⋅ab+k2b=ab+k2a,∴直线OB经过AC的中点M.【考点】待定系数法求反比例函数解析式反比例函数与一次函数的综合【解析】左侧图片未提供解析.【解答】(1)①解:把点A(1,6)代入y=kx,得6=k1,解得k=6,∴反比例函数的解析式为y=6x.②证明:∵AB=4,A(1,6),∴点B的坐标为B(1,2),∴点C的纵坐标为2,将点C的纵坐标代入y=6x,得2=6x,解得x=3,∴点C的坐标为C(3,2),∴点D的坐标为D(3,6),设直线OB 的解析式为y=kx,将点B(1,2)代入y=kx,得2=k×1,解得k=2,∴直线OB的解析式为y=2x,当x=3时,y=2×3=6,∴点D在直线OB上.(2)证明:设点B的坐标为B(a,b),则点A的坐标为A(a,ka),点C的坐标为C(kb,b),∴AC的中点M的坐标为M(ab+k2b,ab+k2a).设直线OB的解析式为y=kx,则b=ak,解得k=ba,∴直线OB的解析式为y=ba x,当x=ab+k2b时,y=ba⋅ab+k2b=ab+k2a,∴直线OB经过AC的中点M.20.【答案】设甲店每件租金x元,乙店每件租金y元,由题可得:{2x+3y=2804x+y=260 ,解得{x=50y=60 ,答:两个服装店提供的单价分别是50元.60元;根据题意可得:y1=40x,y2={60x(0≤x≤5)36x+120(x>5)由40x=36x+120得x=30答:当x=30时,两店相同.【考点】一次函数的应用二元一次方程组的应用——行程问题(1)设甲店每件租金x元,乙店每件租金y元,根据甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元,列出方程组解答即可;(2)根据题意列出函数解析式即可;(3)根据题意列出方程,进而解答即可.【解答】设甲店每件租金x元,乙店每件租金y元,由题可得:{2x+3y=2804x+y=260 ,解得{x=50y=60 ,答:两个服装店提供的单价分别是50元.60元;根据题意可得:y1=40x,y2={60x(0≤x≤5)36x+120(x>5)由40x=36x+120得x=30答:当x=30时,两店相同.21.【答案】(1)证明:当y=0时,2(x−1)(x−m−3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=−2时,方程有两个相等的实数根;当m+3≠1,即m≠−2时,方程有两个不相等的实数根,∴不论m为何值,该函数的图象与x轴总有公共点.(2)解:当x=0时,y=2m+6,∴该函数的图象与y轴交点的纵坐标是2m+6,∴当2m+6>0,即m>−3时,该函数的图象与y轴的交点在x轴的上方.【考点】抛物线与x轴的交点二次函数图象上点的坐标特征【解析】此题暂无解析【解答】(1)证明:当y=0时,2(x−1)(x−m−3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=−2时,方程有两个相等的实数根;当m+3≠1,即m≠−2时,方程有两个不相等的实数根,∴不论m为何值,该函数的图象与x轴总有公共点.(2)解:当x=0时,y=2m+6,∴该函数的图象与y轴交点的纵坐标是2m+6,∴当2m+6>0,即m>−3时,该函数的图象与y轴的交点在x轴的上方.22.【答案】(1)证明:连接AE ,DE∵AB 是直径,∴AE ⊥BC ,∵AB =AC ,∴BE =EC ,∵∠CDB =90∘,DE 是斜边BC 的中线,∴DE =EB ,∴^ED =^EB ,即点E 是^BD 的中点;(2)设AD =x ,则CD =2x ,∴AB =AC =3x ,∵AB 为直径,∴∠ADB =90∘,∴BD 2=(3x)2−x 2=8x 2,在Rt △CDB 中,(2x)2+8x 2=122,∴x =2√3,∴OA =32x =3√3,即⊙O 的半径是3√3.【考点】圆心角、弧、弦的关系等腰三角形的判定与性质【解析】(1)要证明点E 是^BD 的中点只要证明BE =DE 即可,根据题意可以求得BE =DE ;(2)根据题意可以求得AC 和AB 的长,从而可以求得⊙O 的半径.【解答】(1)证明:连接AE ,DE∵AB 是直径,∴AE ⊥BC ,∵AB =AC ,∴BE =EC ,∵∠CDB =90∘,DE 是斜边BC 的中线,∴DE =EB ,∴^ED =^EB ,即点E 是^BD 的中点;(2)设AD =x ,则CD =2x ,∴AB =AC =3x ,∵AB 为直径,∴∠ADB =90∘,∴BD 2=(3x)2−x 2=8x 2,在Rt △CDB 中,(2x)2+8x 2=122,∴x =2√3,∴OA =32x =3√3,即⊙O 的半径是3√3.23.【答案】1,CN ⊥BM (2)(3)如图,连接AB,AN.∵四边形ADBC,四边形AMEF均为正方形,点N为正方形AMEF的中心,∴∠ABC=∠BAC=45∘,∠MAN=45∘,∴∠BAC−∠MAC=∠MAN−∠MAC,即∠BAM=∠CAN.又∵ABAC=AMAN=√2,∴△ABM∼△ACN,∴CNBM=ACAB=cos45∘=√22,即2BM=√22,∴BM=2√2,∴CM=BC−BM=8−2√2,2=AC2+CM2=BC2+CM2∴S正方形AMEF=AM=82+(8−2√2)2=136−32√2.【考点】相似三角形的性质相似三角形的判定解直角三角形正方形的性质勾股定理等腰直角三角形全等三角形的判定全等三角形的性质【解析】此题暂无解析【解答】解:(1)△ABC,△AMN均为等腰直角三角形,∴AB=AC,AM=AN.又∵∠BAM=90∘−∠CAM,∠CAN=90∘−∠CAM,∴∠BAM=∠CAN,∴△ABM≅△ACN,∴CN=BM,∠ACN=∠ABM=45∘,∴CNBM=1,∠ACN+∠ACB=90∘,∴CN⊥BM.故答案为:1;CN⊥BM.(3)如图,连接AB,AN.∵四边形ADBC,四边形AMEF均为正方形,点N为正方形AMEF的中心,∴∠ABC=∠BAC=45∘,∠MAN=45∘,∴∠BAC−∠MAC=∠MAN−∠MAC,即∠BAM=∠CAN.又∵ABAC=AMAN=√2,∴△ABM∼△ACN,∴CNBM=ACAB=cos45∘=√22,即2BM=√22,∴BM=2√2,∴CM=BC−BM=8−2√2,2=AC2+CM2=BC2+CM2∴S正方形AMEF=AM=82+(8−2√2)2=136−32√2.。
20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。
1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。
2025学年九年级数学第二阶段性自查________班;________号;姓名:________一、单选题(每小题3分,共30分)1. 2024年6月25日,嫦娥六号返回器准确着陆于预定区域,工作正常,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.下列航天领域的图标中,既是轴对称图形又是中心对称图形的是( )A B. C. D.2. 一个不透明的盒子中装有1个黑球,2个白球,这些球除颜色外没有其他差别,随机从盒子中摸出2个球,下列事件属于必然事件的是( )A. 摸出的2个球中有黑球B. 摸出的2个球中有白球C. 摸出的2个球都是黑球D. 摸出的2个球都是白球3. 如图,点是反比例函数的图象上一点,则反比例函数的解析式( )A. B. C. D. 4. 某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,共有多少个球队参加比赛?设有x 个球队参加比赛,则可列方程为( )A. B. C.D. 5. 如图,是的直径,分别以点和点为圆心,大于的长为半径画弧,两弧相交于、两点,直线与相交于、两点,若,则的长为( ).(3,2)P -(0)k y k x=≠3y x =-12y x =-23y x =-6y x=-()136x x +=()136x x -=()11362x x +=()11362x x -=AB O O B 12OB M N MN O C D 8AB =CDA. B. 8 C. D. 6. 以正方形两条对角线的交点O 为原点,建立如图所示的平面直角坐标系,反比例函数的图象经过点D ,则正方形的面积为( )A. 12 B. 16 C. 18 D. 207. 如图,是的切线,A ,B 是切点,点C 为上一点,若,则的度数为( )A. B. C. D. 8. 拋物线与坐标轴交点个数为( )A. 无交点B. 1个C. 2个D. 3个9. 如图,正六边形内接于圆O ,圆O 的半径为6,则这个正六边形的边心距和的长分别为()ABCD 4y x=ABCD ,PA PB O O 40P ∠=︒ACB ∠70︒50︒20︒40︒222y x x -=+ABCDEF OM BCA 3、 B.C.D.10. 二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④.其中结论正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题3分,共15分)11. 若反比例函数的图象在二、四象限,则m 的取值范围为________.12. 已知一元二次方程的两根分别为,则的值为_________.13. 如图,已知四边形内接于,,则的度数是________.14. 一个圆锥的底面半径为,母线长为,则此圆锥的侧面展开图扇形的圆心角等于______度.15. 如图,电路图上有4个开关A ,B ,C ,D 和1个小灯泡,同时闭合开关A ,B 或同时闭合开关C ,D 都可以使小灯泡发光.现随机闭合两个开关,小灯泡不发光的概率为_______.π3π2π32π2y ax bx c =++1x =0abc <20a b +=0a b c ++<30a c +>1m y x+=2420x x --=12,x x 1211x x +ABCD O 50ABC ∠=︒CDE ∠2cm 6cm三、解答题16. 某种植物的主干长出若干数目的支干,每个支干又长出同样数量的小分支,主干、支干和小分支的总数是73,每个支干长出多少小分支?17. 2024年4月23日是第29个世界读书日.某校开展丰富多彩的阅读活动,每位学生根据自己的爱好选择一类书籍(A :科技类、B :文学类、C :政史类、D :艺术类、E :其他类),甲同学从A 、B 、C 三类书籍中随机选择一种,乙同学从B 、C 、D 、E 四类书籍中随机选择一种.(1)乙同学恰好选中B 概率是______;(2)求甲、乙两位同学选择相同类别书籍的概率.(用树状图或列表法)18. 已知关于x 的方程有实数根.(1)求m 的取值范围;(2)等腰(非等边三角形)中有一边长为2,另两边长均为方程的实数根,求该三角形的周长.19. 如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知.(1)作出以为旋转中心,顺时针旋转90°,(只画出图形).(2)作出关于原点成中心对称的,(只画出图形)(3)在(1)的条件下,求出线段扫过的面积.20. “母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进了一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.在义卖的过程中发现“这种文化衫每天的销售件数y (件)与销售单价x (元)满足一次函数关系:y=﹣3x+108(20<x <36)”.如果义卖这种文化衫每天的利润为p (元),那么销售单价定为多少元时,每天获得的利润最大?最大利润是多少?的的260x x m -+=ABC V 260x x m -+=ABC V ABC V O 111A B C ABC V O 222A B C AC21. 如图,点B 、C 、D 都在半径为6⊙O 上,过点C 作AC ∥BD 交OB 的延长线于点A ,连接CD ,已知∠CDB =∠OBD =30°.(1)求证:AC 是⊙O 的切线;(2)求弦BD 的长;(3)求图中阴影部分的面积.22. 如图,一次函数与反比例函数的图象交于点和.(1)求一次函数及反比例的表达式和m 值(2)请根据图象,直接写出不等式的解集;(3)点P 是线段上一点,过点P 作轴于点D ,连接,若的面积为S ,当S 的值最小时,求出点P 的坐标及S 的最小值.23. 如图,二次函数的图象与轴交于点,与轴交于点.(1)求二次函数的解析式;(2)若点是抛物线上一动点,且,求点的坐标;的y x b =-+(0)k y x x=>(,3)A m (3,1)B k x b x≥-+AB PD x ⊥OP POD 243y ax x c =-+x ()3,0A y ()0,2B -P 3POA S =△P(3)点是抛物线上一动点,点为轴上一动点,当以点A ,,,为顶点的四边形为平行四边形时,求点的坐标.M Q x B Q M M2025学年九年级数学第二阶段性自查 简要答案________班;________号;姓名:________一、单选题(每小题3分,共30分)【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】B【9题答案】【答案】D【10题答案】【答案】C二、填空题(每小题3分,共15分)【11题答案】【答案】【12题答案】【答案】【13题答案】【答案】##度【14题答案】1m <-2-50︒50【答案】120【15题答案】【答案】三、解答题【16题答案】【答案】每个支干长出8个小分支【17题答案】【答案】(1)(2)【18题答案】【答案】(1)(2)8【19题答案】【答案】(1)图略;(2)如图略;(3)【20题答案】【答案】当销售单价定为28元时,每天获得的利润最大,最大利润是192元.【21题答案】【答案】(1)证明略;(2)3)6π.【22题答案】【答案】(1);;;(2)或;(3)点P 的坐标为或,S 的最小值为.【23题答案】【答案】(1) (2)或或或 (3)或或2314169m≤111A B C △222A B C △2π4y x =-+3y x =1m =01x <≤3x ≥(1,3)(3,1)32224233y x x =--()12()12()02-,()22-,()12()12()22-,。
2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、单选题(共18分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.直角三角形C.正五边形D.正六边形2.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.若点P(2,n﹣1)与点Q(m+1,3)关于原点对称,则m+n的值为()A.﹣5B.﹣1C.1D.54.电影《长津湖》一上映,第一天票房2.05亿元,若每天票房的平均增长率相同,三天后累计票房收入达10.53亿元,平均增长率记作x,方程可以列为()A.2.05(1+2x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.535.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.D.16.如图,矩形ABCD中,AB=8,BC=14,M,N分别是直线BC,AB上的两个动点,AE =2,△AEM沿EM翻折形成△FEM,连接NF,ND,则DN+NF的最小值为()A.14B.16C.18D.20二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程(x﹣2)(x+1)=0的根是.8.如图,AB是⊙O的直径,∠D=32°,则∠BOC等于.9.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.10.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是.11.如图,将正方形ABCD绕点A逆时针旋转60度得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,若MN的长度为1,则EF的长度为.12.如图所示,已知二次函数y=ax2+bx+c(a≠0)的部分图象,下列结论中:①abc>0;②4a+c>0;③若t为任意实数,则有a﹣bt≥at2+b;④若函数图象经过点(2,1),则a+b+c=;⑤当函数图象经过(2,1)时,方程ax2+bx+c﹣1=0的两根为x1,x2(x1<x2),则x1﹣2x2=﹣8.其中正确的结论有.三、解答题(共84分)13.解方程:x2+2x=0.14.如图,已知:A、B、C、D是⊙O上的四个点,且=,求证:AC=BD.15.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0,﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y>0时,自变量x的取值范围.16.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=110°,求∠BED的度数.17.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.18.在△ABC中,AB=AC,点A在以BC为直径的半圆外.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图①中作弦EF,使EF∥BC;(2)在图②中以BC为边作一个45°的圆周角.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC绕点A顺时针旋转90°后得到的图形△AB1C1;(2)请画出将△ABC关于原点O成中心对称的图形△A2B2C2;(3)当△ABC绕点A顺时针旋转90°后得到△AB1C1时,点B对应旋转到点B1,请直接写出B1点的坐标.20.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).21.恰逢新余桔子成熟的时节,为增加农民收入,助力乡村振兴.某驻村干部指导某农户进行桔子种植和销售,已知桔子的种植成本为1元千克,经市场调查发现,今年销售期间桔子的销售量y(千克)与销售单价x(元/千克)(1≤x≤12)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)请同学们求一下这位农户销售桔子获得的最大利润.22.如图所示,抛物线y=ax2+bx+c的对称轴为直线x=3,抛物线与x轴交于A(﹣2,0)、B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)连接BC,在第一象限内的抛物线上,是否存在一点P,使△PBC的面积最大?最大面积是多少?23.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△BC的三边AB,BC,AC分别相切于点D,E,F则△ABC叫做⊙O的外切三角形,以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>”,“<”或“=”);(2)利用图2证明你的猜想;(3)若圆外切四边形的周长为36.相邻的三条边的比为2:6:7.求此四边形各边的长.24.如图,已知二次函数L1:y=ax2﹣4ax+4a+4(a>0)和二次函数L2:y=﹣a(x+2)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣4ax+4a+4(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN﹣1时,直接写出a的值;(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+2)2+1=0的解.参考答案一、单选题(共18分)1.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不一定是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,但不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.2.解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.3.解:∵点P(2,n﹣1)与点Q(m+1,3)关于原点对称称,∴m+1=﹣2,n﹣1=﹣3,∴m=﹣3,n=﹣2.∴m+n=﹣3﹣2=﹣5.故选:A.4.解:∵第一天票房约2.05亿元,且以后每天票房的增长率为x,∴第二天票房约2.05(1+x)亿元,第三天票房约2.05(1+x)2亿元.依题意得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.5.解:连接OA,如图,∵AB⊥CD,∴AE=BE=AB=4,在Rt△OAE中,OE===3,∴CE=OC﹣OE=5﹣3=2.故选:B.6.解:如图作点D关于BC的对称点D′,连接ND′,ED′.在Rt△EDD′中,∵DE=12,DD′=16,∴ED′==20,∵DN=ND′,∴DN+NF=ND′+NF,∵EF=EA=2是定值,∴当E、F、N、D′共线时,NF+ND′定值最小,最小值=20﹣2=18,∴DN+NF的最小值为18,故选:C.二、填空题(共18分)7.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.8.解:∵∠D=32°,∴∠BOC=2∠D=64°,故答案为:64°.9.解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.10.解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π.11.解:如图所示,连接BE,∵点M,N分别为EF,BF的中点,∴MN是△BEF的中位线,∴BE=2MN=2,由旋转可得,AB=AE,∠BAE=60°,∴△ABE是等边三角形,∴AE=BE=2=AF,又∵∠EAF=90°,∴EF===2.故答案为:2.12.解:由抛物线开口向上,因此a>0,对称轴是直线x=﹣=﹣1,因此a、b同号,所以b>0,抛物线与y轴的交点在负半轴,因此c<0,所以abc<0,故①不正确;由对称轴x=﹣=﹣1可得b=2a,由图象可知,当x=1时,y=a+b+c>0,即a+2a+c>0,∴3a+c>0,又∵a>0,∴4a+c>0,因此②正确;当x=﹣1时,y最小值=a﹣b+c,∴当x=t(t≠﹣1)时,a﹣b+c<at2+bt+c,即a﹣bt<at2+b,∴x=t(t为任意实数)时,有a﹣bt≤at2+b,因此③不正确;函数图象经过点(2,1),即4a+2b+c=1,而b=2a,∴2a+3b+c=1,∴a+b+c=,因此④正确;当函数图象经过(2,1)时,方程ax2+bx+c=1的两根为x1,x2(x1<x2),而对称轴为x =﹣1,∴x1=﹣4,x2=2,∴x1﹣2x2=﹣4﹣4=﹣8,因此⑤正确;综上所述,正确的结论有:②④⑤,故答案为:②④⑤.三、解答题(共84分)13.解:由原方程,得x(x+2)=0,则x=0或x+2=0,解得,x1=0,x2=﹣2.14.证明:∵=,∴=,∴AC=BD.15.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y>0时,自变量x的取值范围是x<﹣1或x>3.16.(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS).(2)解:如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC,∴∠AEB=∠ADC=110°.∴∠BED=50°.17.解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.18.解:(1)如图①,EF为所作;(2)如图②,∠PBC为所作.19.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据(1)的图可得B1的坐标(2,﹣2).20.(1)证明:连接OC,∵直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.21.解:(1)当1≤x≤9时,设y=kx+b(k≠0),则,解得:,∴当1≤x≤9时,y=﹣300x+3300,当9<x≤12时,y=600,∴y=.(2)设利润为W,则:当1≤x≤9时,W=(x﹣1)y=(x﹣1)(﹣300x+3300)=﹣300x2+3600x﹣3300=﹣300(x﹣6)2+7500,∵开口向下,对称轴为直线x=6,∴当1≤x≤9时,W随x的增大而增大,∴x=5时,W最大=7500元,当9<x≤12时,W=(x﹣1)y=600(x﹣1)=600x﹣600,∵W随x的增大而增大,∴x=12时,W最大=6600元,∵7500>6600,∴最大利润为7500元.22.解:(1)∵抛物线的对称轴为直线x=3,A(﹣2,0),∴B点坐标为(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把C(0,4)代入得4=a×2×(﹣8),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)存在.设点P的坐标为(x,﹣x2+x+4),设直线BC的解析式为y=kx+m(k≠0).将B(8,0)、C(0,4)代入y=kx+m,得:,解得:,∴直线BC的解析式为y=﹣x+4.过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∵S△PBC=S△PCD+S△PBD,∴△PCD与△PBD可以看作成以PD为底,两高之和为OB的三角形,∴S△PBC=PD•OB=×8×(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.此时P点的坐标为(4,6).23.解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=;(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等;(3)∵相邻的三条边的比为2:6:7,∴设此三边为2x,6x,7x,根据圆外切四边形的性质得,第四边为2x+7x﹣6x=3x,∵圆外切四边形的周长为36,∴2x+6x+7x+3x=18x=36,∴x=2,∴此四边形的四边的长为2x=4,6x=12,7x=14,3x=6.即此四边形各边的长为:4,12,14,6.24.解:(1)∵y=ax2﹣4ax+4a+4=a(x﹣2)2+4,a>0,∴y min=4,∵时,二次函数L1,L2的y值同时随着x的增大而减小,∴﹣2<x<2,故答案为:4,﹣2<x<2;(2)∵M(2,4),N(﹣2,1),∴MN==5,∵E(0,4a+4),F(0,﹣4a+1),∴EF=8a+3,∴8a+3=5﹣1,∴a=;(3)当AM=MN时,(m﹣2)2+42=25,∴m1=5,m2=﹣1,当m=5时,﹣a(x+2)2+1=0的解为:x=5,x=﹣9,当m=﹣1时,﹣a(x+2)2+1=0的解为:x=﹣1或x=﹣3,当AN=AM时,(m﹣2)2+42=(﹣2﹣m)2+12,∴m=,∴﹣a(x+2)2+1=0的解为:x=或x=,当AN=MN时,(m+2)2+1=25,∴m=﹣2﹣2(舍去),m=﹣2+2,∴﹣a(x+2)2+1=0的解为:x=﹣2+2,x=﹣2﹣2,综上所述:方程﹣a(x+2)2+1=0的解是:x=﹣1或x=﹣3;x=或x=;x=﹣2+2,或x=﹣2﹣2.。
九年级第二次月考数 学 试 卷(说明:全卷共8页,考试时间90分钟,满分120分)一.选择题(本题共5小题,每小题3分,共15分,每小题给的四个答案中,有且只有一个是正确的,将你认为正确的选项填在题后的括号内) 1.下列运算正确的是( )A .236a a a =÷B .()0)1(101=-+--C .ab b a 532=+D .()222b a b a +=+2.四边形的两条对角线相等,则顺次连接四边形各边中点所得的四边形是( )A .梯形B .矩形C .菱形D .正方形3.直线x y 2=与双曲线xky =的一个交点坐标为(2,4),则它们的另一个交点坐标是( )A .(-2,-4)B .(-2,4)C .(-4,-2)D .(2,-4)4.我们从不同的方向观察同一个物体,可以看到不同的平面图形.如图,是一个由小正方体组成的几何体,它的左视图是 ( )ABC D班 号姓名:试室座号:密封线内不要答题5.中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞赛游戏,游戏规则如下:在20个商标牌中,有5个商标的背面注明了一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖,参与这个游戏的观众有三次翻牌的机会,翻过的牌不能再翻.某观众前两次翻牌均获得若干奖金,则该观众第三次翻牌获奖的概率是 ( )A .41B .51C .61D .203 二.填空题(本题共5小题,每小题4分,共20分,请把你认为正确的答案写在横线上) 6.长城总长约为6310000米,用科学记数法表示约是 米(保留两个有效数字). 7.如图是一根木杆在一天上午不同时刻的影子,则它们按时间先后顺序是 . 8.函数x y 21-=中自变量x 的取值范围是 . 9.已知□ABCD 中,∠A 比∠B 小20°,那么∠C 等于 度.10.如图,CB ,CD 分别的钝角△AEC 和锐角△ABC 的中线,且AC =AB ,给出下列结论:①AE =2AC ; ②CE =2CD ;③∠ACD =∠BCE ; ④CB 平分∠DCE ,请写出正确结论的序号 .三.解答题(本题共5小题,每小题6分,共30分) 11.化简:91322-÷-x x x x(第7题)ABEC(第10题)12.解不等式组,并把解集在数轴上表示出来: ()⎪⎩⎪⎨⎧<---x x x 24332113.在如图所示的方格图中,我们称每个小正方形的顶点为“格点” ,以格点为顶点的三角形叫做“格点三角形”. (1)在图中(每个小正方形的边长都是1)作一个面积为3 的格点钝角三角形ABC ; (2)再在图中作格点等腰直角三角形DEF ,使△DEF 的三边 都不与小正方形的边重合.14.解方程:0242=-+x x≤315.如图,已知正方形ABCD 中,P 为DC 上一点,连接BP ,过A ,C 两点作AE ⊥BP ,CF ⊥BP ,垂足为E .F ,请问BE 与CF 的大小有什么关系?并说明理由.四.(本题共4小题,每小题7分,共28分) 16.一次函数b kx y +=的图象与反比例函数xny =的图象相交于A (3,2), B (m ,-3)两点,求这两个函数的表达式.P密封线内不要答题17.甲骑自行车,乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程y 与时间x的函数关系的图象如图所示,根据图象解决下列问题:(1)谁先出发?先出发多长时间?谁先到达终点?先到多少时间? (2)分别求出甲,乙两人的行驶速度.18.已知,如图正方形ABCD 中,AB =2,P 是BC 边上与B .C 不重合的任意点,DQ ⊥AP 于Q ,当点P 在BC 上变动时,线段DQ 也随之变化,设AP =x ,DQ =y . 求y 与x 之间的函数关系式,并指出x 的取值范围.分)CDP班 号姓名:试室座号:密封线内不要答题19.下图是某篮球队队员年龄结构直方图,根据图中的信息解答下列问题:(1)该队队员年龄的平均数. (2)该队队员年龄的众数和中位数.五.解答题(本题共3小题,每小题9分,共27分)20.某商场购进甲、乙两种服装后,都加上进价的40%后标价出售.“国庆”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售,某顾客购买甲、乙两种服装各1件,共付182元,两种服装标价之和为210元.问这两种服装的标价各是多少?年龄17 18 21 23 2421.已知:如图, 在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为E ,连接DE 交AC 于F . (1) 求证:四边形ADCE 为矩形. (2) 求证:DE ∥AB ,DE =AB .(3) 当△ABC 满足什么条件时,四边形ADCE 是一个正方形?简述你的理由.ABCDE NFM22.如图:在梯形ABCD 中,AD ∥BC ,E ,F 分别是BD ,AC 的中点,BD 平分∠ABC求证:(1) AE ⊥BD (2) EF =21( BC -AB )A BCDEF密封线内不要答题。
九年级上第二次月考数学试卷(有答案)一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对3.若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣1)2+3 C.y=2(x+1)2﹣3 D.y=2(x+1)2+34.如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A.B.C.D.5.图中实线部分是半径为9m的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A.12πm B.18πm C.20πm D.24πm6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3 C.3 D.47.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.8.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二、填空题9.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则a=,b=.10.已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m=.11.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是.12.如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为;若∠P=40°,则∠DOE=.13.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.14.将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为.15.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为.16.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.三、解答题(共72分)17.用适当的方法解下列方程:(1)x2﹣4x﹣21=0(2)(2x+1)(x﹣3)=(4x﹣1)(3﹣x)18.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于原点O逆时针旋转90°得到△A1B1C1;②△A1B1C1关于原点中心对称的△A2B2C2.(2)写出A2、B2C2坐标,并求△A2B2C2的周长.19.已知关于x的方程.(1)求证:无论m取什么实数,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1,x2.20.如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若∠C=30°,求证:BE是△DEC外接圆的切线;(2)若BE=,BD=1,求△DEC外接圆的直径.21.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k﹣5)x﹣(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=﹣8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.22.一只不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1、2、3、4.小林先从布袋中随机抽取一个乒乓球(不放回),再从剩下的3个球中随机抽取第二个乒乓球.记两次取得乒乓球上的数字依次为a、b(1)求a、b之积为奇数的概率.(2)若c=5,求长为a、b、c的三条线段能围成三角形的概率.23.下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用π表示).24.某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC 的最大面积.九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选D.2.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.据此即可得到m2﹣7=2,m﹣3≠0,即可求得m的范围.【解答】解:由一元二次方程的定义可知,解得m=﹣3.故选C.3.若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣1)2+3 C.y=2(x+1)2﹣3 D.y=2(x+1)2+3【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3);可设新抛物线的解析式为y=(x﹣h)2+k,代入得:y=2(x+1)2+3,故选D.4.如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A.B.C.D.【考点】垂径定理;勾股定理.【分析】首先过点O作OD⊥AB于点D,由垂径定理,即可求得AD,BD的长,然后由勾股定理,可求得OD的长,然后在Rt△OCD中,利用勾股定理即可求得OC的长.【解答】解:过点O作OD⊥AB于点D,∵弦AB=2,∴AD=BD=AB=,AC=AB=,∴CD=AD﹣AC=,∵⊙O的半径为2,即OB=2,∴在Rt△OBD中,OD==1,在Rt△OCD中,OC==.故选D.5.图中实线部分是半径为9m的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A.12πm B.18πm C.20πm D.24πm【考点】弧长的计算.【分析】游泳池的周长即两段弧的弧长,每条弧所在的圆都经过另一个圆的圆心,则可知短弧所对的圆心角是120度,所以根据弧长公式就可得.【解答】解:.故选:D.6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3 C.3 D.4【考点】平面展开-最短路径问题.【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.【解答】解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是3m.故选C.7.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,x=﹣<0,得b>0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a>0,b>0,故本选项错误.故选:B.8.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,∴9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选:C.二、填空题9.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则a=﹣2,b=﹣1.【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:点A(2,4)与点B(b﹣1,2a)关于原点对称,得b﹣1=﹣2,2a=﹣4.解得a=﹣2,b=﹣1,故答案为;﹣2,﹣1.10.已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m=2.【考点】一元二次方程的解;一元二次方程的定义.【分析】根据条件,把x=0代入原方程可求m的值,注意二次项系数m+2≠0.【解答】解:依题意,当x=0时,原方程为m2﹣4=0,解得m1=﹣2,m2=2,∵二次项系数m+2≠0,即m≠﹣2,∴m=2.故本题答案为:2.11.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是13.【考点】一元二次方程的应用.【分析】设参加会议有x人,每个人都与其他(x﹣1)人握手,共握手次数为x(x﹣1),根据题意列方程.【解答】解:设参加会议有x人,依题意得:x(x﹣1)=78,整理得:x2﹣x﹣156=0解得x1=13,x2=﹣12,(舍去).答:参加这次会议的有13人,故答案为13.12.如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为16cm;若∠P=40°,则∠DOE=70°.【考点】切线长定理.【分析】根据切线长定理,可得DC=DA,EC=EB,继而可将△PCD的周长转化为PA+PB,连接OA、OB、OD、OE、OC,则可求出∠AOB的度数,从而可得∠DOE的度数.【解答】解:∵PA、PB、DE是⊙O的切线,∴DA=DC,EC=EB,∴△PDE的周长=PD+DC+EC+PE=PA+PB=2PA=16cm.连接OA、OB、OD、OE、OC,则∠AOB=180°﹣∠P=140°,∴∠DOE=∠COD+∠COE=(∠BOC+∠AOC)=∠AOB=70°.故答案为:16cm、70°.13.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【考点】旋转的性质;扇形面积的计算.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.【解答】解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=++×2×2=π+2,故答案为:π+2.14.将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为2cm.【考点】圆锥的计算.【分析】作OC⊥AB于C,如图,根据折叠的性质得OC等于半径的一半,即OA=2OC,再根据含30度的直角三角形三边的关系得∠OAC=30°,则∠AOC=60°,所以∠AOB=120°,则利用弧长公式可计算出弧AB的长=2π,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到圆锥的底面圆的半径为1,然后根据勾股定理计算这个圆锥的高.【解答】解:作OC⊥AB于C,如图,∵将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,∴OC等于半径的一半,即OA=2OC,∴∠OAC=30°,∴∠AOC=60°,∴∠AOB=120°,弧AB的长==2π,设圆锥的底面圆的半径为r,∴2πr=2π,解得r=1,∴这个圆锥的高==2(cm).故答案为:2cm.15.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为.【考点】列表法与树状图法.【分析】至少两辆车向左转,则要将两辆车向左转和三辆车向向左转的概率相加.或用1减去一辆车或没车向左转的概率.【解答】解:三辆车经过十字路口的情况有27种,至少有两辆车向左转的情况数为7种,所以概率为:.16.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为0.5米.【考点】二次函数的应用.【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【解答】解:以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A、B、C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解之得a=2,b=﹣4,c=2.5.∴y=2x2﹣4x+2.5=2(x﹣1)2+0.5.∵2>0∴当x=1时,y=0.5米.∴故答案为:0.5米.三、解答题(共72分)17.用适当的方法解下列方程:(1)x2﹣4x﹣21=0(2)(2x+1)(x﹣3)=(4x﹣1)(3﹣x)【考点】解一元二次方程-因式分解法.【分析】(1)利用因式分解法解方程;(2)先移项得(2x+1)(x﹣3)+(4x﹣1)(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)(x﹣7)(x+3)=0,所以x1=7,x2=﹣3;(2)(2x+1)(x﹣3)+(4x﹣1)(x﹣3)=0,(x﹣3)(2x+1+4x﹣1)=0,所以x1=3,x2=0.18.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于原点O逆时针旋转90°得到△A1B1C1;②△A1B1C1关于原点中心对称的△A2B2C2.(2)写出A2、B2C2坐标,并求△A2B2C2的周长.【考点】作图-旋转变换.【分析】(1)①利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;②利用关于原点对称的点的坐标特征写出点A2、B2、C2,然后描点即可得到△A2B2C2;(2)先利用勾股定理分别计算出B2C2、A2C2、,A2B2,然后计算△A2B2C2的周长.【解答】解:(1)①如图,△A1B1C1为所作;②如图,△A2B2C2为所作;(2)A2、B2、C2的坐标分别为(3,1),(1,6),(1,3)B2C2=3,A2C2==2,A2B2==,所以△A2B2C2的周长=3+2+.19.已知关于x的方程.(1)求证:无论m取什么实数,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1,x2.【考点】根的判别式;根与系数的关系.【分析】(1)先计算判别式得到△=(m﹣2)2﹣4×(﹣),再配方得到△=2(m﹣1)2+2,再根据非负数的性质得△>0,然后根据判别式的意义即可得到结论;(2)根据根与系数的关系得到x1+x2=m﹣2,x1•x2=﹣≥0,再去绝对值得到x2=﹣x1+2或﹣x2=x1+2,然后分类解方程.【解答】(1)证明:△=(m﹣2)2﹣4×(﹣)=2m2﹣4m+4=2(m﹣1)2+2,∵2(m﹣1)2≥0,∴2(m﹣1)2+2>0,即△>0,∴无论m取什么实数,这个方程总有两个相异实数根;(2)解:根据题意得x1+x2=m﹣2,x1•x2=﹣≤0,∵|x2|=|x1|+2,∴x2=﹣x1+2或﹣x2=x1+2,当x2=﹣x1+2时,而x1+x2=m﹣2=2,解得m=4,原方程变形为x2﹣2x﹣4=0,解得x1=1+,x2=1﹣;当﹣x2=x1+2时,而x1+x2=m﹣2=﹣2,解得m=0,原方程变形为x2+2x=0,解得x1=0,x2=﹣2.20.如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若∠C=30°,求证:BE是△DEC外接圆的切线;(2)若BE=,BD=1,求△DEC外接圆的直径.【考点】切线的判定.【分析】(1)根据线段垂直平分线的性质由DE垂直平分AC得∠DEC=90°,AE=CE,利用圆周角定理得到DC为△DEC外接圆的直径;取DC的中点O,连结OE,根据直角三角形斜边上的中线性质得EB=EC,得∠C=∠EBC=30°,则∠EOD=2∠C=60°,可计算出∠BEO=90°,然后根据切线的判定定理即可得到结论;(2)由BE为Rt△ABC斜边上的中线得到AE=EC=BE=,易证得Rt△CED∽Rt△CBA,则=,然后利用相似比可计算出△DEC外接圆的直径CD.【解答】(1)证明:∵DE垂直平分AC,∴∠DEC=90°,AE=CE,∴DC为△DEC外接圆的直径,取DC的中点O,连结OE,如图,∵∠ABC=90°,∴BE为Rt△ABC斜边上的中线,∴EB=EC,∵∠C=30°,∴∠EBC=30°,∠EOD=2∠C=60°,∴∠BEO=90°,∴OE⊥BE,而OE为⊙O的半径,∴BE是△DEC外接圆的切线;(2)解:∵BE为Rt△ABC斜边上的中线,∴AE=EC=BE=,∴AC=2,∵∠ECD=∠BCA,∴Rt△CED∽Rt△CBA,∴=,而CB=CD+BD=CD+1,∴=,解得CD=2或CD=﹣3(舍去),∴△DEC外接圆的直径为2.21.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k﹣5)x﹣(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=﹣8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.【考点】抛物线与x轴的交点;二次函数图象与几何变换;待定系数法求二次函数解析式.【分析】(1)把(x1+1)(x2+1)=﹣8展开即可得到与根与系数有关的式子,让二次函数的函数值为0,结合求值即可;=×|OC|×P的横坐标的绝(2)可根据顶点式得到平移后的解析式,求得P,C坐标,S△POC对值.【解答】解:(1)由已知x1,x2是x2+(k﹣5)x﹣(k+4)=0的两根,∴又∵(x1+1)(x2+1)=﹣8∴x1x2+(x1+x2)+9=0∴﹣(k+4)﹣(k﹣5)+9=0∴k=5∴y=x2﹣9为所求;(2)由已知平移后的函数解析式为:y=(x﹣2)2﹣9,且x=0时y=﹣5∴C(0,﹣5),P(2,﹣9)=×5×2=5.∴S△POC22.一只不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1、2、3、4.小林先从布袋中随机抽取一个乒乓球(不放回),再从剩下的3个球中随机抽取第二个乒乓球.记两次取得乒乓球上的数字依次为a、b(1)求a、b之积为奇数的概率.(2)若c=5,求长为a、b、c的三条线段能围成三角形的概率.【考点】列表法与树状图法;三角形三边关系.【分析】(1)画树状图展示所有12种等可能的结果数,再找出a、b之积为奇数的结果数,然后根据概率公式求解;(2)根据三角形三边的关系,找出长为a、b、c的三条线段能围成三角形的结果数,然后根据概率公式求解.【解答】解:(1)画树状图:共有12种等可能的结果数,其中a、b之积为奇数的结果数为2,所以a、b之积为奇数的概率==;(2)长为a、b、c的三条线段能围成三角形的结果数为4,所以长为a、b、c的三条线段能围成三角形的概率==.23.下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用π表示).【考点】圆锥的计算;弧长的计算.【分析】(1)设∠AOB=n°,AO=R,则CO=R﹣8,利用圆锥的侧面展开图扇形的弧长等于圆锥底面周长作为相等关系列方程,并联立成方程组求解即可;(2)求纸杯的侧面积即为扇环的面积,需要用大扇形的面积减去小扇形的面积.纸杯表面积=S纸杯侧面积+S纸杯底面积.【解答】解:由题意可知:=6π,=4π,设∠AOB=n,AO=R,则CO=R﹣8,由弧长公式得:=4π,∴,解得:n=45,R=24,故扇形OAB的圆心角是45度.∵R=24,R﹣8=16,=×4π×16=32π(cm2),∴S扇形OCDS 扇形OAB =×6π×24=72π(cm 2),纸杯侧面积=S 扇形OAB ﹣S 扇形OCD =72π﹣32π=40π(cm 2),纸杯底面积=π•22=4π(cm 2)纸杯表面积=40π+4π=44π(cm 2).24.某公司营销A 、B 两种产品,根据市场调研,发现如下信息:信息1:销售A 种产品所获利润y (万元)与销售产品x (吨)之间存在二次函数关系y=ax 2+bx .在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B 种产品所获利润y (万元)与销售产品x (吨)之间存在正比例函数关系y=0.3x .根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A 、B 两种产品共10吨,请设计一个营销方案,使销售A 、B 两种产品获得的利润之和最大,最大利润是多少?【考点】二次函数的应用.【分析】(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A 产品m 吨,购进B 产品(10﹣m )吨,销售A 、B 两种产品获得的利润之和为W 元,根据总利润等于两种产品的利润的和列式整理得到W 与m 的函数关系式,再根据二次函数的最值问题解答.【解答】解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x 2+1.5x ;(2)设购进A 产品m 吨,购进B 产品(10﹣m )吨,销售A 、B 两种产品获得的利润之和为W 元,则W=﹣0.1m 2+1.5m +0.3(10﹣m )=﹣0.1m 2+1.2m +3=﹣0.1(m ﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W 有最大值6.6,∴购进A 产品6吨,购进B 产品4吨,销售A 、B 两种产品获得的利润之和最大,最大利润是6.6万元.25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC 的最大面积.【考点】二次函数综合题.【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y 轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B 点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.【解答】解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形PO P′C是菱形,则有PC=PO;连接PP′,则PE⊥CO于E,∵C(0,﹣3),∴CO=3,又∵OE=EC,∴OE=EC=∴y=;∴x2﹣2x﹣3=解得x1=,x2=(不合题意,舍去),∴P点的坐标为(,)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),设直线BC的解析式为:y=kx+d,则,解得:∴直线BC的解析式为y=x﹣3,则Q点的坐标为(x,x﹣3);当0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,∴AO=1,AB=4,S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•BF+QP•OF==当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为.2017年1月29日。
九年级数学12月份课堂练习参考答案与评分标准一、选择题(本大题共有8小题,每小题3分,共24分)1.A 2.D 3.B 4.C 5.D 6.A 7.B 8.C 二、填空题(本大题共有8小题,每小题3分,共24分)9.0≤d ≤5 10.﹣4.3 11.34 12.142° 13.③④ 14.9 15.3 16.(343,−1009)三、解答题(本大题共有11小题,共102分)17.(6分)(1)y 1=﹣1,y 2=13; ………3分(字母写成x 的不给分)(2)x 1=﹣2+√5,x 2=﹣2−√5. ………6分18.(6分)证明:连接OE ,∵CE ∥AB ,∴∠BOC =∠C ,∠AOE =∠E ,∵OC =OE ,∴∠C =∠E ,∴∠BOC =∠AOE ,∴BC ̂=AE ̂. ………6分 19.(8分)解:(1)0.030; …………………………………………………2分 (2)列表如下:A1 A2 B C1 C2 A1 (A2,A1)(B ,A1) (C1,A1) (C2,A1) A2 (A1,A2) (B ,A2)(C1,A2) (C2,A2) B (A1,B ) (A2,B ) (C1,B )(C2,B ) C1 (A1,C1) (A2,C1) (B ,C1) (C2,C1)C2(A1,C2)(A2,C2)(B ,C2)(C1,C2)可能出现的结果有20种,并且它们出现的可能性相等,其中,选中的这两名学生恰好都是选择C 方式的结果有2种,则P (恰好都是选择C 方式)=220=110.……………………………………8分20.(8分)解;(1)∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴函数图象的顶点坐标(1,4);………………2分 函数的图象如图:………………4分 (2)根据图象可知:①当x <﹣1或x >3时,函数值y 为负数;………………6分②当﹣3<x <2时,函数值y 的取值范围﹣12<y ≤4.………………8分 21.(8分)解:(1)3.75;2.0;…………4分 (2)②;…………6分(3)这片树叶更可能来自荔枝, …………7分 理由:这片长13cm ,宽6.2cm 的树叶,长宽比接近2.…………8分 22.(10分)解:(1)−350,6; ………………………………4分(2)由(1)知,抛物线的表达式是:y =−350x 2+6,第2人 第1人结果可设N(5,y N),于是y N=−350×52+6=4.5.∴10﹣4.5=5.5(米).∴支柱MN的长度是5.5米.……………………………………………10分23.(10分)解:(1)当m=2时,原方程为x2−8x+12=0,∴a=1,b=﹣8,c=12.设关于x的一元二方程x2−8x+12=0的两个根分别为x1,x2,∴x1+x2=−ba =8,x1x2=ca=12.………………………………………2分∵关于x的一元二方程x2−8x+12=0的两个根是矩形ABCD的两邻边长,∴矩形的对角线长度为√x12+x22=√(x1+x2)2−2x1x2=√82−2×12=2√10.………5分(2)∵关于x的一元二方程x2−4mx+8m﹣4=0的两个根是菱形ABCD的两邻边长,∴关于x的一元二方程x2−4mx+8m﹣4=0有两个相等的实数根,∴Δ=(﹣4m)2﹣4×1×(8m﹣4)=0,解得:m1=m2=1,………………………7分∴原方程为x2−4x+4=0,即(x﹣2)2=0,解得:x1=x2=2,∴菱形的周长为2×4=8.……………………………………………10分24.(10分)(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∴OA⊥OC;又∵AD∥OC,∴OA⊥AD,∵OA是半径,∴AD是⊙O的切线;…………………5分(2)解:设⊙O的半径为R,则OA=R,OE=R﹣3,AE=3√5,在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R﹣3)2=(3√5)2,解得R=6(负舍),∴⊙O的半径为6.……………………………10分25.(10分)解:(1)根据题意得:y=6000+1000(30﹣x)=﹣1000x+36000,∴每天的销售量y与销售单价x之间的函数关系式为y=﹣1000x+36000;…………………3分(2)根据题意得:w=(x﹣20)y=(x﹣20)(﹣1000x+36000)=﹣1000x2+56000x﹣720000,∴每天的利润w与销售单价x之间的函数关系式为w=﹣1000x2+56000x﹣720000;…………6分(3)w=﹣1000x2+56000x﹣720000=﹣1000(x﹣28)2+64000,∵销售单价不能低于成本且不高于30元,∴20≤x≤30,∵﹣1000<0,∴当x=28时,w有最大值,最大值为64000,……………………………9分答:当销售单价为28元时,每天的销售利润最大,最大利润是64000元.…………10分(不答的扣1分)26.(12分)解:(1)是;…………………2分(2)∵∠ABC=∠ADC=90°,点O是AC的中点,∴OB=12AC,DO=12AC,∴OB=OD=12AC,∵OE⊥BD,∴∠OEB=90°,∴OB2﹣BE2=OE2=152,即(12AC)2﹣(12BD)2=225,∴AC2﹣BD2=900 …………………7分(3)取AB的中点M,连接CM,OM,证得△CMO是等腰直角三角形,∴菱形ABED的面积为50√3.…………………12分27.(14分)(1)A …………………2分(2)t<﹣4或t≥21 …………………5分(3)m=﹣7或m=3 …………………8分(4)3√3﹣3或3﹣√3…………………14分。
九年级数学第二次月考卷一、选择题(每题4分,共40分)1. 下列选项中,( )是实数。
A. √1B. 3+4iC. 0D. 1+i2. 若|a|=5,|b|=3,则|a+b|的取值范围是( )。
A. 2≤|a+b|≤8B. 8≤|a+b|≤10C. 2≤|a+b|≤10D.8≤|a+b|≤183. 已知等差数列{an},a1=1,a3=3,则公差d为( )。
A. 1B. 2C. 3D. 44. 不等式2x3>0的解集是( )。
A. x>1.5B. x<1.5C. x>3D. x<35. 下列函数中,( )是奇函数。
A. y=x^2B. y=|x|C. y=x^3D. y=2x6. 一次函数y=kx+b的图象经过一、二、四象限,则k和b的取值范围是( )。
A. k>0,b>0B. k<0,b>0C. k<0,b<0D. k>0,b<07. 在△ABC中,a=8,b=10,cosA=3/5,则sinB的值为( )。
A. 3/5B. 4/5C. 3/4D. 4/38. 下列图形中,( )的面积可以通过底乘以高的一半来计算。
A. 正方形B. 矩形C. 三角形D. 梯形9. 已知函数f(x)=2x+1,那么f(f(x))的值为( )。
A. 2x+1B. 4x+3C. 2x+3D. 4x+110. 下列方程中,( )是一元二次方程。
A. x^2+y^2=1B. x^2+2x+1=0C. 2x3y=5D. x^33x=0二、填空题(每题4分,共40分)11. 已知数列{an}的通项公式为an=n^2n+1,则a5=______。
12. 若|a|=3,|b|=4,且a与b同向,则a•b=______。
13. 在平面直角坐标系中,点A(2,3)关于原点的对称点坐标为______。
14. 已知等差数列{an},a1=3,a5=11,则公差d=______。
九年级数学第二次月考试卷
(时间:120分钟 满分:150分)
一、选择题(本题共8道小题,每题4分,满分32分) 1.一元二次方程042=-x 的解是( )
A .2=x
B .2-=x
C .21=x ,22-=x
D .21=x ,22-=x
2.浙江省庆元县与著名的武夷山风景区之间的直线距离约为105km ,在一张比例尺为1:2000000
3.小明从上面观察下图所示的两个物体,看到的是( )
A B C D
4.下列性质中正方形具有而矩形没有的是( )
A
.对角线互相平分 B .对角线相等 C .对角线互相垂直 D .四个角都是直角 5.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A .15
4 B .31 C .51 D .15
2
6.
如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走 到B 处,这一过程中他在该路灯灯光下的影子( ) A .逐渐变短 B .逐渐变长 C .先变短后变长 D .先变长后变短
7. 如图,在宽为20m ,长为30m . 根据图中数据,计算耕地的面积为( )
(A ) 600m 2 (B ) 551m 2(C ) 550 m 2
(D ) 500m 2 8. 比值为( )
A .
B .
C . 1
D .
二、填空题(本大题共7道小题,每小题4分,满分28分)
9. 在直角三角形中,若两条直角边长分别为6cm 和8cm ,则斜边上的中线长
为 cm .
10. 菱形的两条对角线长为6和8,则此菱形的周长为_______。
11. 若关于x 的方程0632=-++m mx x 有一根是x=0,则_____=m 。
12. 如果两个相似多边形面积的比为1:5,则它们的相似比为_______
13.一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一
个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是 _________ . 14.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 _________ m . 15.已知△ABC 中,AB=8,AC=6,点D 是线段AC 的中点,点E 在线段AB 上且△ADE ∽△ABC ,则AE= _________ .
三、解答题(本大题共9道小题,满分90分) 16.(8分)解方程:3(3)x x x -=-
17.(10分)如图,楼房和旗杆在路灯下的影子如图所示。
试确定路灯灯炮的位置,再作出小树在
路灯下的影子.(不写作法,保留作图痕迹)
18.(10分)在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6
,,则EC
的长是多少?
19.(10分)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.
20.(10分)已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?
21.(10分)小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英得1分,否则小丽得1分,
这个游戏对双方公平吗?说明理由?(红色+蓝色=紫色,配成紫色者胜)
22.(12分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.
23.(20分)如图,在平行四边形ABCD中,点G是BC延长线上一点,AG与BD交于点E,与DC交于点F,如果AB=m,
CG=BC,
求:(1)DF的长度;
(2)三角形ABE与三角形FDE的面积之比。