陀螺定向测量方法
- 格式:docx
- 大小:12.69 KB
- 文档页数:1
陀螺逆转点法定向及精度评定摘要隧道或井巷工程测量导线布设的形式因受巷道形状的制约,若单纯采用改变导线布设形式或提高测角次数与精度等方法,往往难以满足工程施工对于测量的精度要求。
陀螺经纬仪是测量井下导线边方位角、提高测量精度的重要仪器。
尤其是在贯通测量中陀螺经纬仪的应用非常广泛。
贯通测量是一项十分重要的测量工作,必须严格按照设计要求进行。
巷道贯通后,其接合处的偏差不能超过一定限度,否则就会给采矿工程带来不利影响,甚至造成很大的损失。
本文对陀螺经纬仪工作原理介绍,以及陀螺经纬仪在贯通测量中的精度评定。
陀螺经纬仪在不同领域的贯通测量工作中运用实例的分析,总结出在贯通测量导线加测陀螺定向边的最佳位置。
关键词:陀螺定向,贯通测量,陀螺经纬仪,精度评定ABSTRACTTunnel or shaft engineering measurement wires for the form of roadway, if simple shape by changing arrangement forms or improve wires and precision Angle measurement methods, and often difficult to satisfy the measurement accuracy for engineering construction. Gyro theodolite is measured in wire edge Angle, improve the measuring precision instruments. Especially in the measurement of the photoelectric theodolite gyro breakthrough is used extensively. Through measurement is a very important measurement work, must strictly according to the design requirements. The roadway expedite, its joint deviation cannot exceed a certain limit, otherwise they will be detrimental to the mining project, and even cause great losses. This paper introduces working principle of gyro theodolite, as well as the breakthrough in the measurement of the gyro theodolite accuracy assess. Gyro theodolite in different fieldsof the measurement of the examples, this paper leads in breakthrough measurement on the edge of the directional gyro adds the best position.Key words: directional gyro; through measurement; gyro theodolite; Accuracy Assessment目录1 绪论 (1)1.1陀螺定向的研究现状 (1)1.2研究陀螺定向的目的 (1)1.3陀螺定向的应用领域及发展趋势 (2)2 陀螺经纬仪定向测量原理与方法 (3)2.1陀螺经纬仪的类型与结构 (3)2.1.1 陀螺经纬仪定向的优点及应用领域 (3)2.1.2 陀螺经纬仪的基本结构 (3)2.1.3 陀螺经纬仪的类型 (4)2.2陀螺经纬仪定向的基本步骤 (5)2.3跟踪逆转点法测定陀螺方位角的作业过程 (7)2.3.1 陀螺仪悬带零位观测 (7)2.3.2 粗略定向 (8)2.3.3 精密定向 (9)3 陀螺定向的误差分析 (13)3.1陀螺定向的误差来源 (13)3.2陀螺定向在贯通测量中的精度评定 (14)3.2.1 陀螺方位角一次测定中误差 (14)3..2.2 一次定向中误差 (14)3.3陀螺定向在贯通测量中导线的平差 (15)3.3.1 具有两条陀螺定向边导线的平差 (15)3.3.2 具有三条陀螺定向边导线的平差 (17)4 陀螺定向在贯通测量中的应用实例分析 (20)4.1陀螺定向在道路贯通测量中的应用实例分析 (20)4.1.1 工程概况 (20)4.1.2 陀螺定向技术 (20)4.1.3 精度评定 (22)4.1.4 工程分析 (23)4.2陀螺定向在矿山贯通测量中的应用实例分析 (24)4.2.1 工程概况 (24)4.2.2 陀螺定向技术 (24)4.2.3 精度评定 (26)4.2.4 工程分析 (27)4.3陀螺定向在水利贯通测量中的应用实例分析 (27)4.3.1项目概况 (27)4.3.2 陀螺定向技术 (28)4.3.3 陀螺定向精度评定 (29)4.3.4 坐标解算及成果对比分析 (30)4.3.5 工程分析 (35)5 结论 (38)参考文献 (39)致谢...................................................... 错误!未定义书签。
垂直陀螺仪,使用规范篇一:陀螺测斜仪定向操作规程SinoGyro陀螺测斜仪定向操作规程一、检查仪器密封圈是否都已上好并完好无缺,仪器连接丝扣处用丝扣油涂抹,连接好仪器并打紧。
二、在井上将井下仪放置在井斜20—30度之间。
三、转动井下仪,使定向引鞋的定键槽垂直向上并保持稳定。
四、开机,待仪器运转稳定后开始测量;连续测量三次以上,取最后三次稳定重力高边数值的平均值(重复性误差≤+1)作为“高边初始角”的值输入计算机。
五、重测,确认此时重力高边实测数值为零(误差≤+10);仪器断电。
六、为了确保仪器井下顺利入键,定向接头下井之前必须与仪器引鞋进行地面入键测试,一切顺利后,定向接头方可下井。
七、仪器下井时,在定向键槽涂上铅油。
下放时下放速度≤2000米/小时;上提时≤1800米/小时。
当井下仪下放距离定向接头50米时,控制下放速度在1200-1500米/小时之间;仪器入键后,待地滑轮落地时,方可停绞车。
八、绞车停稳2分钟后,开机测量,连续测量2次,检查仪器稳定性和重复性并记录测量数据;一切正常后仪器断电,待陀螺停稳后上提30米以上,开始第二次坐键并测量;连续坐键三次,三次高边测量值误差≤+50时即可确认仪器入键。
九、仪器入键后不动,地面转动钻杆或油管至所需位置,然后上提下放钻杆或油管各三次,每次活动范围3—5米,待活动完成后开机测量定向键的位置,如果达不到要求,继续转动和活动井下工具,至定向键位置达到工艺要求为止,至此陀螺定向结束。
十、陀螺测斜仪高边转换角默认值为3度,测量过程中如果想同时观察陀螺高边和重力高边时,可在同一位置改变高边转换角的数值来实现。
十一、定向测量结束后,数据存盘,起出井下仪,进行现场资料交接。
SinoGyro陀螺测斜仪开窗侧钻定向表甲方:乙方:MDRO-021型陀螺测斜仪一、引言:MDRO-021型陀螺测斜仪是我公司新研制的第二代陀螺测斜仪。
MDRO-021型陀螺测量仪在技术上作了较大改正,使其模型更加完善,测量精度更高,测量速度更快,使其更加灵活方便。
分析矿井生产中陀螺定向测量的应用及精度摘要:基于井下定向测量对生产安全及效率的重要性,在简单介绍陀螺定向测量的基础上,结合矿井实例,对陀螺定向测量实际应用及测量成果精度进行深入分析,最后得出陀螺定向测量精度高,测量可靠的结论。
关键词:矿井生产;陀螺定向测量;测量精度矿井井下生产对现场观测与定向有着极高的要求,定向测量精度直接影响实际生产效率,如果精度较差,则必定会降低效率,造成不必要的损失。
因此,应在重视定向测量的基础上,通过新技术和新设备的引入来提高定向测量水平,如采用陀螺经纬仪就是很好的选择。
1陀螺定向测量概述目前,我国与许多国家均研制出充分结合经纬仪与陀螺仪的测量仪器,称为陀螺经纬仪,主要用于完成定向测量。
对于这种新型测量仪器,其作用原理为:借助吊丝进行悬吊,重心下移的陀螺敏感地球自转角速度的水平方向分量,受到重力的作用后,产生一定向北端发生进动的力矩,促使主轴开始围绕子午面发生往复运动,此时利用传感器接收运动光信号,并将其转换成仪器可识别的电信号,传输至控制器实施分析解算。
之后由经纬仪对被测对应方位角进行显示与读取,也可在数据传输接口支持下向终端设备传输数据[1]。
本矿井因建设过程中采用几何定向方法得到定向精度相对较低,同时现已受到一定程度的干扰及破坏,使得可靠性降低,导致井下的无论是控制导线,还是长距离掘进,均需精度达到较高水平的方向控制。
近年来,我国矿山测量人员在积极总结传统几何定向方法不足与弊端的基础上,陆续开始借助陀螺经纬仪完成定向测量任务,以求解决传统方法占用井筒产生的长时间停产、需要消耗大量资源等问题,并克服定向精度伴随井筒深度不断增加而明显降低等不足,确保工作效率及定向成果的精度都能得到大幅提升。
基于此,从本矿井角度讲,为充分满足实际施工提出的各种要求,使首级控制导线始终保证较高的精度,经研究决定在井下方向测量工作中选用新型陀螺经纬仪取代传统的几何定向方法,以此对起始方位角等重要测量成果进行确定与校核。
陀螺全站仪定向测量的引用
摘要:
一、陀螺全站仪定向测量的基本原理
二、陀螺全站仪定向测量的应用领域
三、陀螺全站仪定向测量的优缺点分析
四、陀螺全站仪定向测量的未来发展趋势
正文:
陀螺全站仪定向测量是一种利用陀螺全站仪进行地面或空间方向测量的方式,它通过计算陀螺仪的角速度和角加速度,从而得出被测物体的方向和位置。
一、陀螺全站仪定向测量的基本原理
陀螺全站仪定向测量的基本原理是利用陀螺仪的稳定性,通过测量地球引力对陀螺仪的影响,计算出陀螺仪的角速度和角加速度。
然后,根据陀螺仪的角速度和角加速度,计算出被测物体的方向和位置。
二、陀螺全站仪定向测量的应用领域
陀螺全站仪定向测量主要应用于地面或空间方向测量,包括地球物理学、地质学、航空航天、军事等多个领域。
例如,在地球物理学中,陀螺全站仪定向测量可以用于地震预测和地壳运动研究;在地质学中,陀螺全站仪定向测量可以用于矿产资源勘探和地质结构研究;在航空航天和军事领域,陀螺全站仪定向测量可以用于飞行器导航和武器系统定位。
三、陀螺全站仪定向测量的优缺点分析
陀螺全站仪定向测量的优点是测量精度高、可靠性好,能够实现快速、准确的方向测量。
但是,陀螺全站仪定向测量也存在一些缺点,例如设备成本高、操作复杂、受环境影响较大等。
四、陀螺全站仪定向测量的未来发展趋势
随着科技的不断发展,陀螺全站仪定向测量技术也在不断进步。
未来的发展趋势主要包括:提高测量精度、扩大应用领域、实现自动化操作和小型化设备等。
地下隧道竖井联系测量方法比较探讨姚顺福1 测量原理1.1 陀螺定向法陀螺定向法是综合利用全站仪、光学垂准仪(或重锤球)以及陀螺经纬仪等仪器进行导线联系测量的一种方法。
首先利用光学垂准仪(或重锤球)将地面车站端头井的点位沿同一铅锤线方向投影到端头井的井底,同时利用全站仪测量井上、井下各导线点的角度与距离、利用陀螺经纬仪测量井上、井下的相关导线边的陀螺方位角,从而求算出井上、井下投影点在空间的平面夹角,最终把地面趋近导线的平面坐标和方位传递到地下隧道施工控制导线上。
如下图1所示,K0、K1为地面趋近导线点,其中K0为近井点;T1、T2为地面车站端头井投影点;T1´、T2´分别为T1、T2投影到车站端头井底部的投影点;X1、X2、X3……Xn为地下隧道施工控制导线点;a1、a2、a5、a6、a7和d1、d2、d3、d4、d5、d6分别为全站仪实测的角度和距离。
X2图1:陀螺定向法竖井联系测量导线联测示意图实际测量时,利用陀螺经纬仪测量地面趋近导线边K0K1和地下隧道施工控制导线边X2X3的陀螺方位角,求出陀螺经纬仪的定向常数,结合全站仪实测数据求出a3、a4的角度值,最终按导线平差的原理求出地下隧道施工控制导线点X1、X2、X3的坐标和方位角,作为区间隧道施工控制导线的起算数据。
1.2 钻孔投点法钻孔投点法实际上是根据长边投影时投影点的点位投影误差对投影边的坐标方位角影响将大大削弱的原理进行导线联系测量的一种方法。
其基本思想是在隧道前进(或后退)的方向上已开挖的地方离开车站端头井一定的距离(一般应大于150m ),从地面钻孔直达地下隧道中,然后利用光学垂准仪(或重锤球)分别通过车站端头井和钻孔将地面点位沿同一铅锤线方向投影到地下,最终把地面趋近导线的平面坐标和方位传递到地下隧道施工控制导线上。
如下图2所示,K0、K1为地面趋近导线点;T1、T2分别为地面车站端头井和钻孔井上的投影点;T1´、T2´分别为T1、T2投影到车站端头井和区间隧道底部的投影点,T1´、T2´同时又为地下隧道施工控制导线的起算点;X1、……Xn 为地下隧道施工控制导线点;a1、a2、a3、a4和d1、d2、d3分别为全站仪实测的角度和距离。
科学技术创新2020.26以柠条塔S1210超长隧道贯通测量为例,加入陀螺定向测量,进行贯通误差预计。
以下主要对导线网中加测陀螺定向边后的平差计算、加测最佳位置确定及实际加测情况等进行分析,提出了提高贯通精度的具体方案。
1加测陀螺边后附合导线平差及加测陀螺边最佳位置确定1.1加测陀螺边导线终点误差估计如图1,A 为起始点,AA 1为起始定向边,其坐标方位角为α0,导线测量点K 为终点,α1,αII ,…,αN 为N 条陀螺定向边,导线段数为N ,由B 点至K 点的一段为支导线。
图1导线示意图(1)由导线量边误差引起的终点K 的贯通误差(1)其中:m l :测边中误差;α':导线边与水贯通方向夹角。
(2)测角误差对贯通点误差累积影响(2)式中:η:所有导线点到重心连接线y'轴投影长;R y':支导线B 至K 各点和K 点连线y'轴投影长。
(3)陀螺定向对贯通点误差累积影响假设各条陀螺定向边精度相同为m α0时有:(3)1.2两井贯通贯通点水平方向贯通误差预计如图2,地面点P 向两竖井分布布设导线P-I-II-III 和P-IV-V-VI ,假设m β上为测角中误差,m l 上为量边中误差,陀螺定向边为α1,α2,…,α5,测定其陀螺定向方位角,陀螺定向中误差设为m α1,m α2,…,m α5,其中地下导线独立施测2次。
导线段为A-E ,E-M ,M-K ,B-C ,C-N ,N-K ,其中M-K ,B-C ,N-K 为支导线边,A-E ,E-M ,C-N 是方向附合导线边,井下测角中误差m β下,井下量边中误差m l 下。
图2导线布设示意图贯通点在x'上误差预计如下:(1)地面导线边引起贯通测量x'上的误差(4)式中:R y':地面导线各点与井下导线的起始点A 和B 的连线在y'轴上的投影长;α':地面导线各边与x'轴夹角。
陀螺仪测量操作流程
陀螺仪测量操作流程大致如下:
1. 开启设备:首先启动陀螺仪装置,确保其正常运行并校准零点。
2. 定向设置:确定测量轴向,使陀螺仪的敏感轴对准欲测方向。
3. 数据采集:陀螺仪开始工作时,会连续输出绕各轴转动的速度信息(角速率)。
4. 实时记录:将获取到的角速率数据实时记录,通过内置算法或外部计算设备处理,可转换为角度变化量。
5. 结果分析:整合连续测量得到的数据,可以得出被测物体的绝对姿态、转速或轨迹等信息。
6. 关闭设备:测量结束后,按照规程正确关闭陀螺仪设备,并妥善保存数据。
盾构隧道陀螺定向测量工法1.前言盾构法隧道施工技术以独有的安全、快捷等特点优势,对地面交通、建筑物及地下管线影响较小、施工不受气候条件的影响,施工效率高、安全可靠等优点在城市地下轨道交通、水利给、排水工程施工中广泛使用。
在现代城市轨道交通工程建设中,盾构法是修建地铁轨道交通的主要方法之一。
通常盾构隧道为单向掘进,且一次衬砌成型,盾构隧道掘进必须要按照预定的位置准确贯通,所以盾构隧道掘进中的方位控制是保证隧道顺利贯通的前提条件。
在盾构隧道施工中,隧道平面控制网通常采用导线测量方法,但由于隧道洞口一般位于竖井、斜井、地铁车站内。
受施工场地狭小等条件限制,联系测量困难、地下导线起始定向边较短等不利因素造成的地下导线精度较低。
在盾构隧道施工中采用合理的测量方法和必要的测量措施,既能减少偏差,又可保障盾构隧道的贯通精度。
2.工法特点2.0.1在隧道施工导线测量过程中,加测陀螺方位角。
2.0.2通过陀螺仪和全站仪结合,采用陀螺仪本身的物理特性及地球自转的影响寻找真北方向,在地下隧道中测定方位角。
2.0.3采用陀螺定向测量成果,和导线测量成果对比分析,判断导线测量成果的可靠性,降低隧道施工风险,提高隧道贯通精度。
3.适用范围随着我国基础建设的大力发展,有各种断面的隧道开挖。
本工法用于各种盾构隧道施工测量,如:矿山、轨道交通、水利给、排水工程等。
4.工艺原理4.0.1根据确定的隧道定向测量方案,进行导线起始定向边测量。
4.0.2在隧道掘进施工中,洞内导线测量。
4.0.3隧道掘进至预定里程位置时,加测陀螺方位角。
4.0.4根据陀螺定向测定的方位角和导线定向坐标方位角进行对比,通过对比分析,以确保测量成果的可靠性。
5,施工工艺流程及操作要点5.1工艺流程图5.1・1盾构隧道陀螺定向测量工法流程图5.2操作要点5.2.1定向测量设计根据区间盾构隧道实际长度(隧道长2.3km)、隧道转弯半径(曲线半径为450m)、线路走向等参数,隧道内布设两条支导线,布设导线点18个(单条导线),圆曲线段平均边长110米,其余位置平均边长150米。
自动陀螺全站仪定向测量施工工法自动陀螺全站仪定向测量施工工法一、前言自动陀螺全站仪定向测量施工工法是一种利用陀螺仪原理对施工工程进行定向测量的方法。
通过将全站仪与GPS系统、地图测量软件相结合,实现精确测量和定位,大幅提高施工效率和精度。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、质量控制、安全措施、经济技术分析,并提供一个工程实例。
二、工法特点1. 高精度定位:利用陀螺仪原理,能够实现毫米级别的定位精度,满足高精度施工的需求。
2. 自动化程度高:通过全站仪自动对准参考点,自动记录坐标和角度信息,减少人力操作,提高工作效率。
3. 实时监测:能够实时获取施工过程中的测量数据,帮助工程师及时调整施工方案,确保工程质量。
4. 易于操作:工法采用直观的图形界面和简单的操作流程,使操作人员易于上手,减少误操作。
5. 具备追踪功能:能够实现对移动目标的自动追踪和定位功能,适用于道路、桥梁等工程的定位施工。
三、适应范围该工法适用于各类建筑施工工程,特别适用于需要高精度定位和定向测量的项目,如高速公路、铁路、航道等工程。
四、工艺原理该工法利用陀螺仪原理实现定向测量。
陀螺仪可以感应地球的自转力和地磁力,在施工过程中根据测量仪器的角度信息来确定施工位置和方向。
同时,通过与GPS系统和地图测量软件结合,能够精确测量和定位。
五、施工工艺 1. 测量准备:搭建全站仪设备,校准仪器,导入工程地图和测量坐标数据。
2. 定位设置:根据工程要求,设置基准点和控制点,并在地图上标注。
3. 定向测量:根据设定的控制点,使用全站仪进行定向测量,记录测量数据并实时传输到地图测量软件上。
4. 施工调整:根据测量数据分析,进行施工调整,确保施工过程符合设计要求。
5. 定位测量:利用自动追踪功能,对需要定位的物体进行测量定位,实时记录坐标信息。
六、劳动组织施工过程中需要配备全站仪操作人员、数据收集人员和施工调整人员等。
七、机具设备1. 自动陀螺全站仪:负责进行定向测量和数据记录。
陀螺定向测量在轨道交通土建施工阶段的应用摘要:近年随着来城市轨道交通的迅猛发展,目前已有超过38个城市开展了城市轨道交通的建设。
在地铁施工阶段,为保证地铁周边道路畅通,大部分站间隧道均采用暗挖或盾构法的施工工艺,传统的测量控制均以联系测量+支导线的形式进行隧道内的方位传递,随着线路长度的增加将导致误差的积累,影响着隧道贯通精度,更严重的可能造成线路偏位。
因此,对于长、大隧道采用其他测量手段进行复核已十分必要。
关键词:道路畅通;陀螺;交通一、陀螺定向测量陀螺定向测量(gyrostatic orientation survey)是用陀螺经纬仪(全站仪)测定某控制网边的陀螺方位角,并经换算获得此边真方位角,最终推算待定边坐标方位角的过程。
陀螺仪具有两个基本特性:1、定轴性,2、进动性。
在轨道交通土建阶段主要应用其两个基本特性进行方位的精确定向。
主要测量原理如下:设C、D待测点,在C点安置仪器测得真北方向在水平度盘的读数N,D方向在水平度盘上的读数N1,则可求得CD边的真北方位角ACD=N1-N。
因CD边坐标方位角TCD =ACD-RΦ,且RΦ=(RΦ:C处的子午线收敛角,:C点横坐标,为C点纬度)。
在轨道交通外业生产过程中按地面已知边→地下定向边→地面已知边的顺序进行。
即:(1)在地面控制边进行多测回定向测量,标定仪器常数;(2)在地下待测边各进行多测回定向测量;(3)以地面控制边进行多测回定向测量,检验仪器的稳定性和精度并最终确定仪器常数。
外业测量需满足如下指标要求:(1)测回间陀螺方位角较差应小于20″。
(2)两次地面控制边测量结果均值之差不得大于12″。
(3)测前、测后各三测回测定的陀螺全站仪常数平均值较差不应大于15″。
二、数据处理外业测量结束后数据处理按如下方法进行:(1)地面标定仪器常数计算公式式中:为仪器常数;为地面已知边坐标方位角;上为地面已知边陀螺测量定向方位角。
根据地面控制点已知坐标计算得到地面已知边坐标方位角,再由地面两次陀螺定向结果求平均,得到仪器常数。
陀螺定向原理
陀螺定向原理是指利用陀螺仪的旋转稳定性进行导航定向的原理。
陀螺仪是一种可以感知和测量角速度的装置,通常由一个旋转的转子和测量器构成。
在没有外力作用时,陀螺仪转子会保持一定的旋转速度和方向不变。
利用陀螺定向原理进行导航定向的关键是利用陀螺仪的旋转稳定性。
在导航过程中,陀螺仪的转子会受到地球自转的影响,使得转子的旋转方向和地球自转的方向保持一致。
通过测量陀螺仪转子的旋转速度和方向,可以得到导航定向所需的信息。
具体而言,陀螺定向原理可以通过以下步骤实现:
1. 初始化:将陀螺仪放置在一个水平的位置上,使得转子的旋转轴与地球自转轴垂直。
2. 校准:根据陀螺仪的测量器的输出,对陀螺仪进行校准,使得输出准确反映陀螺仪的旋转速度和方向。
3. 测量:通过测量陀螺仪转子的旋转速度和方向,得到导航定向所需的信息。
4. 计算:利用测量的陀螺仪数据进行计算,推算出导航的位置和方向。
陀螺定向原理利用了陀螺仪转子的旋转稳定性,使得导航定向可以在没有外界参考的情况下进行。
这种原理被广泛应用于航
空、航海、导弹制导等领域,为导航定向提供了一种可靠的方法。
1 陀螺定向法陀螺定向法是采用光学垂准仪(或重锤球)投出井上、井下在同一铅锤线上的点位,根据井上、井下陀螺定向成果,求算投点在空间的平面夹角,使得井上、井下的导线连成一体,把井上导线坐标、方位传递到井下导线。
下面以广州地铁杨体区间竖井联系测量为例,介绍陀螺定向法实施的特点。
1.1 仪器设备TC1610全站仪,GAK1+T2陀螺经纬仪,NL光学垂准仪。
1.2作业实施(1)竖井投点井上、井下导线布置情况如图1所示,供电局、J54、A为井上已知导线点,Z1、Z2、Z3为井下待求导线点。
在井口选定T1、T2两个点位,在井盖上相应位置预留有可遮盖的小孔,将垂准仪置于小孔上方,垂准仪在井上及井下投下T1和T1′、T2和T2′。
T1、T1′在空间上为2个点,但投影到同一平面时就成为1个点;T2、T2′情况相同。
井上、井下导线通过投点连成一闭合环。
(2)陀螺经纬仪定向定向时采用逆转点法进行。
对一条边定向时,完成一端定向为半测回,完成两端定向为一测回。
由于井筒上下不宜安置陀螺经纬仪,故井上选择AJ54为定向边,井下选择Z1Z3为定向边,进行陀螺定向观测。
求出陀螺仪的定向常数,并进行改正。
假定陀螺经纬仪测得的AJ54陀螺方位角为N0,Z1Z3陀螺方位角为N5。
(3)导线边角测量①测b0、b1、b4、b5、b6角度;②量d1、d2、d3、d4、d5、d6边长。
(4)空间夹角计算b2为AT1、T1′Z1在空间上的夹角,b3为AT2、T2′Z2在空间上的夹角。
(5)导线计算根据以上导线测量成果,进行导线平差计算。
坐标、方位从井上导线点传递到井下导线点,Z1、Z2、Z3坐标成果用于指导施工。
1.3工作体会①陀螺定向法的主要优点是占用井筒时间短、精度高、观测作业简单,在地铁施工的竖井中均可采用此方法进行联系测量,是一种值得推广应用的作业方法。
②陀螺定向的实质是通过投点、定向,把井上、井下的导线联成一体,陀螺经纬仪起了测空间边夹角的作用。
简述陀螺全站仪定向的作业步骤
陀螺全站仪定向作业,是指根据测量前规定高程进行陀螺仪的姿态检测和卫星定位基线求值、安装观测置点位置和总站中心点位置,以及安装总站基准点的坐标计算的技术方法,它是野外测量的重要工作之一。
首先,在开展陀螺全站仪定向作业之前,需要完成测量预备、现场大地线路设计、杆塔的拆除及整理、太阳观测文件的编制、测量段及中间点位置的计算、站点位置的精确计算、总站基准点的安装和精密定位和定向等。
紧接着,实施陀螺仪定向作业时,需要注意安装好置点,按照预定的上下孔精度进行安装,并进行第一项仪器定向作业,定向时需要观察和控制,陀螺仪定向点位置中心点和底座上的围墙,使其符合垂直性、水平性和keep-in要求。
接下来,完成置点定向后,开始进行定向后的总站中心的定位:连接安装好的总站,在第一项仪器定向结束后,采用第二台仪器重新定向置点,然后在置点上安装高程杆、高程视头及高程点的标记等,以便对总站基准点的位置进行定义。
最后,对总站基准点的位置进行定位时,注意仪器安装以及位置角值、仪器距离等方面的观测,确定仪器的控制点位置,将其作为定位时确定的基线起点,经过定位、距离和方位测量,求得高程定位的总站基准点的位置坐标。
以上,就是陀螺全站仪定向作业的步骤,从标准高程到总站中心点位置,经过精确定位及数据矫正,可以将测量结果安全准确带入高程闭合网络大地测量中,有效提升成果精度。
陀螺方位角,并经换算获得此边真方位角的测量工作。
常用于定向连接测量。
陀螺方位角,是从陀螺仪子午线(测站上通过假想的陀螺轴稳定位置的子午面,即陀螺仪子午面与地平面的交线)北方向顺时针量至某定向边的水平角。
常用方法:
确定测站真子午线北方向的常用方向有:中天法,是通过对陀螺仪轴运转的观测,先确定近似北方向,在连续读记摆动的指标线(陀螺轴)反复经过分划线板零线时的时间,和到达东、西逆转点时的水平度盘读数,经计算获得近似北方向的改正数,进而确定测站真北方向;逆转点法,是用陀螺经纬仪跟踪观测摆动的指标线(陀螺轴)反复到达东、西逆转点时的水平度盘读数,经计算确定测站真北方向。