第六章常微分方程初值问题的数值解法习题课
- 格式:pdf
- 大小:158.00 KB
- 文档页数:9
微分方程初值问题数值解习题课一、应用向前欧拉法和改进欧拉法求由如下积分2xt y e dt -=⎰所确定的函数y 在点x =0.5,1.0,1.5的近似值。
解:该积分问题等价于常微分方程初值问题2'(0)0x y e y -⎧=⎪⎨=⎪⎩其中h=0.5。
其向前欧拉格式为2()100ih i i y y he y -+⎧=+⎪⎨=⎪⎩改进欧拉格式为22()2(1)10()20ih i h i i h y y ee y --++⎧=++⎪⎨⎪=⎩将两种计算格式所得结果列于下表二、应用4阶4步阿达姆斯显格式求解初值问题'1(0)1y x y y =-+⎧⎨=⎩00.6x ≤≤取步长h=0.1.解:4步显式法必须有4个起步值,0y 已知,其他3个123,,y y y 用4阶龙格库塔方法求出。
本题的信息有:步长h=0.1;结点0.1(0,1,,6)i x ih i i ===L ;0(,)1,(0)1f x y x y y y =-+==经典的4阶龙格库塔公式为11234(22)6i i hy y k k k k +=++++1(,)1i i i i k f x y x y ==-+121(,)0.05 1.0522i i i i hk hk f x y x y k =++=--+232(,)0.05 1.0522i i i i hk hk f x y x y k =++=--+433(,)0.1 1.1i i i i k f x h y hk x y k =++=--+算得1 1.0048375y =,2 1.0187309y =,3 1.0408184y =4阶4步阿达姆斯显格式1123(5559379)24i i i i i i hy y f f f f +---=+-+-1231(18.5 5.9 3.70.90.24 3.24)24i i i i i y y y y y i ---=+-+++由此算出4561.0703231, 1.1065356, 1.1488186y y y ===三、用Euler 方法求()'1,0101x y e y x x y =-++≤≤=问步长h 应该如何选取,才能保证算法的稳定性?解:本题(),1xf x y e y x =-++ (),0,01x y f x y e x λ'==-<≤≤本题的绝对稳定域为111x h he λ+=-<得02x he <<,故步长应满足02,00.736he h <<<<四、求梯形方法111[(,)(,)]2k k k k k k hy y f x y f x y +++=++的绝对稳定域。
第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
第6章 常微分方程数值解法 讨论一阶常微分方程初值问题(,),,()dyf x y a x bdx y a η⎧=≤≤⎪⎪⎨⎪=⎪⎩ (6.1.1)的数值解法.数值解法可区分为两大类:(1) 单步法:此类方法在计算1n x + 上的近似值1y n + 时只用到了前一点n x 上的信息.如Euler 法,Runge-Kutta 法,Taylor 级数法就是这类方法的典型代表.(2) 多步法:此类方法在计算1yn +时,除了需要n x 点的信息外,还需要12,,n n x x -- ,等前面若干个点上的信息.线性多步法是这类方法的典型代表.离散化方法1. Taylor(台劳)展开方法2. 化导数为差商的方法3. 数值积分方法一、线性多步法基本思想:是利用前面若干个节点上()y x 及其一阶导数的近似值的线性组合来逼近下一个节点上()y x 的值. 1.一般公式的形式101',,1,,ppn in ii n i i i y a yh b y n p p +--==-=+=+∑∑其中i a ,i b 为待定常数,p 为非负整数.说明:(1)在某些特殊情形中允许任何i a 或i b 为零,但恒假设p a 和p b 不能同时全为零,此时称为1p +步法,它需要1p +个初始值01,,,.p y y y 当0p =时,定义了一类1步法,即称单步法.(2) 若10b -=,此时公式的右端都是已知的,能够直接计算出1n y +,故此时称为显式方法;若10b -≠,则公式的右端含有未知项111'(,),n n n y f x y +++=此时称其为隐式方法.2.逼近准则 准确成立:101()()'(),,1,.ppn in ii n i i i y x a y xh b y x n p p +--==-=+=+∑∑【定义 6.1】 如果对任意()r y x M =,某一线性多步法准确成立,而当()y x 为某一个1r +次多项式时,线性多步法不准确成立,则称此线性多步法是r 阶的. 注:(1)方法的阶越高,逼近效果越好. (2)1p +步法的最高阶可达 22r p =+. 3.线性多步法阶与系数的关系 局部截断误差101()()'(),,1,.ppn n in ii n i i i T y x a y xh b y x n p p +--==-=--=+∑∑()01()'()(),qq n n n q n T c y x c hy x c h y x =++++其中001011011,1[()],1{1[()()2,3,.!pi i p pi i i i p pq q q i i i i c a c i a b c i a i b q q ===--==-⎧=-⎪⎪⎪=--+⎪⎨⎪⎪⎪=--+-=⎪⎩∑∑∑∑∑【定理6.1】 线性多步法是r 阶的充分必要条件是0110,0r r C C C C +====≠称1r C +为误差常数.线性多步法是相容的:满足条件010C C ==,即0011,()1pi i ppiii i a i a b===-⎧=⎪⎪⎨⎪-+=⎪⎩∑∑∑4.线性多步法的构造方法 待定系数法:r 阶方法的系数,iia b 确定,可令010,r CC C ==== 即解下面方程得到1,0()1011()(),2,3,,01p a ii p pi a b i i i i p pq q i a q i q r i i i ⎧=∑⎪⎪=⎪⎪-+=∑∑⎪⎨==-⎪⎪⎪-⎪-+-=∑∑⎪==-⎩二、线性多步法的收敛性 记1(),pp p iii r ra rρ+-==-∑1().pi p ii r b rσ-=-=∑分别称为线性多步法的第一、第二特征多项式.()r ρ以及相应的线性多步法满足根条件:若()r ρ的所有根的模均不大于1,且模为1的根是单根。
第六章 常微分方程数值解法——RK 4法、AB 4法******(学号) *****(姓名)上机题目要求见教材P307,23题。
一、算法原理题目要求采用RK 4法和AB 4法求解最简单的常微分方程初值问题(,),()y f x y a x by a η'=≤≤⎧⎨=⎩ (1)为求解式(1),采用离散化方法,就是寻求解)(x y 在区间],[b a 上的一系列点<<<<<n x x x x 321上的近似值 ,,,,21n y y y 。
记1(1,2,)i i i h x x i -=-=表示相邻两个节点的间距,称为步长。
求微分方程数值解的主要问题:(1) 如何将微分方程(,)y f x y '=离散化,并建立求其数值解的递推公式; (2) 递推公式的局部截断误差、数值数n y 与精确解)(n x y 的误差估计; (3) 递推公式的稳定性与收敛性. a) Runge-Kutta 方法基本思想:通过在1[,]i i x x +多预报几个点求斜率,并将其加权平均作为k *的近似值,以此构造更高精度的计算公式。
如果每步计算四次函数 的值,完全类似的,可以导出局部截断误差为)(5h O 的四阶Runge-Kutta 公式(RK 4):1123412132431(22),6(,),(,),221(,),22(,).n n n n n n n n n n y y k k k k k f x y h h k f x y k h k f x h y k k f x h y hk +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩ (2)b) Adams 显式公式Runge-Kutta 方法是单步法,计算1+n y 时,只用到n y , 而已知信息1-n y 、2-n y 等没有被直接利用。
可以设想如果充分利用已知信息1-n y ,2-n y ,…来计算1+n y ,那么不但有可能提高精度,而且大大减少了计算量,这就是构造所谓线性多步法的基本思想。
第六章常微分方程的数值解法第六章常微分方程的数值解法在自然科学研究和工程技术领域中,常常会遇到常微分方程的求解问题。
传统的数学分析方法仅能给出一些简单的、常系数的、经典的线性方程的解析表达式,不能处理复杂的、变系数的、非线性方程,对于这些方面的问题,只能求诸于近似解法和数值解法。
而且在许多实际问题中,确确实实并不总是需要精确的解析解,往往只需获得近似的解或者解在若干个点上的数值即可。
在高等数学课程中介绍过的级数解法和逐步逼近法,能够给出解的近似表达式,这一类方法称为近似解法。
还有一类方法是通过计算机来求解微分方程的数值解,给出解在一些离散点上的近似值,这一类方法称作为数值方法。
本章主要介绍常微分方程初值问题的数值解法,包括Euler 方法、Runge-Kutta 方法、线性多步法以及微分方程组与高阶微分方程的数值解法。
同时,对于求解常微分方程的边值问题中比较常用的打靶法与有限差分法作了一个简单的介绍。
§1 基本概念1.1 常微分方程初值问题的一般提法常微分方程初值问题的一般提法是求解满足如下条件的函数,,b x a x y ≤≤)(=<<=α)(),(a y bx a y x f dxdy, (1.1) 其中),(y x f 是已知函数,α是给定的数值。
通常假定上面所给出的函数),(y x f 在给定的区域},),{(+∞<≤≤=yb x a y x D 上面满足如下条件:(1) 函数),(y x f 在区域D 上面连续;(2) 函数),(y x f 在区域D 上关于变量y 满足Lipschitz(李普希茨)条件:212121,),(),(y y b x a y y L y x f y x f ?≤≤?≤?,, (1.2)其中常数L 称为Lipschitz(李普希茨)常数。
由常微分方程的基本理论可以知道,假如(1.1)中的),(y x f 满足上面两个条件,则常微分方程初值问题(1.1)对于任意给定的初始值α都存在着唯一的解,,b x a x y ≤≤)(并且该唯一解在区间[a,b]上是连续可微的。