浅谈风力发电机专用的轴承
- 格式:docx
- 大小:29.88 KB
- 文档页数:3
第一部分:概述1.微摩擦力全永磁悬浮轴承概述微摩擦力全永磁悬浮轴承是一种先进的轴承技术,其使用永磁体和电磁悬浮技术,通过电磁场控制轴承的悬浮和旋转,实现无接触支撑和传动,从而降低摩擦和磨损,提高效率和可靠性。
2.风力发电机中的应用风力发电机是利用风能将其转化为机械能,再经过发电机将其转化为电能的设备。
在风力发电机中使用微摩擦力全永磁悬浮轴承能够提高转子的转速和稳定性,减少能源损耗和维护成本,从而提高发电效率和可持续性。
第二部分:微摩擦力全永磁悬浮轴承在风力发电机中的优势1.减少能源损耗微摩擦力全永磁悬浮轴承通过无接触支撑和传动,大大减少摩擦和磨损,降低能源损耗,提高机械效率。
2.提高转子转速和稳定性由于采用永磁悬浮技术,微摩擦力全永磁悬浮轴承可以实现高速旋转和稳定悬浮,从而提高风力发电机的转子转速和稳定性。
3.降低维护成本传统轴承由于摩擦和磨损会导致频繁的维护和更换,而微摩擦力全永磁悬浮轴承几乎没有摩擦和磨损,大大降低了维护成本。
第三部分:风力发电机中微摩擦力全永磁悬浮轴承的实际应用1.案例分析:某风力发电场的改造通过将微摩擦力全永磁悬浮轴承应用于该风力发电场的风力发电机中,转子的转速提高了20,发电效率提高了15,维护成本降低了30,为风力发电场带来了显著的经济效益。
2.行业趋势:微摩擦力全永磁悬浮轴承的未来发展随着风力发电行业的发展和需求增加,微摩擦力全永磁悬浮轴承在风力发电机中的应用前景广阔。
未来,随着技术的进步和成本的降低,这种先进的轴承技术将会得到更广泛的应用。
第四部分:总结与展望1.总结微摩擦力全永磁悬浮轴承在风力发电机中的应用能够显著提高发电效率和可靠性,降低能源损耗和维护成本,具有巨大的市场潜力。
2.展望未来随着新能源行业的快速发展,微摩擦力全永磁悬浮轴承将会在风力发电机等领域得到更多的应用,为新能源发电领域的可持续发展贡献力量。
个人观点和理解:对于微摩擦力全永磁悬浮轴承在风力发电机中的应用,我认为其能够有效提高风力发电机的整体性能,促进清洁能源的发展。
浅谈风力发电机主轴轴承失效分析及解决办法风力发电机主轴轴承是风能转换装置中的重要组成部分,其正常运转与否直接影响风力发电机的性能和寿命。
然而,在运行过程中,由于各种原因,风力发电机主轴轴承存在失效的风险。
本文将从失效原因、失效分析及解决办法等方面进行论述。
首先,风力发电机主轴轴承失效原因多种多样,主要包括以下几方面:1.过载与负荷不均匀:由于发电机长期工作在高速旋转状态下,风力过大或过小都会导致主轴轴承受到不同程度的负载,使其过载或负荷不均匀,从而引起失效。
2.润滑不良:风力发电机主轴轴承工作环境恶劣,尘埃多,容易导致润滑油污染,进而引发润滑不良,造成主轴轴承失效。
3.轴承偏心和振动:由于安装和使用不当,风力发电机主轴轴承可能出现偏心磨损,同时,振动也会在一定程度上加剧轴承失效。
常见的轴承失效形式主要包括以下几种:1.疲劳失效:轴承长期在复杂动载荷下工作,容易导致疲劳失效,主要表现为轴承表面的磨损和龟裂。
2.磨损失效:因为润滑不良、杂质进入轴承等原因,主轴轴承可能出现磨损失效,主要表现为表面磨损、脱落和腐蚀等现象。
3.弯曲失效:过载或负荷不均匀都会导致主轴弯曲变形,造成主轴轴承失效。
为了解决风力发电机主轴轴承失效问题1.加强检查和维护:定期对风力发电机主轴轴承进行检查,确保其润滑状态良好,及时更换磨损严重的轴承。
2.提高轴承负荷承载能力:采用高强度材料制造轴承,增加轴承的负荷承载能力以及寿命。
3.减小振动幅度:通过优化设计和加强安装质量,降低风力发电机的振动幅度,减少对主轴轴承的影响。
4.加强润滑管理:严格控制风力发电机主轴轴承的润滑油品质和污染控制,确保轴承良好润滑,减少摩擦磨损。
总之,风力发电机主轴轴承的失效对风力发电机的性能和寿命具有重要影响。
通过加强检查和维护、提高轴承负荷承载能力、减小振动幅度、加强润滑管理等措施,可以有效预防和解决风力发电机主轴轴承失效问题,提高风力发电机的可靠性和经济性。
风力发电机用轴承大致可以分为三类,即:偏航轴承、变桨轴承、传动系统轴承(主轴和变速箱轴承)。
偏航轴承安装在塔架与座舱的连接部,变桨轴承安装在每个叶片的根部与轮毂连接部位。
每台风力发电机设备用一套偏航轴承和三套变桨轴承。
偏航、变桨轴承套圈的材料选用42CrMo,热处理采用整体调质处理,调质后硬度为229HB—269HB,滚道部位采用表面淬火,淬火硬度为55HRC-62HRC。
由于风力发电机偏航、变桨轴承的受力情况复杂,而且轴承承受的冲击和振动比较大,因此,要求轴承既能承受冲击,又能承受较大载荷。
风力发电机主机寿命要求20年,轴承安装的成本较大,因此要求偏航、变桨轴承寿命也要达到20年。
这样风力发电机轴承套圈基体硬度为229HB-269HB,能够承受冲击而不发生塑性变形,同时滚道部分表面淬火硬度达到55HRC-62HRC,可增加接触疲劳寿命,从而保证风力发电机轴承长寿命的使用要求。
Srb轴承在风力发电机上的运用随着全球对可再生能源的需求不断增加,风力发电作为一种清洁、可持续的能源形式,受到了越来越多的关注和投资。
而风力发电机作为风力发电系统的核心设备之一,其关键部件srb轴承的运用,对于发电机的性能、工作寿命等方面都有着重要的影响。
本文将针对srb轴承在风力发电机上的运用进行探讨,分析其重要性、应用特点以及未来发展方向。
一、srb轴承在风力发电机上的重要性1.支撑旋转部件风力发电机的转子是其核心部件,也是最重要的旋转部件之一。
而srb 轴承作为一种重要的旋转支撑装置,能够有效支撑和保护风力发电机的旋转部件,确保其稳定运转、减少摩擦损耗,从而提高发电机的整体性能。
2.减少能源损耗在风力发电机的运转过程中,srb轴承的摩擦系数、转动阻力等参数都将直接影响到发电机的能源损耗情况。
选择适合的srb轴承,能够有效减少风力发电机的能源损耗,提高发电效率。
3.保障安全稳定运行风力发电机通常需要在恶劣的环境条件下工作,如高温、高湿和强风等。
而合理的选择和运用srb轴承,能够保障风力发电机在恶劣环境下的安全稳定运行,延长其使用寿命。
二、srb轴承在风力发电机上的应用特点1.耐高温性能优异风力发电机通常需要在高温环境下长时间运行,对srb轴承的耐高温性能提出了更高的要求。
良好的耐高温性能能够有效减少srb轴承的磨损和老化,确保其长时间稳定运行。
2.抗风载荷能力强风力发电机作为一种需要长时间在强风作用下运行的设备,对srb轴承的抗风载荷能力也提出了较高要求。
优秀的抗风载荷能力能够保障风力发电机在强风环境下的安全运行,减少意外损坏和故障发生的可能性。
3.抗冲击性能好风力发电机在运行过程中,可能会受到风载荷、振动和其他外部冲击力的影响,对srb轴承的抗冲击性能提出了一定要求。
良好的抗冲击性能可以有效减少风力发电机的振动、噪音等不良影响,提高其稳定性和安全性。
三、srb轴承在风力发电机上的未来发展方向1.提高耐磨损性能随着风力发电机的发展和应用,对于srb轴承的耐磨损性能提出了更高的要求。
精心整理
浅谈风力发电机专用的轴承
风力发电机常年在野外工作,工况条件比较恶劣,温度、湿度和轴承载荷变化很大,风速最高可达23m/s,有冲击载荷,因此要求轴承有良好的密封性能和润滑性能、耐冲击、长寿命和高可靠性,发电机在2-3级风时就要启动,并能跟随风向变化,所以轴承结构需要进行特殊设计以保证低摩擦、高灵敏度,大型偏航轴承要求外圈带齿,因此轴承设计、材料、制造、润滑及密封都要进行专门设计。
1.风机轴承技术要点分析
1.4发电机轴承
发电机轴承采用圆柱滚子轴承和深沟球轴承。
通过对这两种轴承的结构设计、加工工艺方法改进、生产过程清洁度控制及相关组件的优选来降轴承振动的噪声,使轴承具有良好的低噪声性能。
1.5轴承装机试验技术研究
精心整理
轴承安装后的实际性能不仅与轴承自身性能有关,而且还与轴承的具体安装使用条件密切相关,因此,要对轴承安装时的配合形式、安装中心的对中性进行研究,使轴承在实际使用中能够得到较好的工作性能。
2.风机轴承技术现状
目前,国内开发生产的风机轴承主要是变速器轴承和电机轴承,但性能和寿命还达不到要求。
因此,90%左右的变速器轴承和电机轴承仍然依赖进口。
偏航轴承总成和风叶主轴轴承总成还在研制之中,国内除洛轴、瓦轴等大型国有企业有少量试制外,很少有厂家生产,基本属国内空白。
风力发电机组轴承的可靠性分析与优化一、引言风力发电作为一种清洁、可再生的能源,正逐渐成为全球范围内替代传统化石能源的重要选择。
而作为风力发电机组的核心部件之一,轴承的可靠性对于风力发电机组的性能和运行安全至关重要。
本文将对风力发电机组轴承的可靠性进行分析与优化,以提高风力发电机组的运行效率和可靠性。
二、风力发电机组轴承的可靠性分析1. 功能与要求分析风力发电机组轴承的主要功能是支撑风力机转子,并将旋转力转化为线性力以驱动发电机发电。
轴承在运行过程中需承受高速旋转、大径向负载和轴向负载等复杂工况下的应力。
因此,风力发电机组轴承的可靠性分析需要考虑以下要求:- 轴承具备优良的承载能力,能够稳定地承受风力机转子产生的径向负载和轴向负载;- 轴承具备较高的耐磨损性能,能够在长期高速旋转的情况下减少磨损,延长使用寿命;- 轴承具备良好的抗冲击性能,能够应对风力机轮毂在运行过程中产生的冲击力;- 轴承具备较低的摩擦阻力,能够降低机械损耗,提高发电效率;- 轴承具备较低的运行噪声,能够减少机组噪声对周围环境的影响;- 轴承具备较高的可维护性,易于维修和更换,减少停机时间。
2. 可靠性分析方法为了分析风力发电机组轴承的可靠性,可以采用以下方法:- 可靠性评估:通过收集大量轴承运行数据,运用统计学方法进行可靠性评估,如故障概率分布、故障时间平均值、失效率等指标,确定轴承的可靠性状况;- 故障模式分析:对已发生的轴承故障进行分析,确定故障的类型及可能的原因,如疲劳、磨损、润滑不良等,为轴承的优化提供参考;- 有限元分析:利用有限元软件对轴承在实际工况下的受力情况进行模拟和分析,了解轴承的应力分布、刚度、变形等性能指标,为轴承的优化设计提供依据。
3. 可靠性优化方法基于可靠性分析的结果,可以采取以下方法对风力发电机组轴承进行优化:- 材料优化:选用高强度、高硬度、高耐磨损的轴承材料,改善轴承的抗疲劳性能和寿命;- 润滑优化:选择适当的润滑方式和润滑剂,确保轴承在运行中具备良好的润滑效果,减少摩擦和磨损;- 结构优化:通过改进轴承结构,提高轴承的刚度和稳定性,减少振动和冲击,延长轴承使用寿命;- 加工工艺优化:采用精密加工工艺,保证轴承内部和外观的几何形状和尺寸精度,降低轴承制造过程中的缺陷和质量问题;- 维护管理优化:建立科学合理的维护管理体系,定期进行轴承检查和维护,及时发现并修复轴承故障,预防发生重大故障。
风力发电机专用轴承风力发电机用轴承大致可以分为三类,即:偏航轴承、变桨轴承、传动系统轴承(主轴和变速箱轴承)。
偏航轴承安装在塔架与座舱的连接部,变桨轴承安装在每个叶片的根部与轮毂连接部位。
每台风力发电机设备用一套偏航轴承和三套变桨轴承(部分兆瓦级以下的风力发电机为不可调桨叶,可不用变桨轴承)。
代号方法风力发电机偏航、变桨轴承代号方法采用了JB/T10471—2004中转盘轴承的代号方法,但是在风力发电机偏航、变桨轴承中出现了双排四点接触球式转盘轴承,而此结构轴承的代号在JB /T10471—2004中没有规定,因此,在本标准中增加了双排四点接触球转盘轴承的代号。
风力发电机专用轴承由于单排四点接触球转盘轴承的结构型式代号用01表示,而结构型式代号02表示的是双排异径球转盘轴承结构,因此规定03表示双排四点接触球转盘轴承结构。
技术要求材料本标准规定偏航、变桨轴承套圈的材料选用42CrMo,热处理采用整体调质处理,调质后硬度为229HB—269HB,滚道部分采用表面淬火,淬火硬度为55HRC-62HRC。
由于风力发电机偏航、变桨轴承的受力情况复杂,而且轴承承受的冲击和振动比较大,因此,要求轴承既能承受冲击,又能承受较大载荷。
风力发电机主机寿命要求20年,轴承安装的成本较大,因此要求偏航、变桨轴承寿命也要达到20年。
这样轴承套圈基体硬度为229HB-269HB,能够承受冲击而不发生塑性变形,同时滚道部分表面淬火硬度达到55HRC-62HRC,可增加接触疲劳寿命,从而保证轴承长寿命的使用要求。
低温冲击功本标准对偏航、变桨转盘轴承套圈低温冲击功要求:—20℃Akv不小于27J,冷态下的Akv 值可与用户协商确定。
风力发电机可能工作在极寒冷的地区,环境温度低至—40吧左右,轴承的工作温度在—20~C左右,轴承在低温条件下必须能够承受大的冲击载荷,因此,要求轴承套圈的材料在调质处理后必须做低温冲击功试验,取轴承套圈上的一部分做成样件或者是与套圈同等性能和相同热处理条件下的样件,在—20~C环境下做冲击功试验。
一、概述随着全球能源需求的不断增长,可再生能源成为人们关注的焦点。
风力发电作为一种清洁的能源形式,受到了越来越多的重视。
而海上风力发电更是因其稳定的风力资源和更大的发电潜力而备受青睐。
在海上风力发电机中,绝缘轴承作为关键的传动部件之一,其设计和性能对整个风力发电机的安全运行和效率起着至关重要的作用。
本文将围绕16兆瓦海上风力发电机绝缘轴承设计展开论述。
二、绝缘轴承的作用和特点绝缘轴承作为风力发电机中的重要部件,承担着承载转子重量和旋转惯量、传递风能、抗风荷载变化、减小发电机机械磨损等作用。
在海上风力发电机中,绝缘轴承的设计需要具备良好的防腐蚀性能和抗海水侵蚀能力,以保证风力发电机在潮湿的海洋环境中长期稳定运行。
三、16兆瓦海上风力发电机绝缘轴承的设计要求1. 承载能力:16兆瓦海上风力发电机较大的功率需要绝缘轴承具有较强的承载能力,能够承受风力发电机长时间高速运转带来的巨大载荷。
2. 防腐蚀性能:海水中盐分含量较高,容易对金属零件产生腐蚀,因此绝缘轴承的设计需要具备良好的防腐蚀性能,延长使用寿命。
3. 自润滑性能:由于海上风力发电机的特殊工作环境,绝缘轴承需要具备较好的自润滑性能,减少维护成本和提高可靠性。
4. 耐磨损性能:海上风力发电机长期暴露在海洋环境中,风力发电机机械磨损会严重影响其运行效率,绝缘轴承需要具备良好的耐磨损性能,保证长期稳定运行。
四、16兆瓦海上风力发电机绝缘轴承的设计方法1. 选材:选用耐腐蚀性能优良的不锈钢材料,如316不锈钢等,用于制造绝缘轴承的关键零部件,保证其在潮湿海洋环境中的良好耐腐蚀性能。
2. 表面处理:采用特殊的表面处理技术,如阳极氧化处理、渗碳处理等,提升绝缘轴承的防腐蚀能力和硬度,延长使用寿命。
3. 润滑设计:采用高性能的自润滑材料或特殊的润滑脂,保证绝缘轴承在长期运行中始终保持良好的润滑状态,减少机械磨损。
4. 结构设计:采用合理的结构设计,增加轴承的承载能力,保证其在16兆瓦海上风力发电机的高负荷工作条件下不会出现失效。
风力发电机的推力轴承工作原理精选文档风力发电机是一种利用风能产生电能的设备。
其中,推力轴承是风力发电机中的一个重要组成部分,它承受着风力发电机的推力负荷。
推力轴承的工作原理是利用液体或气体的力学原理,通过减小与转子接触的摩擦力,使转动更加平稳。
下面是一些推力轴承的常见工作原理:1. 液体推力轴承:液体推力轴承是通过液体填充轴承间隙,形成一层润滑膜来减小摩擦。
当转子旋转时,液体的流动能够承受推力负荷,并保持转子的平稳运行。
2. 气体推力轴承:气体推力轴承类似于液体推力轴承,但使用的是气体而不是液体。
气体推力轴承可以通过控制气体的压力来调整轴承的刚度和稳定性,以适应不同的工作条件。
3. 磁悬浮轴承:磁悬浮轴承利用磁力原理来支撑转子,实现无接触的转动。
磁悬浮轴承可以极大地降低轴承损耗和摩擦,并且适用于高速运行的风力发电机。
需要注意的是,不同类型的风力发电机可能使用不同类型的推力轴承,具体的工作原理也会有所差异。
因此,在选择和设计推力轴承时,需要根据实际情况进行详细的分析和研究。
本文档介绍了风力发电机的推力轴承工作原理的一些常见类型,旨在为读者提供一个简要的了解,以便更好地理解和应用于实际工程中。
如需深入了解和应用,请参考相关专业文献和领域专家的建议。
参考文献:1. Smith, J. (2018). Thrust bearings in wind turbines: An overview. Renewable Energy Focus, 25-32.2. Johnson, R. (2019). Principles of Fluid Lubrication. McGraw-Hill Education.以上内容仅供参考,详情请以可信内容为准。
浅谈风力发电机专用的轴承
风力发电机常年在野外工作,工况条件比较恶劣,温度、湿度和轴承载荷变化很大,风速最高可达23m/s,有冲击载荷,因此要求轴承有良好的密封性能和润滑性能、耐冲击、长寿命和高可靠性,发电机在2-3级风时就要启动,并能跟随风向变化,所以轴承结构需要进行特殊设计以保证低摩擦、高灵敏度,大型偏航轴承要求外圈带齿,因此轴承设计、材料、制造、润滑及密封都要进行专门设计。
1. 风机轴承技术要点分析
1.1 偏航轴承总成(660PME047)
偏航轴承总成是风机及时追踪风向变化的保证。
风机开始偏转时,偏航加速度ε将产生冲击力矩M=Iε(I为机舱惯量)。
偏航转速Ω越高,产生的加速度ε也越大。
由于I非常大,这样使本来就很大的冲击力成倍增加。
另外,风机如果在运动过程中偏转,偏航齿轮上将承受相当大的陀螺力矩,容易造成偏航轴承的疲劳失效。
根据风机轴承的受力特点,偏航轴承采用“零游隙”设计的四点接触球轴承,沟道进行特别设计及加工,可以承受大的轴向载荷和力矩载荷。
偏航齿轮要选择合适的材料、模数、齿面轮廓和硬度,以保证和主动齿轮之间寿命的匹配。
同时,要采取有针对性的热处理措施,提高齿面强度,使轴承具有良好的耐磨性和耐冲击性。
风机暴露在野外,因此对该轴承的密封性能有着严格的要求,必须对轴承的密封形式进行优化设计,对轴承的密封性能进行模拟试验研究,保证轴承寿命和风机寿命相同。
风机装在40m的高空,装拆费用昂贵,因此必须有非常高的可靠性,一般要求20年寿命,再加上该轴承结构复杂,因此在装机试验之前必须进行计算机模拟试验,以确保轴承设计参数无误。
1.2 风叶主轴轴承(24044CC)
风叶主轴由两个调心滚子轴承支承。
由于风叶主轴承受的载荷非常大,而且轴很长,容易变形,因此,要求轴承必须有良好的调心性能。
确定轴承内部结构参数和保持架的结构形式,使轴承具有良好的性能和长寿命。
1.3 变速器轴承
变速器中的轴承种类很多,主要是靠变速箱中的齿轮油润滑。
润滑油中金属颗粒比较多,使轴承寿命大大缩短,因此需采用特殊的热处理工艺,使滚道表面存在压应力,降低滚道对颗粒杂质的敏感程度,提高轴承寿命。
同时根据轴承的工况条件,对轴承结构进行再优化设计,改进轴承加工工艺方法,进一步提高轴承的性能指标。
1.4 发电机轴承
发电机轴承采用圆柱滚子轴承和深沟球轴承。
通过对这两种轴承的结构设计、加工工艺方法改进、生产过程清洁度控制及相关组件的优选来降轴承振动的噪声,使轴承具有良好的低噪声性能。
1.5 轴承装机试验技术研究
轴承安装后的实际性能不仅与轴承自身性能有关,而且还与轴承的具体安装使用条件密切相关,因此,要对轴承安装时的配合形式、安装中心的对中性进行研究,使轴承在实际使用中能够得到较好的工作性能。
2. 风机轴承技术现状
目前,国内开发生产的风机轴承主要是变速器轴承和电机轴承,但性能和寿命还达不到要求。
因此,90%左右的变速器轴承和电机轴承仍然依赖进口。
偏航轴承总成和风叶主轴轴承总成还在研制之中,国内除洛轴、瓦轴等大型国有企业有少量试制外,很少有厂家生产,基本属国内空白。
风机轴承开发研制中,存在的主要技术难点是实现长寿命所需的密封结构和润滑脂、特殊的滚道加工方法和热处理技术、特殊保持架设计和加工制造方法等。
国内目前的技术水平与国外先进水平相比存在较大差距,但近几年来我国的一些研究单位在这些方面已经取得了一些突破性的研究成果,这必须将加速风机轴承国产化的进程。
3. 风机轴承市场分析
我国风能资源十分丰富,理论储量1600000000KW,可开发利用的风能资源253000000KW。
随着人们环保意识的增强和国家对可再生能源的重视,近年来风力发电在我国得到了长足发展。
我国从“七五”开始着手风电场建设,到“八五”末期共建立了19个风电场,总装机容量达166500KW,占全国电网总容量的0.07%。
“九五”期间,我国又建成了21个风电场,新增装机容量223790KW,另有90300KW在建。
根据我国电力工业总装机容量达到350000000KW,其中包括风力发电在内的新能源占0.7%,达到2450000KW。
以往我国的风力发电机主要依靠进口,设备投资昂贵,电价居高不下,影响了风力发电的市场化运行。
据分析,如果600KW大型风力发电机组国产化以后,国产化率达到60%,设备造价可以降低15%-20%,风电成本可以降低10%-14%;国产化率达到80%,设备造价可以降低25%,风电成本可以降低18%。
目前全国共有81个研究单位及生产企业从事风力机械的开发、研究及制造,2001年全国共生产风力发电机组20903台,19735.2KW。
其中,离网型机组20879台,4975.2KW,分别比上年增加64.79%和87.60%。
2001年我国还首次生产并网型风力发电机组24台,14760KW。
在国家对再生无污染能源的多项优惠政策的鼓励下,今后若干年内,我国风力发电工业必定会飞速发展。
根据我国电力工业“十五”发展规划,风电将
以年均40%的速度发展,到2005年我国风力发电机组的生产量将达到80300台。
风力发电机配套轴承主要用在偏航系统、变浆系统、变速器和发动机等部位,其中每个机组主要包括偏航轴承1套,风叶主轴轴承2套,变速箱轴承15套左右,发电机轴承2套左右,轴承结构形式众多。
以每台机组平均需配20套轴承计算,到2005年全国风力发电机需配套轴承166万套。
即便按目前变速器和电机轴承10%的国产化率计算,也将会有16.6万套的市场空间。
如果轴承国产化率提高到20%,将会有33.2万套的市场容量,大约是目前生的能力的提高,配套轴承的国产化率还将进一步提高,因此风力发电机专用轴承的市场前景广阔。