数理金融学作业17:风险厌恶与效用函数
- 格式:doc
- 大小:66.00 KB
- 文档页数:1
b bb C 1bw0,a,b第一章练习及参考答案1. 假设1期有两个概率相等的状态a 和b 。
1期的两个可能状态 的状态价格分别为a 和b 。
考虑一个参与者,他的禀赋为(e oga&b )。
其效用函数是对数形式1U (C o ;C ia ;G b ) log C o 2(l°gG a logG b )问:他的最优消费/组合选择是什么?解答:给定状态价格和他的禀赋,他的总财富是w e o a e a b e 1b 他的最优化问题是1max C 0,C 1a,C1logc 。
-(log^a logG b )s.t.WGa C1ab C lb) 0G , Ga ,C 1b 0其一阶条件为:1/C o 1-(1/C !a ) 21 匚(1/务)2C 0a C 1a iC o,i给定效用函数的形式,当消费水平趋近于0时,边际效用趋近于无穷。
因此,参与者选择的最优消费在每一时期每一状态都严格为正, 即所 有状态价格严格为正。
在这种情况下,我们可以在一阶条件中去掉这 些约束(以及对应的乘子)而直接求解最优。
因此,i C i 0(i 0,a,b )。
对于C我们立即得到如下解:1 c —, 1 1 c1a , 1 1c2b2 1a2 1b把c的解代人预算约束,我们可以得到的解:2最后,我们有1 1 w 1 wc w,G a ,c1b244可以看出,参与者把一半财富用作现在的消费,把另外一半财富作为未来的消费。
某一状态下的消费与对应的状态价格负相关。
状态价格高的状态下的消费更昂贵。
结果,参与者在这些状态下选择较低的消费。
2.考虑一个经济,在1期有两个概率相等的状态a和b。
经济的参与者有1和2,他们具有的禀赋分别为:0 200 e : 100 ,e?: 00 ' 50两个参与者都具有如下形式的对数效用函数:1U(c) logc g -(log c a log C D)在市场上存在一组完全的状态或有证券可以交易。
13—14学年第二学期《数理金融学》期末考试试题(A )注意事项:1。
适用班级:11数学与应用数学本1。
本2,2013数学(升本)2。
本试卷共1页。
满分100分。
3.考试时间120分钟。
4.考试方式:闭卷一、选择题(每小题3分,共15分)1.某证券组合由X 、Y 、Z 三种证券组成,它们的预期收益率分别为10%、16%、20% 它们在组合中的比例分别为30%、30%、40%,则该证券组合的预期收益率为______ A 15。
3% B 15。
8% C 14。
7% D 15.0%2.无风险收益率和市场期望收益率分别是0。
06和0。
12。
根据CAPM 模型,贝塔值为1。
2的证券X 的期望收益率为A 0。
06B 0。
144C 0.12D 0。
1323.无风险收益率为0。
07,市场期望收益率为 0.15。
证券X 的预期收益率为 0。
12,贝塔值为1.3.那么你应该A 买入X ,因为它被高估了;B 卖空X ,因为它被高估了C 卖空X ,因为它被低估了;D 买入X ,因为它被低估了 4.一个看跌期权在下面哪种情况下不会被执行? A 执行价格比股票价格高;B 执行价格比股票价格低C 执行价格与股票价格相等;D 看跌期权的价格高于看涨期权的价格5。
假定IBM 公司的股价是每股95美元。
一张IBM 公司4月份看涨期权的执行价格为100美元,期权价格为5美元.忽略委托佣金,看涨期权的持有者将获得一笔利润,如果股价 A 涨到104美元B 跌到90美元C 涨到107美元D 跌到 96美元 二、填空题(每小题3分,共15分) 1。
风险厌恶型投资者的效用函数为2。
设一投资者的效用函数为,则其绝对风险厌恶函数 3.均值-方差投资组合选择模型是由提出的.4。
可以在到期日前任何一天行使的期权称之为5。
考察下列两项投资选择:(1)风险资产组合40%的概率获得 15%的收益,60%的概率获得5%的收益;(2)银行存款收益率为6%;则风险投资的风险溢价是 三、分析题(每小题15分,共30分)1。
数理金融试题————————————————————————————————作者:————————————————————————————————日期:一、选择1. 假设债券A(0)=100元;A(1)=110元,股票S(0)=80元,100(1),60S ⎧⎨=⎩上涨和下跌概率分别为0.8和0.2。
假设你有10000元资金,决定买入50股股票60份债券,那么该资产组合收益的数学期望()V E K 为( D )。
A 、 0.11B 、0.14C 、0.13D 、0.122.下面关于贝塔因子(β)的描述,说法正确的是( A )A.、若某股票的β>1,则当市场证券组合的回报率上升时,该股票的回报率比市场上升得更快B 、若某股票的β<0,则当市场证券组合的回报率下跌时,该股票的回报率比市场下跌得更慢C 、若某股票的0<β<1,则当市场证券组合的回报率下跌时,该股票的回报率反而上升D 、若某股票的β<0,则当市场证券组合的回报率下跌时,该股票的回报率也跟着下跌3. 两风险资产的对应权重为12(,)ωω,风险分别为2212(,),σσ相关系数为12,ρ则其组合的风险可表示为( D )。
A 、22211221212122v σσωσωωωρσσ=++ B 、22211221212122v σωσωσωωρσ=++ C 、22222112212122v σωσωσωωσσ=++ D 、2222211221212122v σωσωσωωρσσ=++ 4. 投资两个风险证券,下列资产组合线(粗黑色表示不允许卖空)错误的是( A )。
① μ ② μ0.8ρ= 1ρ=③ μ ④ μ0.8ρ=- 1ρ=-A ①②③B ②③④C ①③④D ①②④ 5. 投资两个风险证券,下列资产组合线(粗黑色表示不允许卖空)正确的是(B )(1) μ (2) μσσ0.5ρ=-1ρ=(3) μ (4) μ0.5ρ=σ1ρ=- σA 、(1) (2) (3)B 、(1) (3) (4)C 、(1) (2) (4)D 、(2) (3) (4) 6. 本金相同、存期相同且有效利率相同,则按期复合的终值(V1)与连续复合的终值(V2)满足( C )A V1>V2B V1≠V2C V1=V2D V1<V2 7、给定资产组合或单个证券(收益率用 v K 表示)的贝塔因子v β,下列表达式正确的是( B ) A(,)V M v MCov K K βσ=B 2(,)V M v M Cov K K βσ=C (,)V M v VCov K K βσ=D 2(,)V M v VCov K K βσ=8、设无风险利率为0.07,市场证券组合的期望回报率为0.15,则市场风险溢价为( ),一个贝塔系数为1.25的投资所要求的回报率为( D )。
风险厌恶与效用函数
1.风险厌恶型投资者的效用函数为( )
A. 凸函数
B. 凹函数,
C. 线性函数 D 二次函数
解答:设投资者的效用函数为()u x .则风险厌恶型投资者的效用函数为:凹函数,即()0u x ''≤;风险爱好型投资者的效用函数为:凸函数,即()0u x ''≥;风险中性投资者的效用函数为:线性函数,即()0u x ''=;
2.设投资者的效用函数为均值-方差效用函数即
22(())(,),(),()E u x u E x Var x m s m s ===,则: A. 20,0u u m s 抖>>抖;B 20,0u u m s 抖<>抖;C,20,0u u m s 抖><抖;D ;20,0u u m s
抖<<抖 解:由投资者的效用函数为均值方差效用函数,故投资者是遵循随机占优原则:一阶随机占优和二阶随机占优原则.即投资者为收益偏好型与风险厌恶型.故
20,0u u m s 抖><抖 3. 设一投资者的效用函数为负指数效用函数()ax u x e -=-,则其风险容忍函数()T x =( );其绝对风险厌恶函数()A x =( );相对风险厌恶函数()R x =( )A.a B. 1/a , C. ax . D. 2ax a e --
设投资者的效用函数为幂效用函数()/r u x x r =,则其风险容忍函数()T x =( ) ;()A x =( );相对风险厌恶函数()R x =( )
4. 设一投资者的效用函数为2()231u x x x =-+-,则该投资者属于( );设一投资者的效用函数为2()436u x x x =-+,则该投资者属于( );设一投资者的效用函数为()52u x x =-,则该投资者属于( )
A.风险爱好者 B 。
风险厌恶者 C 。
风险中性者 D.无法判断。