第六讲 工具变量回归概要
- 格式:ppt
- 大小:495.50 KB
- 文档页数:55
工具变量法工具变量法一、工具变量法得主要思想在无限分布滞后模型中,为了估计回归系数,通常得做法就是对回归系数作一些限制,从而对受限得无限分布滞后模型进行估计。
在这里,考伊克模型、适应性期望模型与部分调整模型给出了很好得解决此类问题得思路。
经过变换,新得模型中,随机扰动项得表达式为:考伊克模型: ( ,为衰减率) (1、1);适应性期望模型:(,为期望系数)(1、2);部分调整模型:( ,为调整系数) (1、3)。
为原无限分布滞后模型中得扰动项,为变换后得扰动项。
在原模型中得随机扰动项满足经典假设得前提下,部分调整模型也满足经典假设,但就是考伊克模型与适应性期望模型得随机扰动项由于存在原随机扰动项得滞后项,也就就是说考伊克模型与适应性期望模型得解释变量势必与误差项相关,因此,可能会出现上述两个模型得最小二乘估计甚至就是有偏得这样严重得问题。
那么,我们就是否可以找到一个与高度相关但与不相关得变量来替代?在这里,一个可行得估计方法就就是工具变量法。
在讨论工具变量法之前,我们先来了解一下外生变量与内生变量。
一般来说:一个回归模型中得解释变量有得与随机扰动项无关,我们称这样得解释变量为外生变量;而模型中有得解释变量与随机扰动项相关,我们可称这样得解释变量为内生解释变量。
内生解释变量得典型情况之一就就是滞后应变量为解释变量得情形,如上述考伊克模型与适应性期望模型中得。
外生解释变量:回归模型中得解释变量与随机扰动项无关;内生解释变量:回归模型中得解释变量与随机扰动项无关;了解了内生变量与外生变量得概念,我们接着讨论工具变量法得主要思想:工具变量法与普通最小二乘法就是模型参数估计得两类重要方法,在多元线性回归模型中,如果出现解释变量与随机误差项相关(即出现内生变量)时,其回归系数得普通最小二乘估计就是非一致得,这时就需要引入工具变量。
工具变量,顾名思义就是在模型估计过程中被作为工具使用,以替代模型中与随机误差性相关得随机解释变量(即内生变量)。
Stata面板数据回归分析中的工具变量法如何选择合适的工具变量工具变量法(Instrumental Variable,简称IV)在面板数据回归分析中被广泛应用。
它通过引入外生变量作为工具变量来解决内生性问题,从而使得回归结果更具可靠性和稳健性。
在Stata软件中,选择合适的工具变量对于IV估计的准确性起着至关重要的作用。
本文将介绍在Stata面板数据回归分析中如何选择合适的工具变量。
一、IV方法简介在介绍IV方法如何选择合适的工具变量之前,先简要介绍一下IV方法的原理和步骤。
IV方法是通过引入工具变量来解决内生性问题,从而得到一致性的估计。
其基本思想是找到一个与内生变量相关但与误差项不相关的变量作为工具变量,从而通过工具变量的外生性来消除内生性引起的估计偏误。
IV方法的具体步骤如下:1. 识别工具变量:首先需要找到一个与内生变量相关但与误差项不相关的变量作为工具变量。
工具变量的选择要满足两个条件:与内生变量有相关性,与误差项无相关性。
2. 检验工具变量:选择好的工具变量需要经过检验,以确保其满足与内生变量相关但与误差项不相关的要求。
常用的检验方法有Hausman检验和Sargan检验。
3. 使用工具变量进行回归:将选定的工具变量引入回归方程中,通过工具变量的外生性来消除内生性引起的估计偏误。
二、选择合适的工具变量在选择合适的工具变量时,需要考虑以下几个因素:1. 相关性:工具变量应该与内生变量有一定的相关性,才能正确地估计内生变量对因变量的影响。
相关性可以通过计算相关系数来衡量,一般要求相关系数大于0.1。
2. 排除性:工具变量与误差项无相关性,即工具变量不能受到其他未观测到的因素的影响。
排除性通常通过进行统计检验来验证,常用的检验方法有Hausman检验和Sargan检验。
3. 弱工具变量:如果工具变量过弱,即相关系数过小,会导致估计结果的方差增大,同时降低估计的准确性和稳健性。
一般来说,工具变量的F统计量应大于10,同时第一阶段回归的R-squared要大于0.1。
工具变量估计算法
工具变量估计算法是一种统计方法,用于处理回归分析中的内生性问题。
在回归分析中,如果解释变量与误差项相关,会导致估计结果有
偏误。
工具变量估计算法通过使用一个或多个与内生解释变量相关,
但与误差项无关的变量作为工具变量,来估计回归系数的一致性估计量。
工具变量的选择必须满足一定条件:
1. 与所替代的内生解释变量高度相关;
2. 与误差项不相关;
3. 与模型中其他解释变量不相关;
4. 在同一模型中引入多个工具变量时,这些工具变量之间不相关。
工具变量估计算法的步骤包括:
1. 对一阶段回归的残差进行 IID 检验,检验结果显示扰动项非 IID;
2. 进行不可识别检验,P 值(K-P LM)均为 0.000,拒绝不可识别的
原假设;
3. 进行弱工具变量检验,F 值(K-P Wald)分别为 547.812 及
386.131,远大于 16.38 的临界值,说明不存在弱工具变量问题;
4. 进行过度识别检验,Sargan 检验的 P 值为 0.3096,接受工具变
量与结构方程扰动项不相关的原假设;
5. 进行冗余检验,P 值均为 0.000,说明工具变量不冗余;
6. 进行内生性检验,P 值为 0.000,需要返回第四步,将 IV 估计改为 GMM 估计,Sargan 统计量改为 Hansen 统计量,再次检验显示Hansen-J 检验估计结果与前文一致。
通过以上步骤,可以使用工具变量估计算法对回归分析中的内生性问题进行处理,并获得一致性估计量。
工具变量法一.为什么需要使用工具变量法?当模型存在内生解释变量问题,一般为以下三种情形:(1)遗漏变量:如果遗漏的变量与其他解释变量不相关,一般不会造成问题。
否则,就会造成解释变量与残差项相关,从而引起内生性问题。
(2)解释变量与被解释变量相互影响(3)度量误差 (measurement error ):由于在关键变量的度量上存在误差,使其与真实值之间存在偏差,这种偏差可能会成为回归误差的一部分,从而导致内生性问题。
Ex :i 01122Y i i k ik i X X X ββββμ=+++⋅⋅⋅++ 其中:X 2为内生解释变量 当22Cov(X ,)=E[X ]0i i i i μμ≠时,内生解释变量与随机干扰项同期相关。
此时会导致回归参数估计量是有偏的且不一致,需要用工具变量法进行回归。
二.如何使用工具变量? (一)判断是否需要用工具变量当存在内生性变量时,则需使用工具变量,所以需要对内生性变量进行检验。
在实践中,往往是通过经济学理论先说明是否存在内生性变量,最后再通过检验证明确实存在内生变量。
(1)豪斯曼检验(Hausman )原假设H 0:所有解释变量均为外生变量将内生解释变量关于工具变量与外生变量进行OLS 回归估计 记录残差序列(^^IV OLS ββ−),加入原模型后进行OLS 估计 结果:若差值依概率收敛于0,接受原假设;反之,拒绝。
(2)杜宾-吴-豪斯曼检验(DWH )注:存在异方差的情况下传统豪斯曼检验不适用。
回归模型:'1122y x x ββε=++ z=(x 1,z 2) 第一阶段回归:''21x x z v γδ=++ 检验扰动项v 与ε相关性模型:=v+ερξ 其中:ρ为ε对v 回归系数,ε与v 不相关则ρ=0. 对 ^'''1122y=x x v e ββρ+++ 回归 对原假设H 0:ρ=0. 进行t 检验。
工具变量法工具变量法具体步骤工具变量法目录概念某一个变量与模型随机解释变量高度相关,但却不与为丛藓科扭口藓项相关,那么就可以用此变量与模型中相应回归系数的一个一致估计量,这个变量就称为方法变量,这种估计方法就叫工具基本原理变量法。
缺点工具变量法的关键是选择一个有效的优先选择工具变量,由于工具自变量变量可以选择中的困难,工具变量法本身存在两方面不足:一是由于工具变量不是惟一的,因而工具变量估计量有一定的任意性;其二由于误差项实际上是不可观测的,因而要寻找严格意义上与误差项无关的与所替代而随机解释变量高度相关的变量总的来说事实上是困难的。
工具变量法与内生解释变量可持续性解释变量会造成解读严重的后果:不一致性inconstent 和有偏biased ,因为频域不满足误差以解释线性为条件的期望值为0。
产生解释变量招盛纯一般有三个原因:一、遗漏变量二、测量误差三、联立性第三种情况是无法逐步解决的,前两种可以采用工具变量(IV )法。
IV 会带来的唯一坏处是估计方差的增大,也就是说同时采用OLS 和IV 估计,则前者的方差小于后者。
但IV 的应用是有前提条件的:1.IV 与内生解释函数相关,2.IV 与u 不相关。
在小样本情况下,一般用内生解释变量对IV 进行回归,如果R -sq 值很小的话,一般t值也很小,所以对IV 质量的评价没有大的风险问题,但是当采用大样本时,情况则相反,往往是t 值很大,而R -sq 很小,这时如果采用t 值进行关键问题评价则可能出现出现问题。
这时IV 与内生解释变量之间的若干程度不是阐释太大,但是如果与u 之间有轻微的相关机构的话,则:1、导致很小的不一致性;2、有偏性,并且这种有偏性随着R -sq趋于0而趋于OLS 的有偏性。
所以现在在采用IV 时最好采用R -sq 或F -sta 作为评价标准,另外为了观测IV 与u 的关系,可以将IV 作为解释变量放入方程进行回归,如果没有其他的系数没有多的变化,则说明IV 满足第二个条件。
工具变量法一.为什么需要使用工具变量法?当模型存在内生解释变量问题,一般为以下三种情形:(1)遗漏变量:如果遗漏的变量与其他解释变量不相关,一般不会造成问题。
否则,就会造成解释变量与残差项相关,从而引起内生性问题。
(2)解释变量与被解释变量相互影响(3)度量误差 (measurement error ):由于在关键变量的度量上存在误差,使其与真实值之间存在偏差,这种偏差可能会成为回归误差的一部分,从而导致内生性问题。
Ex :i 01122Y i i k ik i X X X ββββμ=+++⋅⋅⋅++ 其中:X 2为内生解释变量 当22Cov(X ,)=E[X ]0i i i i μμ≠时,内生解释变量与随机干扰项同期相关。
此时会导致回归参数估计量是有偏的且不一致,需要用工具变量法进行回归。
二.如何使用工具变量? (一)判断是否需要用工具变量当存在内生性变量时,则需使用工具变量,所以需要对内生性变量进行检验。
在实践中,往往是通过经济学理论先说明是否存在内生性变量,最后再通过检验证明确实存在内生变量。
(1)豪斯曼检验(Hausman )原假设H 0:所有解释变量均为外生变量将内生解释变量关于工具变量与外生变量进行OLS 回归估计 记录残差序列(^^IV OLS ββ−),加入原模型后进行OLS 估计 结果:若差值依概率收敛于0,接受原假设;反之,拒绝。
(2)杜宾-吴-豪斯曼检验(DWH )注:存在异方差的情况下传统豪斯曼检验不适用。
回归模型:'1122y x x ββε=++ z=(x 1,z 2) 第一阶段回归:''21x x z v γδ=++ 检验扰动项v 与ε相关性模型:=v+ερξ 其中:ρ为ε对v 回归系数,ε与v 不相关则ρ=0. 对 ^'''1122y=x x v e ββρ+++ 回归 对原假设H 0:ρ=0. 进行t 检验。