心电采集系统相关电路介绍..
- 格式:ppt
- 大小:1.38 MB
- 文档页数:22
第一种心率作为重要的生命体征,包含着丰富的人体生命信息。
构建一种可穿着的日常心率测试监控系统,能够采集心跳信号,进行日常心率测试、储存、报警、实时监控等功能,这样的心率测试服装可为病人、老人、小孩等老弱人群带来便利。
目前国外此类代表性的服装有意大利Wealthy智慧衣,它使用压阻式纱线所织成的应变式织物传感器以及采用混以金属丝的纱线所制成的织物电极来采集生理信号[1]。
此外,还有获得14项专利的美国VivoMetrics研发的Life Shirt Garment,它利用嵌入式传感器,设计运算法则、软件可分析20多种生理信号[2]。
目前对心率信号的采集主要有心电电极采集、光电传感器采集及压力传感器采集.心电电采集时,需用胶条将电极贴在人体表面,而光电传感器采集时,需将电极接到人体上透明的部分如手指或耳廓两者都不符合本设计的要求故本设计采用压力传感器采集压力传感器一般可置于心脏处、颈动脉处、手腕挠动脉处将传感器置于手腕挠动脉处,用具有弹性的经过处理的护腕将其固定,这样就可以根据不同人的手腕的粗细调节传感器与体表接触的最佳压力.使用压电晶体作为采集心跳信号的换能装置,整个调理电路由电荷放大器、调适放大器、低通滤波器、放大及阈值整形输出级等部分组成,可完成信号的放大、滤波以及电压转换.本设计中所使用的XH-6型有源心音脉搏多用途压电晶体传感器已经内置电荷放大器和调适放大器,则此传感器在受到压力后直接输出电压信号,见图2.正常人的脉搏和心跳是一致的,脉搏的频率受年龄和性别影响,如婴儿120~140次/min,幼儿90~100次/min,成年人70~80次/min,只要60~100次/min都是正常的,当然专业运动员可以为50次/min.因此,人的脉搏波形频率远远小于5 Hz,大约在0·5~2 Hz之间,所以通过一个二阶低通勃通华斯滤波器就可以将10 Hz以上的杂波滤掉,剩下的就是心跳产生的波.同时,使用CD40106施密特反相器可以将不规则的尖峰脉冲整形,整形后的方波脉冲可由单片机直接计数.整形后的波形如图3所示,心跳采集应用电路如图4所示,其中JP1接心跳传感器3个端子,HCC40106的6管脚接单片机的P3.4口.图1。
心电放大电路实验报告一概述心脏是循环系统中重要的器官。
由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。
心脏在机械性收缩之前,首先产生电激动。
心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。
如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。
普通心电图有一下几点用途1、对心律失常和传导障碍具有重要的诊断价值。
2、对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞,而且还可确定梗塞的病变期部位范围以及演变过程。
3、对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断有较大的帮助。
4、能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌的作用。
5、心电图作为一种电信息的时间标志,常为心音图、超声心动图、阻抗血流图等心功能测定以及其他心脏电生理研究同步描纪,以利于确定时间。
6、心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以及危重病人的抢救。
二系统设计心电信号十分微弱,频率一般在0.5HZ-100HZ之间,能量主要集中在17Hz附近,幅度大约在10uV-5mV之间,所需放大倍数大约为500-1000倍。
而50hz工频信号,极化电压,高频电子仪器信号等等干扰要求心电信号在放大的过程中始终要做好噪声滤除的工作。
下图为整体化框图。
三具体实现电路图如下:1 导联输入:导联线又称输入电缆线。
其作用是将电极板上获得的心电信号送到放大器的输入端。
心脏电兴奋传导系统所产生的电压是幅值及空间方向随时间变化的向量。
放在体表的电极所测出的ECG信号将随不同位置而异。
心周期中某段ECG描迹在这一电极位置不明显,而在另一位置上却很清楚。
为了完整描述心脏的活动状况,应采用多电极导联方式测量心电信号,基于现在的实验条件及要求,选择3导联方式:左臂(LA),右臂(RA)以及右腿(RL)。
CHENGSHIZHOUKAN 2019/14城市周刊96心电信号采集模块设计邱永利 凯莱英生命科学技术(天津)有限公司摘要:随着社会生活水平的不断提高,人们对健康的意识也不断提升。
心脏病是威胁人类健康的主要疾病之一,如果能对心脏患者进行日常监护,则可为日后诊断提供重要的参考价值。
本文阐述的主要包括:心电采集电路、前置放大电路、滤波网络、主放大电路。
心电信号由电极进行采集,为了抑制共模干扰加入右腿驱动;前置放大电路主要是将电极采集到的信号进行高保真的放大,AD620是一款在生物放大电路应用较广的高精度仪用放大器;滤波网络由低通滤波、高通滤波、50Hz 陷波电路组成;主放大电路主要对信号进行后续放大。
关键词:心电信号采集;放大电路;滤波网络;Multisim人体测量是以医学、生理学为基础。
生物医学测量属于强噪声背景下的低频微弱信号的测量,被测信号是由复杂的生命体发出的复杂的不稳定的自然信号。
生物医学测量的生理参数有心电、脑电、肌电等各种生物电的电量参数,还有体温、血压、呼吸、血流量、脉搏心音等非电量参数,这些非电量参数的测量实质上就是温度、压力、流量、频率、力、位移等非电量物理参数的测量。
生物医学测量与普通测量相比,虽然可以归结为电量与非电量的测量,但是被测量信号的特征和被测量的生命系统,与工程上的测量具有本质的不同。
一、国内外现状及发展趋势在国外,心电图机的研制和生产,占主要地位的是以德国、日本、加拿大、美国为主的发达国家,相对而言国内心电图机发展速度较慢,水平较落后。
自1978年美国Marquett 公司首次推出数字化12导同步心电图机,便开创了心电图记录、分析与诊断、保存与管理的新纪元,从此心电图机进入数字化发展新时代,特别是计算机在各个领域的广泛运用,数字化信息处理为医学界进步和深入研究提供了现代化高科技手段[1]。
在国内医疗器械生产商大多数是中小企业,产品技术水平较低,不具备国际竞争力,所需的器件、材料、工艺,水平低基础差。
新时期便携式心电信号采集电路设计本文首先介绍了心电图产生机理和心电信号的参数特征,然后分析了电路系统原理与组成,最后具体阐述了便携式心电信号采集电路设计。
标签:便携式;心电信号;采集电路;设计心血管类疾病的发作具有突发性,难以预测性,致残致死的高度危险性,但是对于心血管类疾病的发现手段,目前来说主要是依靠心电信号。
心电信号是由心脏的电活动而产生并可反映出心脏生理功能变化信息的人体生物电信号。
因此,心电信息连续、准确、实时的采集,可对心血管类疾病的临床诊断提供重要的依据。
1 心电图产生机理在人体内,窦房结发出一次兴奋,按一定途径和时程,依次传向心房和心室,引起整个心脏兴奋。
因此,每个心动周期中,心脏各个部分兴奋过程中出现的生物电变化的方向、途径、次序和时间都有一定规律。
这种生物电变化通过心脏周围的导电组织和体液反映到身体表面上,使身体各部位在每一心动周期中也都发生有规律的生物电变化,即心电位。
若把测量电极放置在人体表面的一定部位,记录处心脏电位变化曲线,即常规心电图(Electrocardiogram,简称ECG)。
2 心电信号的参数特征心电信号是一种低频微弱双极性信号,主要成分集中在0.05-100Hz;幅度为10μV--4mV,典型值为1mV;信号源阻抗一般高达几千欧-几十千欧。
通常还混有其他生物电信号,有体外50Hz工频的干扰,仪器内部噪声和仪器周围电场、磁场、电磁场的干扰等,使得心电信号噪声背景较强,为采集和测量带来了难度。
放大器的温漂、皮肤电阻的变化、呼吸和人体运动,都会造成心电波形信号在某条水平线上缓慢地上下移动的“基线漂移”现象。
这些低频噪声主要集中于0.03-2Hz。
但是,心电信号中的ST段和Q波频率分量集中于0.05--2Hz;与上述低频噪声分量很接近。
因此,不可简单地把高通截止频率定为2Hz,否则将使心电信号的波形出现较大失真。
3 电路系统原理与组成图1所示是心电信号采集电路的系统框图,图中心电信号是用心电电极拾取的,送入前置放大器初步放大;输出的‘右腿驱动’作用于患者右腿上,用于消除心电信号中的共模信号;输出的‘屏蔽驱动’接到心电信号电缆的屏蔽层上,使屏蔽层电位追随其中信号线的电位,消除两者之间分布电容的影响,使输入信号不失真。
心电信号检测电路的介绍摘要:本文是我设计的一个心电信号的测试电路,它能够测量出人体心电信号的波形。
虽没有成熟心电图机那么精准,但是也能够反应出一定的信号。
鉴于不够精准方面的问题,本电路仍需进一步改进。
一、心电检测电路设计目的1.掌握心电的产生原理和导联方式2.要求掌握心电测量电路的硬件实现方法3.熟悉差动放大电路、滤波电路在心电检测电路中的作用。
二、心电检测电路设计原理1.心电图的产生心脏在搏动之前,心肌首先发生兴奋,在兴奋过程中产生微弱的电流,该电流经人体组织向各部分传导,由于身体各部分的组织不同,各部份与心脏间的距离不同,因此在人体体表各部位,表现出不同的电位变化,这些电位变化可通过导线送至一种特制的记录装置—心电图机记录下来,形成动态曲线,这就是所谓心电图(Electrocardiogram,ECG),也称为体表心电图。
心电信号是反映心脏兴奋的产生、传导和恢复过程中的生物电变化,心肌细胞的生物电变化是产生心电图的源泉,但是心电图曲线与单个细胞的膜电位曲线有明显的差别。
心脏各部分兴奋时与心电图波形的对应关系如下图所示。
图中P波代表左右两心房兴奋除极过程所产生的电压变化;P-R期间代表心房开始除极传经房室结、希氏束至心室开始除极前的时间;QRS综合波代表室间隔与左右两心室除极过程所产生的电压变化;ST段代表心室除极后缓慢恢复极化过程所形成的微弱电压变化;T波代表心室肌迅速恢复极化过程的电压变化;U波是在T波后的一个很小的正向波,代表心肌激动的“负后电位”。
图心脏兴奋与相应的心电图波形2.体表心电图导联(Electrocardiogram Lead)将两个电极安放在人体表面的任何两点,分别同心电图机的正负极端相连,可用来描记这两点电位差的变化,这种放置电极的方法及其与心电图机的联接方式称为导联(Lead)。
根据电极放置部位的不同,可组成各种导联,各种导联的心电图波形各有特点。
在实用上为了统一标准以便进行对比分析,目前均采用国际上通用的导联,即Ⅰ、Ⅱ、Ⅲ标准导联;加压单极肢体导联(aVR、aVL、aVF)及单极胸导联(V1~V6)。
心电信号的采集和调理电路1概述1.1国内外发展现状心电图机就是用来记录心脏活动时所产生的生理电信号的仪器。
由于心电图机诊断技术成熟、可靠,操作简便,价格适中,对病人无损伤等优点,已成为各级医院中最普及的医用电子仪器之一。
在国外,心电图机的研制和生产,占主要地位的是以德国、日本、加拿大、美国为主的发达国家,相对而言国内心电图机发展速度较慢,水平较落后,心电图机的研制和生产是在1904年荷兰的爱因托芬(Willem Einthoven)制造的第一台弦线式电流计的基础上发展而来的,20世纪50年代之前,心电图机的发展主要解决了小型化和提高灵敏度的问题。
1960年第一个专用心电图波形自动识别系统建立起来,自1978年美国Marquett公司首次推出数字化12导同步心电图机,便开创了心电图记录、分析与诊断、保存与管理的新纪元,从此心电图机进入数字化发展新时代,特别是计算机在各个领域的广泛运用,数字化信息处理为医学界进步和深入研究提供了现代化高科技手段。
常规的心电图机有单道和多道,虽使用方便,但体积庞大、价格高,主要适合医院,并且对许多偶发、短暂心律失常无法进行监测;动态心电图机(HOLTER),虽然可用于24小时甚至更长时间的心电图记录,但是HOLTER价格昂贵,使用不方便,并且不能实时处理。
在国内,截至2007年10月,据不完全统计,我国已有医疗器械生产企业12530家,而专业生产心电图机的企业仅有20几家,大多数是中小企业,产品技术水平较低,不具备国际竞争力,所需的器件、材料、工艺,水平低基础差。
目前我国心电图机主要生产厂家在广东、山东和上海,但在国内市场上均形不成主导地位。
1985年上海医用心电图机的产品约占全国的80%,产品畅销;但自1989年12月上海医用电子仪器厂与日本光电工业株式会社签约合资成立上海光电医用电子仪器有限公司后,中国几家心电图机生产企业便开始滑坡,而光电公司的产品却更加稳固地占领了中国市场。
一、心电图机概述1.1 医学仪器概述医学仪器主要用于对人的疾病进行诊断和治疗,其作用对象是复杂的人体,在医学仪器没有大量出现之前,医生主要凭经验通过手和五官来获取诊断信息,现在随着电子信息等技术的发展,医学仪器可以将人体的各种信息提供给医生观察和诊断。
由于生理信号均是微弱的信号,加之人体结构的复杂性和个体差异性,医学仪器在检测研究生物信息时,必须考虑到生物信息的特点,针对不同的生理参量采用不同的方法。
检测一些十分微弱的信息时,必须用高灵敏度的传感器或者电机,对于一些变化极为缓慢的生物信息,要求其检测系统具有很好的频率响应特性。
同时,对于检测到的信号,需要进行必要的处理,才能成为医生诊断的依据,现在能检测到的生理信号十分丰富,到了不用计算机就很难处理的地步。
所以对任何检测到的信号必须进行模/数转换,对不同的生理信息还要采用一些数学方法,如对非线性的生物信息,可通过拉普拉斯变换的办法,将其按线性处理;又如欲将检测到的以时间域表示的信息转换到频率域上,就得采用傅立叶变换的方法。
在生物信息处理过程中,当需要作信号波形分析时,又要用到模拟式频谱分析法(即滤波)和数字式频谱分析法。
另外,对于处理好的生理信号,必须以某种方式显示出来如打印在记录纸上或显示在显示屏幕上等。
图1.1从上述可以看到,医学仪器与其他仪器相比具有其特殊性。
一台完整的医学仪器一般由以下几部分构成:信息检测系统、信息处理系统、记录显示系统以及其他的辅助系统(如图1.1所示)。
检测系统主要包括被测对象、传感器或电极,它是医学仪器的信号源;信息处理系统的作用是对信息检测系统传送过来的信号进行处理,包括放大、识别(滤波)、变换等各种处理和分析,它也被认为是医学仪器的核心,因为仪器性能的优劣、精度的高低、功能的多少主要取决于它,可以说医学仪器自动化、智能化的发展完全取决于信息处理系统技术进步的程度;信息记录与显示系统的作用是将处理后的生物信息变为人们可以直接观察的形式。
心电信号采集电路的设计师作者:彦荣胡进峰来源:《电子世界》2012年第18期【摘要】心电信号是人类最早研究生物电信号之一,并较早的应用到医学临床。
本文根据心电信号的低频率、低幅值和人体高阻抗等特点,设计了一个用于心电信号采集的电路。
该电路主要由传感器电极、右腿驱动电路、前置放大电路、低通滤波电路、高通滤波电路、50Hz 陷波电路以及后置放大电路组成。
该电路较好的降低了共模信号的干扰以及工频干扰,可以采集到较好的心电信号。
【关键词】心电信号;右腿驱动电路;滤波电路;放大电路1.引言心脏疾病是威胁人类生命的主要疾病之一。
对心电信号进行监护可以为心脏病患者的诊断提供重要的参考依据。
心电信号数据的采集和处理是心电监护的核心部分,采集到形态良好的心电信号,对于后续电路的信号处理效果有一定的影响。
心电信号是一种微弱的生理信号,其频率范围一般是0.05~100Hz,电压幅度范围一般在0~5mV,具有高阻抗等特点,而且容易受到干扰。
因此,如何把干扰信号滤除,并把信号的幅值放大到后续电路需要的幅值大小是整个心电信号采集的核心。
2.系统设计心电信号采集电路的系统框图如图1所示。
先通过传感器电极从人体提取心电信号,经过一个前置放大器后,再通过低通滤波电路和高通滤波电路把一些干扰信号滤除,只留下心电信号频率段的信号,接着经过50Hz陷波器,滤除工频干扰,最后经过后置放大器把信号的幅值放大到后续电路所需要的信号幅值大小。
3.心电信号提取心电信号提取电路如图2所示。
运放OP07构成右腿驱动电路,右腿驱动电路可以将人体共模信号倒相放大后作用于右腿,在不损失心电信号的频率成分的情况下降低共模信号的干扰[1]。
仪器运放AD620构成前置放大电路,它的增益主要由管脚1和管脚8之间的电阻R6确定:前置放大器的增益不能过大,所以选取前置放大器的增益A为10,因此R6≈5.6K。
4.低通滤波电路心电信号的频率在100Hz以下,所以通过低通滤波电路把高频的干扰信号滤掉,其电路图如图3所示。